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I describe the treatment of gravity as a quantum effective field theory. This allows a natural
separation of the (known) low energy quantum effects from the (unknown) high energy contributions.
Within this framework, gravity is a well-behaved quantum field theory at ordinary energies. In
studying the class of quantum corrections at low energy, the dominant effects at large distance can
be isolated, as these are due to the propagation of the massless particles (including gravitons) of
the theory and are manifested in the nonlocal and/or nonanalytic contributions to vertex functions
and propagators. These leading quantum corrections are parameter-free and represent necessary
consequences of quantum gravity. The methodology is illustrated by a calculation of the leading
quantum corrections to the gravitational interaction of two heavy masses.

PACS number(s): 04.60.Ds, 11.10.Lm

I. INTRODUCTION

We are used to the situation where our theories are
only assumed to be provisional. They have been tested
and found to be valid over a limited range of energies
and distances. However, we do not know that they hold
in more extreme situations. There are many examples of
theories which have been superseded by new theories at
higher energies, and we expect this process to continue.
It is interesting to look at the incompatibility of general
relativity and quantum mechanics in this light. It would
not be surprising if there are new ingredients at high
energy in order to have a satisfactory theory of quantum
gravity. However, are there any conflicts between gravity
and quantum mechanics at the energy scales that are
presently accessible? If there are, it would be a major
concern because it would mean our present theories are
wrong in ways which cannot be blamed on new physics
at high energy.

There is an apparent technical obstacle to addressing
the compatibility of quantum mechanics and gravity at
present energies, i.e., the nonrenormalizability of quan-
tum gravity. Quantum fluctuations involve all energy
scales, not just the energy of the external particles. Per-
haps our lack of knowledge of the true high energy theory
will prevent us from calculating quantum effects at low
energy. In the class of renormalizable field theories, low-
energy physics is shielded from this problem because the
high-energy effects occur only in the shifting of a small
number of parameters. When these parameters are mea-
sured experimentally, and results expressed in terms the
measured values, all evidence of high-energy scales dis-
appears or is highly suppressed [1]. However in some
nonrenormalizable theories, the influence of high energy
remains. For example, in the old Fermi theory of weak
interactions, the ratio of the neutron decay rate to that of
the muon has a contribution which diverges logarithmi-
cally at one loop. It is not the divergence itself which is
the problem, as the ratio becomes finite in the standard
model (with a residual effect of order a In M%). More
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bothersome is the sensitivity to the high-energy theory—
the low-energy ratio depends on whether the scale of the
new physics is Mz or 10'* GeV.

However, quantum predictions can be made in non-
renormalizable theories. The techniques are those of ef-
fective field theory, which has been assuming increasing
importance as a calculational methodology. The calcu-
lations are organized in a systematic expansion in the
energy. Effects of the high-energy theory again appear in
the form of shifts in parameters which however are deter-
mined from experiment. To any given order in the energy
expansion there are only a finite number of parameters,
which can then be used in making predictions. Using the
techniques of effective field theory, it is easy to separate
the effects due to low-energy physics from those of the
(unknown) high-energy theory. Indeed, even the phras-
ing of the question raised in the opening paragraph is a
by-product of the way of thinking about effective field
theory.

General relativity fits naturally into the framework of
effective field theory. The gravitational interactions are
proportional to the energy, and are easily organized into
an energy expansion. The theory has been quantized
on smooth enough background metrics [2-4]. We will
explore quantum gravity as an effective field theory and
find no obstacle to its successful implementation.

In the course of our study we will find a class of quan-
tum predictions which are parameter-free (other than
Newton’s constant G) and which dominates over other
quantum predictions in the low-energy limit. These
“leading quantum corrections” are the first modifications
due to quantum mechanics, in powers of the energy or
inverse factors of the distance. Because they are inde-
pendent of the eventual high-energy theory of gravity,
depending only on the massless degrees of freedom and
their low-energy couplings, these are true predictions of
quantum general relativity.

The plan of the paper is as follows. In Sec. II, we
briefly review general relativity and its quantization. Sec.
III is devoted to the treatment of general relativity as an
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effective field theory, while the leading quantum correc-
tions are described in more detail in Sec. IV. We give
more details of a previously published example [5], that of
the gravitational interaction around flat space, in Sec. V.
Some speculative comments on the eztreme low-energy
limit, where the wavelength is on order the size and/or
lifetime of the Universe, are given in Sec. VI with con-
cluding comments in Sec. VII. An appendix gives some
of the nonanalytic terms needed for the leading quantum
corrections arising in loop integrals.

II. GENERAL RELATIVITY AND ITS
QUANTIZATION

In this paper the metric convention is such that flat
space is represented by 7,, = diag(1,-1,-1,-1) [6,7)].
The Einstein action is

Seray = / s/ =g [%R] , 1)

where k%2 = 327G, g = detg,,, g, is the metric tensor,
and R = g*R,,,:

R;w = 3.,I‘ aAI‘ + FUAF 1'!0 F’\” ’
Ao’
Paﬁ = T (aagﬂo + aﬁgaﬂ - aﬂgaﬁ) . (2)

Heavy spinless matter fields interact with the gravita-
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Smatter = /d4z\/_|: “"6“453,,45 - _m2¢2 (3)

The quantum fluctuations in the gravitational field
may be expanded about a smooth background metric g,,,,
with one possible choice being

Guv = Guv + Khuv y

g* = g" — Kh* 4+ KZRERN + ... . (4)
The indices here and in subsequent formulas are raised
and lowered with the background metric. In order to

quantize the field h,, , we need to fix the gauge. Following
't Hooft and Veltman [3] this entails a gauge-fixing term

Lor =3 { (h“j," - %h;,,) (w2 - h“‘)} ()

with A = h}, and with the semicolon denoting covari-
ant differentiation on the background metric. The ghost
Lagrangian is

ghost =v- an* {77,‘,\ uv"’ } (6)
for the complex Faddeev-Popov ghost field 7,,.
The expansion of the Einstein action takes the form

(3,8]

2R
Sgrav = / d*z/=3 [;; +LM + LB + .. ] (7

tional field as described by the action where
i J
L) = £ [g*R—2R*] ,
. - 1 _
Cs(]z) = -2-h,‘,,;,,h‘"’;°‘ - %h;ah;" + h;ah"‘?ﬁ — hug,ah**® + R (ih2 - ih,,.,h‘"’) + (2h2h.,,\ - hh,,.,) R* . (8)

A similar expansion of the matter action yields
r

Swmatter = / d*z/=3 {L?,, +LO 4@ 4 } 9)

with
(0) 1 2,2

L) = 5 (Bupd*¢ — m*¢%) ,
£l = ——h wT™

pyv = M¢BV¢

LO = g2 <§h‘“’h§ - Zhh‘"’) 8,90, ¢

—ym, (8x98*¢ — m?¢?) ,

K (e 1 “ 2,2
-5 (h hao — 5hh) [0.00"¢ — m2¢?] . (10)

If the background metric satisfies Einstein’s equation

2
R — %g‘"’R =-TT, (11)

the linear terms in h,,, c}," + £, will vanish.

