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Consequences of propagating torsion in connection-dynamic theories of gravity
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We discuss the possibility of constraining theories of gravity in which the connection is a funda-
mental variable by searching for observational consequences of the torsion degrees of &eedom. In
a wide class of models, the only modes of the torsion tensor which interact with matter are either
a massive scalar or a massive spin-1 boson. Focusing on the scalar version, we study constraints
on the two-dimensional parameter space characteri2ing the theory. For reasonable choices of these
parameters the torsion decays quickly into matter fields, and no long-range fields are generated
which could be discovered by ground-based or astrophysical experiments.
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I. INTRODUCTION

General relativity as formulated by Einstein describes
the dynamics of a metric tensor field g„„and the response
of matter to this metric. Covariant derivatives are taken
with respect to the Christoffel connection on the tan-
gent bundle. This is the unique metric-compatible and
torsion-&ee connection, and is treated as a quantity de-
rived kom the metric. Despite the success of Einstein's
theory in passing observational tests, there are strong in-
dications that general relativity is incomplete —the pre-
diction of singularities, and especially the difficulty of
formulating a quant»m theory. It is therefore natural to
explore modifications of general relativity in which these
problems may be overcome. One popular modification is
to make the connection itself a fundamental variable in
its own right, rather than a convenient expression for a
certain function of the metric.

Such "connection-dynamic" theories can take difFerent
forms. A simple approach is the first-order or Palatini
formulation of conventional gravity [1]. The action of
this theory is that of general relativity, with the connec-
tion varied independently rather than given as a function
of the metric. The resulting equations of motion lead to
the usual expression for the connection in terms of the
metric, with extra terms depending algebraically on the
matter fields. Extensions of this procedure have been
adopted in attempts to construct quantnrn versions of
general relativity, including work in 3 + 1 dimensions [2]
and 2 + 1 dimensions [3]. (For reviews and other ap-
proaches, see [4].) The additional terms contributing to
the connection in these theories are characterized by the
torsion tensor; since no derivatives of the torsion appear

while the torsion, a (1,2) tensor, is

T(X,Y) = V» Y —V'yX —[X,Y]. (1 2)

In these expressions we use V~ to denote a covariant
derivative in the direction along X, and [X,Y] for the

in the Ricci scalar, the Palatini formulation leads to non-
propagating torsion [5].

Once torsion has been introduced by taking the con-
nection to be an independent variable, the restriction to
nonpropagating torsion arises as much from historical
accident as from first principles. Just as the Einstein-
Hilbert action provides dynamics for the metric degrees
of freedom, it is straightforward to consider the addition
of extra terms to the action which would provide dynam-
ics for the torsion degrees of freedom.

A comparison with conventional gauge theories serves
to illustrate why we believe that a dynamical torsion
tensor is a natural expectation when the connection is
treated as a variable independent from the metric. In
gauge theories of an internal symmetry, the connection is
specified by a non-gauge-invariant vector potential with
an associated gauge-covariant tensor, the curvature or
field strength. In contrast, the connection V on space-
time is associated with two tensors, the curvature and
the torsion. i We may specify the curvature and torsion
of V in terms of their action on vector fields X, Y, and
Z. (For additional formulas see [5,6].) The curvature, a
(1,3) tensor, is

R(X, Y)Z —= V'»V'y Z —VyV»Z —V(»,y)Z) (1.1)
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In general, the connection V on the tangent bundle is
a GL(4, R) connection. When we restrict our attention
to metric-compatible connections the group is reduced to
SO(3,1).
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Lie brackets. In a basis adapted to a set of coordinates
x", we can decompose these tensors in terms of their
components; thus the covariant derivative is

(V~Y)" = X"V„Y"

while the Lie brackets are

[X,Y]"= X"D„Y"—Y"O„X".

The curvature tensor is then

a P„„=a„r„P—a„r„P+ r„„r„"P—r„„r"„P, (1.5)

and the torsion tensor is

Tp+' I p~ I ~p

Thus the curvature and torsion have a similar status as
tensors which characterize a speci6ed connection. Special
relativity posits a spacetime connection for which both
tensors vanish; the transition from special to general rel-
ativity may be thought of as allowing for the dynamics
of a nonzero curvature, while constraining the torsion to
vanish. From a point of view which takes the connection
as an independent variable, this restriction seems some-
what arbitrary (although it is nevertheless possible, by
judicious choice of Lagrangian, to make the torsion non-
propagating or even vanishing). We are therefore led to
consider theories in which both the curvature and tor-
sion are determined dynamically by the response of the
metric and connection to matter fields.

The introduction of additional propagating degrees of
&eedom opens the possibility that such a theory could
lead to observable deviations &om general relativity.
Experiments in the solar system and in binary pulsar
1913+16 offer strong evidence that the metric must not
deviate too far from the form speci6ed by Einstein's equa-
tions [7]. The situation with respect to torsion is less
clear, as the literature contains various different propos-
als for what the dynamics of torsion could be.