In calculating quantum corrections at one loop, we
need to consider the Lagrangian to quadratic order:

so=/d4z¢_{ +£<°>}

Squad = /d4$\/ —g{ng) + Lgr + Lghost + ['5721)} .
(12)
The integration over the gravitational degrees of freedom,
Wig) = %61 = [dhullineeroems | (13

yields a functional which in general is nonlocal and also
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divergent. The identification of the quantum degrees of
freedom and the definition of a quantum theory is no
more difficult than the quantization of Yang-Mills theory,
at least for small quantum fluctuations. The difficulties
arise in applying this result. Because of the dimensionful
coupling x and the nonlinear nature of the theory, diver-
gencies appear in places which cannot be absorbed into
the basic parameters introduced this far. Since the cou-
pling grows with energy, the theory is strongly coupled
at very high energy, E > Mp), and badly behaved in per-
turbation theory. We also do not have known techniques
for dealing with large fluctuations in the metric, which
may in principle be topology-changing in nature. How-
ever, the low-energy fluctuations are very weakly cou-
pled, with a typical strength x2¢2 ~ 107%°[107°] for
¢* ~ 1/(1 fm)? [¢* ~ 1/(1 m)?]. Since small quantum
fluctuations at ordinary energies behave normally in per-
turbation theory, it is natural to try to separate these
quantum corrections from the problematic (and most
likely incorrect) high-energy fluctuations. Effective field
theory is the tool to accomplish this separation.

III. GRAVITY AS AN EFFECTIVE FIELD
THEORY

Effective field theory techniques [9,10] have become
common in particle physics. The method is not a change
in the rules of quantum mechanics, but is rather a pro-
cedure which organizes the calculation and separates out
the effects of high energy from the known quantum effects
at low energy. General relativity is a field theory which
naturally lends itself to such a treatment. Perhaps the
known manifestation of an effective field theory which is
closest in style to gravity is chiral perturbation theory
[10], representing the low-energy limit of QCD. Both are
nonlinear, nonrenormalizable theories with a dimension-
ful coupling constant. If the pion mass were taken to zero,
as can be easily achieved theoretically, long distance ef-
fects similar to those from graviton loops would be found.
In addition we have had the benefit of detailed calcula-
tions and experimental verification in the chiral case, so
that the workings of effective field theory are transpar-
ent. In this section, I transcribe the known properties of
effective field theory to the gravitational system.

The guiding principle underlying general relativity is
that of gauge symmetry, i.e., the local invariance under
coordinate transformations. This forces the introduction
of geometry, and requires us to define the action of the
theory using quantities invariant under the general co-
J

1
(1+32mc;GNR) (Rw - 5g‘“’R) + 327c1GnN [R;)"\ -R,. +

Unless c; R or clR;A’\/R > 107 m~2, the influence of the
c1 R? terms is negligible.

In the literature [13] there are discussions of problems
with R + R2 theories. These include negative metric
states, unitarity violation, an inflationary solution, and
an instability of flat space. However Simon[14] has shown
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ordinate transformations. However, this is not sufficient
to completely define the theory, as many quantities are
invariant. For example, each term in the action

Sgrav = /d“m\/—g{A + SER
+c1R? 4+ caR, R* + -+ } (14)

(where A, k2, ¢, c, are constants and the ellipses denote
higher powers of R, R,,, and R,,qg), is separately in-
variant under general coordinate transformations. Other
physics principles must enter in order to simplify the ac-
tion. For example, the constant A is proportional to the
cosmological constant (A = —8wGA), which experiment
tells us is very small [11]. We therefore set (the renormal-
ized value of) A = 0 for the rest of this paper. Experi-
ment tells us very little about the dimensionless constants
¢1, ¢z, bounding c;,c; < 107 [12], and coefficients of yet
higher powers of R have essentially no experimental con-
straints. Einstein’s theory can be obtained by setting
c1,¢2 = 0 as well as forbidding all higher powers. How-
ever, it is very unlikely that in fact ¢;,c; = 0. For exam-
ple, quantum corrections involving the known elementary
particles (whether or not gravity itself is quantized) will
generate corrections to ¢;, ¢z, etc. Unless an infinite num-
ber of “accidents” occur at least some of the higher order
coeflicients will be nonzero.

In practice there is no known reason to require that
c1,c2 vanish completely. We can instead view the grav-
itational action as being organized in an energy expan-
sion, and then reasonable values of c;, c; do not influence
physics at low energies. In order to set up the energy ex-
pansion, we note that the connection Pgﬁ is first order
in derivatives and the curvature is second order. When
matrix elements are taken, derivatives turn into factors
of the energy or momentum 9, ~ p,, so that the cur-
vature is said to be of order p?. Terms in the action
involving two powers of the curvature are of order p*.
The graviton energy can be arbitrarily small and at suffi-
ciently low energies terms of order p* are small compared
to those of order p?. The higher order Lagrangians will
have little effect at low energies compared to the Einstein
term R. This is why the experimental bounds on ¢;,c;
are so poor; reasonable values of ¢;, ¢z give modifications
which are unmeasurably feeble. In a pure gravity theory
the expansion scale might be expected to be the Planck
mass M3, ~ Gy ~ (1.2 x 10'® GeV)2. For example, if
we just consider the R and R? terms in the Lagrangian,
Einstein’s equation is modified to

1

4g,,‘,,Rz] = —87GT"". (15)

|—7 .
that these problems do not appear when the theory is

treated as an effective field theory. Essentially, the prob-
lems arise from treating the R + R? description (without
any higher terms) as a fundamental theory at high energy
when the curvature is of order the Planck mass squared.
Then the R? contribution is comparable to that of R.
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Of course, then yet higher powers of R would also be
comparable to the R? and R terms, so that in this re-
gion we would not be able to say anything about the full
R+ R? + R3 + R* + .- expansion. In the low-energy
region the effect of R? is just a small correction to the
behavior of the pure Einstein theory and no bad behavior

is introduced.
The most general gravitational action will have an infi-

nite number of parameters such as 2, c;,cy. At the low-
est energy, only 2 is important. However, we can imag-
ine in principle that we could do experiments with such
high precision that we could also see the first corrections
and measure c;,c. If we knew the ultimate correct the-
ory of gravity, we might be able to predict %, c;, c;. With
our incomplete knowledge at low energy, we must treat
them as free parameters. Quantum effects from both
high-energy and low-energy particles have the potential
to produce shifts in «, ¢, c; and it is the final (renormal-
ized) value which experiments would determine.

It is crucial to differentiate the quantum effects of
heavy particles from those of particles which are massless.
The issue is one of scale. Virtual heavy particles cannot
propagate long distances at low energies; the uncertainty
principle gives them a range Ar ~ 1/Myg. On distance
scales much larger than this, their effects will look local,
as if they were described by a local Lagrangian. Even the
slight nonlocality can be accounted for by Taylor expand-
ing the interactions about a point. In a simple example,
a particle propagator can be Taylor expanded:

1 -1 q2 q‘1 (16)

In the coordinate space propagator obtained by a
Fourier transform, the constant 1/M7 generates a é func-
tion, hence a local interaction and the factors of g2 are re-
placed by derivatives in a local Lagrangian. The quantum
effects of virtual heavy particles then appear as shifts in
the coefficients of most general possible local Lagrangian.

On the other hand, the quantum effects of massless
particles cannot all be accounted for in this way. Some
portions of their quantum corrections—for example, the
results of high energy propagation in loop integrals—do
shift the parameters in the Lagrangian and are local in
that respect. However, the low-energy manifestations of
massless particles are not all local, as the particles can
propagate for long distances. A simple example is again
the propagator, now 1/¢%, which cannot be Taylor ex-
panded about ¢g?> = 0. The low-energy particles (mass-
less ones or ones whose mass is comparable to or less
than the external energy scale) cannot be integrated out
of the theory but must be included explicitly in the quan-
tum calculations.

Our direct experience in physics covers distances from
107" m to cosmic distance scales. Although gravity is
not well tested over all of those scales, we would like
to believe that both general relativity and quantum me-
chanics are valid in that range, with likely modifications
coming in at ~ 1073° m ~ 1/M,,. For reasons discussed
more fully in Sec. VI, I would like to imagine quantizing
the theory in a very large, but not infinite, box. Roughly
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speaking, this is to avoid asking questions about wave-
lengths of order the size of the Universe, i.e., reaching
back to the big bang singularity. However, the volume
is taken large enough that we may ignore edge effects.
We assume that any particles which enter this quanti-
zation volume (e.g., the remnants of the Big Bang) are
either known or irrelevant. The curvature is assumed to
be small and smooth throughout this space-time volume.
This situation then represents the limits of our “known”
confidence in both general relativity and quantum me-
chanics, and we would like to construct a gravitational
effective field theory (GEFT) in this region.

The dynamical information about a theory can be ob-
tained from a path integral. The results of the true theory
of gravity will be contained in a generating functional

W[J] = 2]
- / dg] [d(gravity)] e*Serue (S (Eavitn). D) (17

where (gravity) represents the fields of a full gravity the-
ory, ¢ represents matter fields, and J can be a set of
source fields added to the Lagrangian (i.e., AL = —J¢)
in order to allow us to probe the generating functional.
The gravitational effective field theory is defined to have
the same result:

W] = 7 = / (4] [d by ] 5w @IRD) | (18)

Here S.g is constructed as the most general possible La-
grangian containing g, ¢, and J consistent with general
covariance. It contains an infinite number of free pa-
rameters, such as k,c;,cz described above. The effects
of the high-energy part of the true theory are accounted
for in these constants. However, as discussed above, the
low-energy degrees of freedom must be accounted for ex-
plicitly, hence their inclusion in the path integral. Since
we are only interested in the small fluctuation and low-
energy configurations of h,,, we do not need to address
issues of the functional measure for large values of h,,.
Any measure and regularization scheme which does not
violate general covariance may be used. Because the cou-
pling of the low-energy fluctuations is so very weak, the
path integral has a well-behaved perturbative expansion.
We have implicitly assumed that gravitons are the only
low-energy particles which are remnants of the full grav-
ity theory. If any other massless particles result, they
would also need to be included.

The most general effective Lagrangian will contain
both gravitational and matter terms and will written in
a derivative expansion

Set = / d*oy/=gLes |

Eeﬂ' = Egrav + ['matter )
Egrav = £g0+Lg2+‘Cg4+"' ’

['matter = CmO + £m2 +--- . (19)

The general gravitational component has already been
written down:
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Lgo=A,
2
ng = FR 3
[«94 = 01R2 + CzRI“,R‘“’ . (20)

The first two terms in the general matter Lagrangian for
a massive field are

1
Lomo = 5 [guuan‘ﬁau(b - m2¢2] )

Lmz = d1R*8,00,¢ + R (d20,40" ¢ + dsm*¢?) .
(21)

Note that derivatives acting on a massive matter field ¢
are not small quantities—the ordering in the derivative
expansion only counts derivatives which act on the light
fields, which in this case is only the gravitons. In con-
trast, if the matter field were also massless, the ordering
in energy would be different:

D

m0 — 0 )

_ 1 -

L2 = 5g””3“¢au¢ + dsR¢?

Lona = d1R**8,¢0,¢ + d2 RO, $0* ¢

+ (d_4R2 + JSR;;VR#V) ¢2 ’ (22)

where the overbar is meant to indicate the parameters
in the massless theory. For d3 = I—zl, we have the “im-
proved” action of Callan, Coleman, and Jackiw [15]; how-
ever, any value of d3 is consistent with general covariance
and the energy expansion. Note that since we are only
working to O(p*), we may use the lowest order equations
of motion to simplify L2, Lims-

Let us now discuss the expected size of the parame-
ters in the effective action. Those parameters which are
accessible to realistic measurements (A, x,m) have been
labeled by their conventional names. From the stand-
point of the energy expansion it is of course a great shock
that the renormalized value of the cosmological constant
is so small (A = —8mGA). The cosmological bound is
| A |= 107%¢ GeV* [11], where as the standard expecta-
tion would be a value 40-60 orders of magnitude larger.
Effective field theory has nothing special to say about
this puzzle. However, it does indicate that at ordinary
scales, A is unimportant and that the energy expansion
for gravity starts at two derivatives with Lg5. The con-
stants c;, cz are dimensionless. They determine the scale
of the energy expansion of pure gravity which, in general,
is
¢
Az (23)

grav

1+ k2%, =1+

We of course have no direct experience with this scale,
but the expectation that Agay is of order of the Planck
mass would correspond to ¢, ¢z = 1. The phenomenolog-
ical bound [12], ¢;,cz < 1074, is of course nowhere close
to being able to probe this possibility.

For the constants in the matter Lagrangian, d;, the
expectations are a bit more complicated, as we must dis-
tinguish between point particles which have only grav-

itational interactions and those which have other inter-
actions and/or a substructure. The constants d; have
dimension 1/(mass)?, and we will see by explicit calcu-
lation in Sec. V that they contribute to the form fac-
tors in the energy-momentum vertex for the ¢ particle,
being equivalent to the charge radius in the well-known
electromagnetic form factor. Loop diagrams involving
gravitons shift d; by terms of order x? ~ 1/M3,. In the
absence of interactions other than gravity, it is consis-
tent to have d; = O(1/Mg,). However, for particles that
have other interactions, the energy and momentum will
be spread out due to quantum fluctuations and a gravita-
tional charge radius will result. The expectation in this
case is

dy,dz,d3 =0 ((Tz)grav) . (24)

For composite particles, such as the proton, this will
be of size of the physical radius, (r?)Proto® ~ 1 fm?.
For interacting point particles, such as the electron,
this would be of order the scale of quantum correction
dl,dg,d;; ~ a/mg.