Our goal in this paper is to determine whether there
are any observational consequences of propagating tor-
sion which are relatively independent of any speci6c grav-
itational model. To that end, we discuss possible actions

for torsion and its interaction with matter 6elds such
as those in the standard model of particle physics. In
these theories we construct a free Lagrangian &om pow-
ers and derivatives of the torsion, and couple "minimally"
to matter through the covariant derivative. We find that
there is only a small range of models possible without
placing arbitrary restrictions on the dynamics. In these
models only a single mode interacts with matter, either a
massive scalar or a massive spin-1 6eld, and each model
is parametrized by two constants with the dimensions of
mass. In this paper we concentrate on the scalar the-
ory, which is related to several different proposals found
in the literature. We discuss what regions of parameter
space are excluded by laboratory and astrophysical data.
A reasonable expectation, however, would be for each of
the two mass parameters to be of order of the Planck
scale; such a choice is a safe distance away &om the re-
gions excluded by experiment. We conclude that, while
there are reasons to expect that the torsion degrees of
&eedom exist as propagating 6elds, there is no reason to
expect any observable signature for torsion.

II. LAC RANCIANS

Since our goal is to serach for potentially observable
consequences of a theory of gravity with propagating tor-
sion, and not to construct the full theory itself, we shall
limit our attention to the dynamics of torsion in a back-
ground spacetime with the Minkowski metric, g„„=g„„.
(Actions for gravity with propagating torsion, but with-
out couplings to matter, have been studied in [8,9].) Fur-
thermore, we shall not worry about the renormalizability
of the torsion sector, since quantization of the full grav-
ity theory is beyond our reach anyway. Nevertheless,
we shall keep in mind known quantum effects (such as
anomalies) in the matter sector. Thus, we are interested
in theories defined by Langrangians of the form

8=CT+Zl+CM, (2.1)

where l'.~ is the part of the Lagrangian containing only
torsion 6elds, l:M is the matter Lagrangian, and Zl de-
fined interactions between torsion and matter.

We turn first to the construction of Zl, which involves
an unavoidable ambiguity. In a spacetime with a metric,
we may always decompose a metric-compatible connec-
tion (which is all we shall consider) into a torsion-free
Christoffel piece plus a torsion-dependent piece. In terms
of components we write

As can be seen i'roni (1.2), in the definition of torsion (un-

like that of the curvature) a single vector 6eld such as X or Y
serves both as a direction in spacetime along which a covari-
ant derivative is taken and as the object being difFerentiated.
This is clearly only possible when the vector Seld is a sec-
tion of the tangent bundle rather than an "internal" vector
bundle; thus the existence or torsion distinguishes the con-
nection on the tangent bundle from the connections familiar
from conventional gauge theories.

(2.2)

2~ ( p~&P + ~~PA Pgp~)'
1 cxP

pv
(2.3)

where the ChristoKel symbols are given by the
pp

familiar formula
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The transformation properties of (2.3) are those of a con-
nection, just as in conventional general relativity. There-
fore the ChristofFel covariant derivative

can be decomposed into a torsion-&ee part l:TF plus an
interaction term l:I..

VX = BX + ~
X" (2.4)

(2.6)

is a well-defined tensor. Hence, when we write down the
equations describing a theory, each appearance of the co-
variant derivative VA of a tensor Beld A is identical to
the ChristofFel derivative VA plus interactions between
the torsion and A. A theory with torsion is thus equiv-
alent to a theory without torsion, plus an extra tensor
Beld with certain couplings. (The fact that the torsion
contribution to the connection is a tensor means that it
is impossible, when the torsion is nonzero, to choose co-
ordinates in which the coelficients I'„„vanish. ) In other
words, since the torsion transforms as an ordinary tensor
Beld, its status as a "gravitational" Beld characterizing
the geometry of spacetime has the nature of a semantic
distinction which we may or may not choose to make.
Nevertheless, we will suppose here that a theory of grav-
itation in which the connection is an independent vari-
able will predict the existence of such a field (whatever
we choose to call it), and that there are certain natural
interactions for the Beld to have, given its origin as part
of the covariant derivative on the tangent bundle.