The gravitational effective field theory is a full quan-
tum theory and loop diagrams are required in order to
satisfy general principles, such as unitarity. The finite in-
frared part of loop diagrams will be discussed more fully
in the next section. Also obtained in the usual calcula-
tion of many loop diagrams are ultraviolet divergences.
These arise in a region where the low-energy effective the-
ory may not be reliable, and hence the divergences may
not be of deep significance. However as a technical matter
they must be dealt with without influencing low-energy
predictions. The method is known from explicit calcula-
tions of the divergences in gravity [3,4,16,17], and from
general effective field theory practice. The divergences
are consistent with the underlying general covariance,
and must occur in forms similar to terms in the most
general possible effective Lagrangian. They can then be
absorbed into renormalized values for the unknown coef-
ficients which appear in this general Lagrangian. More-
over, it can be shown that for loops involving low-order
terms in the energy expansion, that the renormalization
involves the coefficients which appear at higher order.

In a background field method, one can compactly sum-
marize the one-loop quantum corrections. The classical
background field g(z) is determined by the matter fields
and sources by the equations of motion:

_ _ 4Se
R,.w _ %gva = 167G ff,matter

s (25)

hap=0

The effective action is thus rendered into quadratic form
in hy,:

- 1
Sur = [ @2Va{£@) - 3hosD hos - (26)

where
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Daﬂ'yts — Iaﬂ"‘vdAd)‘I‘_"Z‘s

+R(1e08 -

with d, being a covariant derivative and
1
JeBE — — (5ovgBs 4 madgEBTYY 28
5 (3757 +5°°9"7) (28)

Formally integrating over h,, one finds

Z[¢,J] = Tr InD. (29)

While some of the finite portions of Z are difficult to
extract (see the next section), since InD) is in general
a nonlocal functional, the divergences are local and are
readily calculated. One-loop divergences are known for
gravity coupled to matter fields and the two-loop result
has been found for pure gravity. At one loop, the diver-
gences due to gravitons have the form [3]

11f1
—R?
T8t { 120
where € = 4 — d within dimensional regularization. This

produces the following minimal subtraction renormaliza-
tion of the gravitational parameters:

P -

c(r) =c1+ 1
1 96072¢ ’
(31)
) _ 7
¢’ =c2t 16072e ~

At two loops, the divergence of pure gravity is [16]

209 1

AL = 5%
2880(1672)2 ¢

SV=gR* R R 5. (32

The key feature is that higher powers of R are involved at
higher loops. This is a consequence of the structure of the
energy expansion in a massless theory. A simple example
can illustrate the essentials of this fact. Consider a four
graviton vertex, Fig. 1(a). Since each graviton brings a
factor of x [see Eq. (4) and recall that x ~ 1/Mp], the
Einstein action gives this a behavior

Mgin ~ %p? (33)

where p is representative of the external momentum,
whereas the Lagrangian at order E* have the behavior:

Mo ~ cis*p* . (34)

If we use two of the Einstein vertices in a loop diagram,
Fig. 1(b), the momenta could be either external or inter-
nal: for example,

4 22 1 22
Migop~ /dl ’zz(z el

~ k*I(p) ~ kip* . (35)

1
_Egaﬂdxdkg'yﬁ +§aﬁd'1d5+

1 10 =v8 af, 5
d*d’g"® — 2I°F*d,dyI 7"

397007 ) + (90 R + RoPG ) — a1t M, 1 (27)

If we imagine that the divergent integrals are regular-
ized by dimensional regularization (which preserves the
general covariance and which only introduces new scale-
dependent factors in logarithms, not in powers), the
Feynman integral must end up being expressed in terms
of the external momenta. Because no masses appear for
gravitons, the momentum power of the final diagrams
can be obtained easily by counting powers of x. The re-
sult is a divergence at order p* and can be absorbed into
¢1,c¢2. Loop diagrams involve more gravitons than tree
diagrams, hence more factors of x, which by dimensional
analysis means that they are the same structure as higher
order terms in the energy expansion.

If we were to attempt a full phenomenological imple-
mentation of gravitational effective field theory at one-
loop order, the procedure would be as follows.

(1) Define the quantum degrees of freedom using the
lowest order [O(p?)] effective Lagrangian, as done in Sec.
I1.

(2) Calculate the one-loop corrections.

(3) Combine the effects of the order p? and p* La-
grangians (given earlier in this section) at the tree level
with the one-loop corrections. The divergences (and
some accompanying finite parts) of the loop diagrams
may be absorbed into renormalized coefficients of the La-
grangian (m,c;,d;), using some renormalization scheme
which does not violate general covariance.

(4) Measure the unknown coefficients by comparison
with some experimental measurement.

(5) Having determined the parameters of the theory,
one can make predictions for other experimental observ-
ables, valid to O(p*) in the energy expansion.

In practice the difficulty arises at step (4): there is no
observable that I am aware of which is sensitive to rea-
sonable values of any of the O(p*) coefficients. However,
the low-energy content of the gravitational effective field
theory is not just contained in these parameters. There is
a distinct class of quantum corrections, uncovered in the
above procedure, which are independent of the unknown
coefficients. Moreover this class, the “leading quantum

: 2 2 :
>Kz< " K

(@) (b)

FIG. 1. (a) A tree level vertex of order x2p?; (b) a one-loop
vertex of order x*p*.
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corrections,” are generally dominant at large distances
over the other one-loop gravitational corrections. These
are discussed more fully in the next section.

IV. LEADING QUANTUM CORRECTIONS

Although the ultraviolet behavior of quantum grav-
ity has been heavily studied to learn about the behavior
of general relativity as a fundamental theory, from the
standpoint of effective field theory it is rather the infrared
behavior which is more interesting. In the preceding sec-
tion, the renormalization of the parameters in the effec-
tive action was described. Although a technical necessity,
this has no predictive content. However the low-energy
propagation of massless particles leads to long distance
quantum corrections which are distinct from the effects
of the local effective Lagrangian.

A crucial distinction in this regard is whether the effec-
tive action may be expanded in a Taylor expansion in the
momentum (or equivalently in powers of derivatives). If
the result is analytic, it may be represented by a series of
local Lagrangians with increasing powers of derivatives.
However nonanalytic effects cannot be equivalent to lo-
cal contributions, and hence are unmistakable signatures
of the low-energy particles. Moreover, the nonanalytic
effects can be dominant in magnitude over analytic cor-
rections. The expansion of the gravitational action is
in powers of ¢? so that the first two terms of a matrix
element will be

Mlocal = qu (1 + an2q2 + - ) - (36)

As we will see in the next section, a graviton loop will
have a logarithmic nonanalytic modification around flat
space:

Mg = A1+ ar’q® + Br?*¢*In(—¢®) +--]. (37)

When massive matter fields are included in loops with
gravitons we may also have nonanalytic terms of the form
m/+/—q? instead of the logarithm [18]. Both of these
effects have the property that they pick up imaginary
components for timelike values of ¢ (i.e., for g2 > 0 in
this metric), as they are then part of the loop diagrams
which are required for the unitarity of the S matrix. The
imaginary pieces arise from the rescattering of on-shell
intermediate states, and can never be contained in a local
Lagrangian. In addition, since g2 can become very small,
the nonanalytic pieces will satisfy | In(—¢2?) |> 1 and
| m/+y/—q% |> 1 at low energy, thereby dominating over
the analytic effect. We can see that the nonanalytic terms
have a distinct status as the leading quantum corrections
due to long distance effects of massless particles.

The leading nonanalytic effects have the extra advan-
tage that they involve only the massless degrees of free-
dom and the low-energy couplings of the theory, both
of which are known independent of the ultimate high-
energy theory. The massless particles are the gravitons,
photons, and maybe neutrinos. Only the lowest energy
couplings are needed, since higher order effects at the
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vertices introduce more powers of ¢>. The low-energy
couplings are contained in the Einstein action and only
depend on the gravitational constant Gn. So in distinc-
tion to the analytic contributions, which depend on the
unknown parameters c;, ca, . . ., the leading quantum cor-
rections are parameter free.

Although our prime interest above has been the quan-
tum corrections within the gravitational part of the the-
ory, we note that similar comments can be made if inter-
actions other than just gravity are present. For example a

theory with massless particles, such as photons in QED,
can also generate nonanalytic behavior in loop ampli-
tudes when the photons are coupled to gravity. Let us call
these class II nonanalytic corrections as compared to the
class I nonanalytic effects found due to the quantum be-
havior of gravitons. In addition there is a district type of
quantum predictions (class IIT) which may also be predic-
tions of the low-energy theory once we allow interactions
in addition to gravity. This occurs for analytic terms in
the energy expansion which are accompanied by a param-
eter with dimension 1/(mass)™ n > 1. The parameters d;
in Eq. (21) are examples. The low-energy theory can gen-
erate contributions to the parameter with inverse powers
of a light mass, while the Appelquist-Carazzone theo-
rem [1] tells us that the effects of a high-energy theory
would generally produce inverse powers of a heavy mass.
Therefore, the low-energy contribution can be dominant,
and the uncertainty caused by unknown high-energy the-
ory is minimal. In the case of the d; parameters, if the
particles were strongly interacting QCD would generate
a gravitational charge radius corresponding to d; =~ 1/
(1 GeV)2, which would be unlikely to be changed by the
underlying quantum theory of gravity. Other examples
in the case of QED plus gravity have been worked out
by Behrends and Gastmans [18]. Classes II and III cor-
rections (if present) are most often larger than the grav-
itational leading quantum corrections (Class I) because
their form need not be expansions in the small quantity
Gn. [An exception is the gravitational potential at large
distance, where analytic corrections have no effect on the
1/73 term.]

V. EXAMPLE: THE GRAVITATIONAL
POTENTIAL

In this section, I describe in detail an example which
demonstrates the extraction of the leading quantum cor-
rections. The gravitational interaction of two heavy ob-
jects close to rest is described in lowest order by the New-
tonian potential energy

Vir) = —G_’"rﬂ . (38)

This is modified in general relativity by higher order ef-
fects in v2?/c? and by nonlinear terms in the field equa-
tions of order €7 (which are of the same order as v?/c?).
While a simple potential is not an ideal relativistic con-
cept, the general corrections would be of the form [7]
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Vir)=— l+a (39)

Gmimgy
T rc2

G(_m1_+m_2)+]

The constant a would depend on the precise definition
of the potential and would be calculable in the post-
Newtonian expansion. At some level there will be quan-
tum corrections also. By dimensional analysis, we can
figure out the form that these should take. Since they
arise from loop diagrams, they will involve an extra power
of K2 ~ G, and if they are quantum corrections they will
be at least linear in 7. If the effects are due to long-range
propagation of massless particles, the other dimensionful
parameter is the distance r. The combination

Gh

7253 (40)

is dimensionless and provides an expansion parameter
for the long-distance quantum effects. We then expect a
modification to the potential of the form

Gm1m2

G(m1 + mg) Gh
rc2? + brzc3

V(r) = 14+a oo

(41)

and our goal is to calculate b for an appropriate definition
of the potential [5].

The Newtonian potential can be found as the nonrel-
ativistic limit of graviton exchange; see Fig. 2. In the
harmonic gauge, the graviton propagator is

1

iDyvap(q) = mppv,aﬁ (42)
with
1
Puop = 3 ["l#a"IVB + Nvallu — nyunaﬂ] (43)
with 7),, being the flat space matrix 7, =

diag(1,—1,—1,—1). The matter stress tensor has the
on-shell matrix element

VOpv(q) = (pl ' Tl,w | P)
1
= Puby +PLPV + qu"luv (44)

in our normalization convention

(' | p) = 2B(27)*6*(p — p') - (45)

[Here the subscript 0 indicates that this form holds before
the inclusion of radiative corrections.] Graviton exchange

FIG. 2. One graviton exchange for the Newtonian poten-
tial. The matter fields are represented by solid lines and wavy
lines represent gravitons.
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FIG. 3. The set of corrections included in the one particle
reducible potential.

then yields
2
K V,Q
My, = Tv(f‘}g(q)pﬂ 2B (q) Vo2l (~q). (46)

The static limit corresponds to g, = (0,q), and

1

2my V;g) (9) = m1du0d00 , (47)

where the 2; accounts for the covariant normalization

factor. The Newtomian potential is then found from the
Fourier transform of

1 Iiz mima
- ~—— 48
2mi2my O 8 q (48)
which in coordinate space yields
d3 . 2
V(r)=— [ o2 earE MMz oMMz - (4

@3 8 @

Of course, despite the description of quantizing, gauge
fixing etc., this is purely a classical result.

In order to define a quantum potential one can consider
the set of one particle reducible graphs of Fig. 3, where
the heavy dots signify the full set of radiative correc-
tions to the vertex function and the graviton propagator.
These corrections are given explicitly in Figs. 4 and 5.
It is this set which we will examine. Fortunately we will
be able to extract the information that we need for the
vacuum polarization from the work of others. This leaves
the vertex correction to be worked out here.

The vertices required for the calculation follow from
the Lagrangians given previously. For the vertices pic-

tured in Fig. 6, we find
+ LL\"{,} + ;
(b) ©

b

(@)

@ © ®

FIG. 4. The diagrams involved in the vertex correction.
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T~ p p' P P’ k k
~— = /\/\/\Q\N\V + /\./\/\4( :Y'\/W ap N 8
e q k-q K q
(a) (b)
Ky m pe Ny
. . . s @ () ©
FIG. 5. The diagrams in the graviton vacuum polarization.
The dotted lines indicate the ghost fields. FIG. 6. Vertices required for the Feynman diagrams.
Fi . n_ K ’ ’ ’ 2
ig- 6(a): 7w (p,p') = —— | PuPy + PuPu — guulp - p' — m’] (50)
and
: inz ) a, I3 a, I3 1 I
Fig. 6(b) : VnA,pa = "2" Ixasl B,pac\P P +p°p - 5 (nn»\Ipa,aﬁ + nﬁaInA,aﬁ)p pﬁ
1 1
-3 (In)\,pa - E"?ﬂz\"’pa) [p-p - m2]} , (51)
where
1
Iag s = 5 (MayTBs + NasTsy) - (52)

2

The graviton vertex is found most easily by using Eq. (8) plus Eq. (5) with the background metric being expanded
as §(z) = N + kH5 (), where we pick out the vertex with one external field and two quantum fields. After some
work, this can be put into the form

K

v v v 3 v
TaBivs = 5 (Paﬁna [k“k + (k= q)*(k—q)” +¢"¢" — 50" qz]
Ao, N Ao, v, Au, ov, ov, An,
+2q240 [I ST SRS L B0 L U LS S "75]
[ Av, Av, Au, ,
+|arg" (na/al v T el aﬁ) + arg” (napI™ 5 + nys I 5)

_qz(naﬁI#y:,g + 77161“’}’0‘;3) - n“quqa(naBI76,Aa + 7776IaB,,\a)]

+200 I upIys o (k = @) + 1735 L aa (k= 9)” = 17" sIap rck” — 17 sTap ack”)

+@P (I 550" + Tag o I7%5) + 1" 0 40 (Tap o175 + Ly ol ’"”cxﬁ)]

o v ov, 1 v
+{(k2 + (k- 4)2)<I “oslyso + 17 0gl s, — 3™ Paﬁwé)

—(k*nys "5 + (k — 9)*1apI*75) }) (53)

with I,3,ys defined in Eq. (52) and P,g,s defined in Eq. (42).

The diagrams involved for the vertex correction are given in Fig. 4. We will argue below that Figs. 4(d)—4(f) will
not contribute to the leading quantum corrections, so that we need to calculate only diagrams 4(b) and 4(c). These
have the form

) &k i . N o
M**(3b) = / W@m(p,p’ RNy —iToo (p' — k, p')iD"™ P (k — q)itig ;iD™7 (k)

d*k . . .y o
M*(3¢) = @i VarpeiD™ P (k — q)irhy  siDY%# (k) . (54)
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Before proceeding, it is worth examining the structure of
the answer. The general vertex may be described by two
form factors:

Viw = (9’ | Tpr | P)
= Fi(¢%) [p,‘pi, + P, +q
+F2(q2) [quV - guuqz]

]
(59

with normalization condition F;(0) = 1. The expansion
in energy corresponds to an expansion of the form factors
in powers of ¢g2. The one-loop diagrams of Fig. 6 have an
extra power of k2 compared to the tree level vertex, and
2 has dimensions (mass) 2, so that k2m? and x2¢? form
dimensionless combinations. However loop diagrams will
also produce nonanalytic terms with the form In(—g?)

and 4/ —E"—‘;;, which also are dimensionless. Also contribut-

ing to the form factors are the terms in the higher order
Lagrangian as these give extra factors of q2. By work-
ing out these contributions and taking the general form
of the loop diagrams from dimensional considerations we
obtain the form factors

.2
Fi(®)=1+di® + ﬂzqz(ll +lzln( )

s
m2
sy qz‘) o

2
F(¢®) = —4(dz + d3)m® + k?>m? (54 +£51n ( :2 )
/ 2
+£5 %) + ... s

K2 v 2
T VD@D @)V (~q) =

(56)

2
2q2
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where ¢; (1 = 1,2,...,6) are numbers which come from
the computation of the loop diagrams. There can be
no corrections in Fj(g?) of the form x2m? because of
the normalization condition F;(0) = 1. The constant
u? can be chosen arbitrarily, with a corresponding shift
in the constants £; and ¢,. The ellipses denote higher
powers of ¢2. The constants £; and £4 will in general be
divergent, while ¢5, £3, {5, and ¢¢ must be finite. For
¢? timelike, In(—q?) and ‘/_i;; pick up imaginary parts
which correspond to the physical (on-shell) intermediate
states as described by unitarity. Recall that d; represents
the unknown effects of the true high-energy theory, while
£; and ¢4 come largely from the high-energy end of the
loop integrals. For these high energies we have no way of
knowing if the loop integrals are well represented by the
low-energy vertices and low-energy degrees of freedom—
almost certainly they are not. Therefore it is logical, as
well as technically feasible, to combine £; and £4 with the
constants d;, producing renormalized values

7 (u?) = di + Kty

. ‘
i) +d) (W) =di+ds -2 (5T)

It is these renormalized values which would be (in prin-
ciple) measured by experiment, and the u® labeling
dsr) (4?) indicates that the measured value would depend
on the choice of p? in the logarithms, although all physics
would be independent of u?.

In forming a gravitational interaction of two particles,
one combines the vertices with the propagator. Tem-
porarily leaving aside the vacuum polarization, one has

[Fl(l)(qz)Fl(z’(qz){pl - 2Py - Py + P1 - Pyp2 - Py — m§m§}

2
PO @i + PO @) FD @ |

2,22
__ k*mim;
2

o[t 00+ 0t 1m (75 + - 0y 7]}

where the second line is the approximate result in the
static limit. Linear analytic terms in g2 in the form fac-
tors yield constants in the interactions, which in turn
correspond to a point (& function) interaction

d3q
(2m)3

The nonanalytic terms however lead to power law behav-
ior since

e~aT — 53(:5) .

(59)

d3q e“"q"l __1
(2m)3 q 2m?r2’
d3q _; -1
—iq-r 2 _
(21r)3e Inq* = Pyl (60)

1
{F+2(d1 —2d2—2d3)

(58)

[

Therefore, the long distance corrections to the gravita-
tional interactions come uniquely from the nonanalytic
terms in the loop diagrams.

A similar result holds for the vacuum polarization dia-
gram. If we temporarily suppress the Lorentz indices and
relative constants of order unity, the generic form of the
vacuum polarization follows from dimensional counting,

n(q%) = k2q* [c1 + c2 + €7 + £ In(—¢?)] , (61)
such that the propagator is modified as
1 1,1 1,
55+ q-z"r(q )F+-'-= {?-f-"i [cr+c2+ 47
el (6
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In these formulas c¢; and cs are the unknown parame-
ters from the higher order Lagrangian of Eq. (20), and
£7,0s are constants calculable in the vacuum polariza-
tion diagram. Again {7 is divergent, but the combina-
tion (¢; + ¢z + £7) forms a renormalized parameter which
could in principle be measured. As above, constants in
this propagator lead to a §%(z) interaction, while the log-
arithm corresponds to a long range effect.

J
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By focusing only on the nonanalytic terms, we sim-
plify the calculation somewhat. These are independent of
the regularization scheme. The nonanalytic pieces of the
relevant Feynman integrals are given in the Appendix.
We note that there are several useful properties that we
can exploit. For example, any factor of k2 or (k — q)2
in the numerator automatically removes any nonanalytic
behavior. For example,

d*k 1 k? B
/ (2m)8 k2 (k — ¢?) (k —p)2 —m? / (

Where in the second line we have shifted to ¥’ = k — q.
The result is a function of m? only and has no ¢? de-

d*k 1 1
2m)* (k- q)? (k= p')? —m?
d*k’ 1 1
= — = I(p?) . 63
(27l')4 klz (kl — p)z — m2 (P ) ( )
I
to show that
q#TcI:E,'ytS =0 (64)

pendence. Thus the nonanalytic terms vanish for any
integrands which would vanish with on-shell gravitons.
This is a reflection of the Cutkosky rules and is not sur-
prising as the nonanalytic terms accompany imaginary
parts in the amplitudes, and these could be seen using
on-shell states and unitarity. As a result, the vertex func-
tion simplifies slightly as all the components in the curly
brackets of Eq. (53) do not contribute. Also, factors of
k - ¢ may be written as 2k - g = k%2 — (k — ¢q)? + ¢% — ¢°
in the loop integrals. With these results, it is not hard

J

in any diagram, where in fact the vanishing of the results
occurs individually for each of the terms in the square
brackets of Eq. (53). These conditions provide a set of
checks on the calculation that were found to be useful.

The calculation of the nonanalytic terms is straight-
forward although a bit tedious due to the lengthy form
of the triple graviton coupling. For the diagram of Fig.
4(b), I find

AR = ;;Z: { [% —2Hls 0] In(—¢%) + [% —1+1+ 0] ”2_";2 }
N ;2252 {-%ln(—qz) + %G—Wf_%} :
af = 2221:22 {[1 —3+8-3]In(-¢") + [g ~1+2- 1] ”2_’;‘2}
= {3ln(_q2) +g WZZZ} ’ (65)

where the sequence of numbers in the first version of F;
refers to the four sets of terms in square brackets in Eq.
(53), respectively. For Fig. 4(c), I obtain
AF, = 2T [0+ 2+ 0 — 2]In(—g?)
= — n(—
17 3272 1

=0 (66)

AF; = [——2; +0+2+2] In(—¢?)

- o [ ). (67)

The diagrams of Figs. 4(d)—(f) do not have any nonana-
lytic terms of the form considered here because the mat-
ter fields are massive or the loop integrals are indepen-

dent of ¢2. Figure 4(d) does have an infrared divergence
similar to that of the vertex correction in QED. This can
be handled in the same fashion as the QED case [20], i.e.,
by including soft radiative effects. If we were actually
to attempt to apply the quantum potential phenomeno-
logically, it would be important to include such effects.
However, for our purposes we do not need to consider
them further. The resulting nonanalytic contributions to
Fy, F, are then

2 2
2) _ Aape S B SR N S
2,2 2
2y _ K‘m _é 2 Z7rm 68
B(7) 32#2{ 3n(-0)+g _qz} (68)
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The nonanalytic terms in the vacuum polarization can
be obtained by the following procedure. The divergent
parts of the vacuum polarization have been calculated, by
't Hooft and Veltman [3] employing the same gauge-fixing
scheme as used in the present paper, using dimensional
regularization. When only massless particles appear in
the diagram, the In(—q?) terms can be read off of the co-
=fficients of 1/(d — 4) using a relatively well-known trick.
The vacuum polarization graph has dimension of (mass)?
and will be calculated from Feynman integrals of the form

I(q?) = K?p*~¢ (27r)df( ,9)

u 4—d
_ 24k
_Kq(q) [d 4

for some integrand f(k,q). The arbitrary scale factor p,

| (69)

J

apys =
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with dimension of (mass)!, has been inserted in order to
maintain the proper dimension for the overall integral.
The second form then follows uniquely from dimensional
analysis (since g is the only other dimensionful quantity),
where a and b are constants which may depend on d but
do not contain further poles as d — 4. Since

21_4 (%)4_d - ﬁe"a;‘ln(%’r) (70a)
=ﬁ+_1 ( ) +0(d—4), (70b)

the logarithm will always share the coefficient of H:Z in
the combination given in Eq. 70(b). 't Hooft and Velt-
man find that the divergent part of the graviton plus
ghost vacuum polarization diagrams is equivalent to the
Lagrangian in Eq. (30). This is therefore equivalent to
the gravitational logs in the diagram being given by

2 23 23
3 1n(—9%) 120q *Iopys + Oq NaBTs — lzo(naﬁq‘yqé + 71759a48)

21 11
+570 (92661 + alyps + 4p0y7Ias + 4pdsTay) + 359° q'q } + (nonlogs) . (71)
When we construct the potential, a related form will be needed
P gl'[""@'”";P 8,p0 = 21 (7’ Nvo + TupT a) + - Moo [_ lﬂ(—qz)] +-, (72)
HEe Rikd 327r2 120 VP P 120

where all terms involving g, g,, etc. can be dropped since g, contracted with the vertex function gives a vanishing

result.

If we combine these diagrams as shown in Fig. 3 in order to form a one-particle-reducible gravitational interaction,

we find
2
4 2m

~ 4rGmimg [

where in the second line we have taken the nonrelativistic
limit. This can be converted into the coordinate space
form1 by Fourier transforming, with the result

V() =-Smmal,
T

G(mi+m,) 127 Gh ]

rc? "~ 3072 r2c3
(74)

This conforms to the general structure of the gravita-
tional interactions given in Eq. (41).

One interesting consequence of the quantum correc-
tion is that it appears that there is no such thing as a
purely classical source for gravity. In electrodynamics,
the corrections to the vertex function are such that as
one takes the particles’ mass to infinity, all quantum cor-
rections will vanish. Therefore by taking the m — oo
limit to the full theory, one obtains a purely classical
source for electromagnetism. In the case of gravity this

q®  32n2

1 : v : V,p0 : o 1
___IV“(i)(q) [,Du ,aﬁ(q) + iDPVP zﬂpa,quD""' B] Vag(q)z—m

w2(m1 + my)

i inz[ 127 @)+
2+/q2

50 ] +const], (73)

does not work, as the quantum corrections remain even
as m — oo and in fact share the same dependence on m
as does the classical theory. This is because the gravita-
tional coupling itself grows with m so that the expected
decrease of quantum effects as m — oo is compensated
for by the increased coupling constant.

VI. THE EXTREME LOW-ENERGY LIMIT

The gravitational effective field theory appears to be-
have normally over distance and/or energy scales where
we have experience with gravity and quantum theory.
We have imagined quantizing in a very large box in or-
der to exclude wavelengths of the scale of the Universe,
and the effective field theory methodology separates out
the high-energy effects. We expect modifications to the
theory on the high-energy side. Of significant interest is
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whether there is a fundamental incompatibility between
gravity and quantum mechanics at the extreme infrared
side if we remove the low-energy cut off. In this section, I
briefly discuss the reasons for suspecting that there might
be a problem, although I do not resolve the issues.
Gravitational effects can build up over long distances
and/or times. Most disturbing in this regard are the sin-
gularity theorems of Hawking and Penrose [21], which
state loosely that a matter distribution evolved in space-
time by the Einstein action almost always has a true sin-
gularity in either the past or future. [The exact assump-
tions are more precisely stated in the original works, but
apply to essentially all situations that we care about, al-
though simple cases such as Minkowski space or a single
stable star are exceptions.| Thus while it may be pos-
sible to locally specify a smooth set of coordinates with
a small curvature, if we try to extend this condition to
the whole spacetime manifold using the order E? Ein-
stein equations, there will be at least one location in the
distant past or future where the curvature becomes sin-
gular. The Big Bang in our standard cosmology is an
example. From the standpoint of effective field theory, it
is not the singularity itself which is the concern. Once the
curvature becomes large, the R? R3, etc. terms in the
action become important and the evolution is different
than is assumed in the derivation of the theorem. There
is no longer any indication that a true singularity must
develop beyond this scale. However it is bothersome that
the curvature must get large. For gravitational effective
field theory, the content of the singularity theorems is
that it is difficult to specify a space-time where the cur-
vature is everywhere small. The gravitational effective
field theory would work over scales which have small cur-
vatures, but would not be able to work on scales which
encompass the putative singularity. However, it may be
possible to modify the effective field theory treatment to
include the singular region as an extended gravitational
source, much as solitonic Skyrmions can be treated as a
heavy chiral source in chiral perturbation theory.
Another global potential problem in the extreme in-
frared is the existence of horizons. Black holes can exist
which have their horizon in low curvature regions. This
is not a problem in a local patch near the horizon, but
may lead to difficulties if we extend the region to all of
space-time. Quantum information that would have oth-
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erwise flowed to infinity disappears into the black hole.
Quantum coherence is lost on the largest time scales. It
is not clear that this is a contradiction with the ultimate
quantum theory, but at the least we end up with a situ-
ation which is beyond our experience in physics and for
which we are unsure how to apply quantum ideas.

VII. SUMMARY

In addition to being a useful calculational tool, effec-
tive field theory provides a good way to think about the
different energy scales of a theory. In the case of quan-
tum gravity it allows one to separate the effects of the
unknown high-energy theory from the known degrees of
freedom at low energy. Gravity and quantum mechanics
seem to be compatible over a large range of energies cor-
responding to our range of experience in physics. In this
range quantum predictions can be extracted from gener-
ally covariant theories in the same way as done in other
effective field theories.

A particular class of one-loop effects have been iso-
lated and shown to give the leading quantum correction
in an expansion in the energy or inverse distance. These
nonanalytic terms come uniquely from the long distance
propagation of the massless particles. The example of the
leading corrections to the vertex and vacuum polarization
diagrams in flat space has been discussed in detail, and
these have been combined to form an effective potential.

The class of leading quantum corrections is not op-
tional. The set of intermediate states is a known conse-
quence of the low-energy theory. It will also be found in
a full quantum gravity theory as long as our Universe is
reproduced in the low-energy limit.
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APPENDIX

Below are the nonanalytic terms which arise in many Feynman integrals needed in Sec. V. These are given the
“mostly negative” metric g2 = ¢2 — q2. I use the abbreviations L = In(—¢?),S = 72m/,/—¢?:

dk 1 i
= - 9L+ ...
T= | Goi @k —gp ~ 32m2 T+
dk ok, F
To = / (2m)t k2(k—g?)  32m2 (=Ll +-s

'k kuk i 2 of 1
= v = —ZL% — g L
T / @) k2 (k—q7) 322 ["“q"{ 3 } s "{ 6 H“‘

(A1)

In the following, the external momentum p’ is on shell as is p = p' — ¢:
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4 .
I d*k 1 1 1 1

") AR (k- [(k—p) —m?]  32n'm

I = / d4k k“ _ i , 1 qz L 1 qz g L 1
" (2m) k2(k — q)2[(k — p')2 — m?] ~ 3272m2 Py tTomz )t amz } + g, {— - 55}] )
2

4 .
L =/(d k kiuky -

2m)2 k2(k — q)2 [(k — p')%2 + m2] ~ 32mw2m?2

I / d*k kukyke
e ) @) k2(k - q)? (k- P')? + m?]

_ i //lliL ’ 1 ’ ’ /oy 1qu ¢
= 3onzmz | [PsPvPe) gz l| [ T PuPila + PudPo + @uPiPa)y —3 3L — 1635

1 5
+(qu@u Py + P09 + 9uP}0a) [—3—L] + Qv 9a [—L - ES]

2 27, 29
+ (guup:x + guap:, + yvaP:‘) [“‘%L:I + (.q;wqa + 9uaqy + guaq,4) [q_ + q_] } +---

In the latter set of integrals there are further nonanalytic
terms with higher powers of g% /m?2, which are not needed
for the calculation of leading effects in the text. Note
that the nonanalytic parts of the integrals satisfy various
“mass shell” constraints, such as
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2[—L—S],
’, 0 q
[p”pv{_mL
2 2 2
_a roaotaf (12 P\, 3 9 361 2, [17 .1
8m25}+(p“q.,+p,,q,,){2(1+m2)L+16?5}+q,,qy{—L—§S}+qg,w ZL+§S +---
6 16 (A2)
I
2
Q“qu=g2—Jv+""
ngI‘w=0+...,
ngI”va=0+...’
g"”Juv =0+---, (A3)

2

ql-l_["= %I+... s
2
quuv:gz‘Iv‘i"" s
qZ
q“IIJVa = —2_Iva+"' )
2
qﬂjpz%J+... ,

where the ellipses denote analytic terms. Here p’ - ¢ =
¢?/2 has been used, following from p?> = (p’ — q)? on
shell. Some of these relations arise using 2k - ¢ = k? —
(k — @)% + ¢2, and the fact that integrals with factors of
k? or (k — ¢)? in the numerator can be shifted to remove
all dependence on q.
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