With this philosophy in mind, the interaction be-
tween torsion and matter fields is straightforward to de-
rive [5,10]. For scalar fields, the covariant derivative is
equal to the partial derivative and hence does not in-
volve the connection; there is therefore no interaction
between scalars and torsion. The same result holds for
gauge fields, although the reasoning is somewhat more
subtle. (We are now speaking classically; quantum ef-
fects will change the situation, as we discuss below. ) We
consider for simplicity an Abelian gauge 6eld A„. The
only gauge-invariant derivative of A„we may take is the
Beld strength tensor I'„„,which is defined as an exterior
derivative: I'—:(dA). In components this is the anti-
symmetric partial derivative

Epv —= (dA)pv = 8pAv —8vAp. (2.5)

While this clearly does not involve the torsion, the mis-
take is sometimes made of defining the Beld strength as
the antisymmetric coeariant derivative. Such a de6TIition
suffices when the torsion vanishes, as (2.5) is then recov-
ered; however, with nonzero torsion the antisymmetric
covariant derivative induces a gauge-noninvariant inter-
action between the torsion and A~. There is in fact no
reason for such a term to exist, as (2.5) is the correct
definition even in curved space (for a full discussion, see
[10]).

There is, in contrast, a direct interaction between tor-
sion and fermions. The covariant derivative of a spinor
field requires the introduction of the tetrad formalism
and a spin connection, which we have been avoiding for
simplicity; however, we can transcribe the result, which
can be found in the literature [5]. In the presence of tor-
sion the free Dirac Lagrangian for a massive fermion Q

where ZTF ——i /7" 8„@ ming—and we have set g„„=rI„„.
Since the 7 matrices are antisymmetrized, only the corn-
pletely antisymmetric part of the torsion tensor enters
the interaction. It is useful to define the vector which is
dual to this antisymmetric part:

Tcr PvAnT1
13. pvA) (2.7)

which can be inverted to yield T~„„~j= e „„qT . We can
then use the identity p"p"p"c„„i, = (i3!)7 ps to write
the interaction as

CT = a8(„T„)8~"T"j + b(8„T")2 + cT„T". (2.9)

A term involving the symmetric part of 8„T„can be
absorbed, after intergration by parts, into the 6rst two
terms above. It is not possible to eliminate a, b, or c
by a Beld redefinition, since the interaction (2.8) contains
no arbitrary constants. We recall that a vector field de-
scribes four degrees of freedom, which can be thought of
as a single spin-0 6eld plus the three polarization modes
of a spin-1 Beld. A simple calculation reveals that it is
impossible for both the scalar and the spin-1 components
to simultaneously exist as propagating degrees of keedom
once we demand that the Hamiltonian of the theory be

We have written (2.9) in terms of B„rather than V„which
are not equal when the torsion is nonvanishing. This is jus-
ti6ed since the covariant derivative V„T„ is simply the par-
tial derivative B„T„plus interactions between T„and other
components of the torsion tensor, which we are neglecting by
hypothesis.

(2.8)

where we have used the conventional de6nition of the
fermion axial vector current, js"—:gp"ps/.

We see that the entire interaction between torsion and
matter reduces to a coupling of the axial vector current to
a torsion (pseudo)vector T„. In constructing the torsion-
only Lagrangian E~, we shaH therefore con6ne our atten-
tion to this single vector. While the other components
of T„„"may interact with this vector, they do not cou-
ple directly to matter, and are therefore unlikely to yield
observable effects. (In what follows we shall treat the
vector T„as a fundamental 6eld with respect to which
we vary the action to obtain equations of motion. In the
full theory the fundamentals fields would be a vierbein
and spin connection. )

It is straightforward to write down a Lagrangian for
the torsion vector which contains all possible terms of no
higher than second order in T„or derivatives of T„. We
may express it as
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bounded below. In our notation, this means that the
sign of c must be negative for the scalar to be nontachy-
onic, but positive for the spin-1 field to be nontachyonic.
Hence, in order for our theory to be well defined, we
may choose the parameters a, b, and c such that either
the scalar or the spin-1 modes propagate, but not both. 4

Setting a = 0, b g 0 results in a theory with a propagat-
ing scalar, while setting b = 0, u g 0 corresponds to a
massive spin-1 field. We shall look at the spin-0 theory
more closely in the next section. An analysis similar to
that given below should be able to provide constraints on
the corresponding spin-1 theory.

The theories we consider diH'er &om the conventional
Einstein-Cartan theory, defined by

(2.10)

where R is the Ricci scalar R = g""R „„and MJ is
the Planck mass. Upon decomposing ZEg in terms of
the metric and torsion, we find that T„enters only alge-
braically:

l-Ec = —MI T„T"+ non-T„ terms. (2.11)

Einstein-Cartan theory, therefore, corresponds to the
choices a = 0, b = 0, and c = —M&2 in our Eq. (2.9).
Since the interaction term (2.8) is also free of derivatives
of T„, varying the Einstein-Cartan action with respect to
T„yields the constraint T" = ( Ms, )j 5 . This constraint

can then be substituted back into the Lagrangian, re-
sulting in a new four-fermion interaction (suppressed by
two powers of the Planck mass). It should be clear that
this choice of action leads to no interesting long-range
forces; however, we believe that there is no good reason
to limit our attention to the Einstein-Cartan action. If
the connection is our fundamental variable, it is unnat-
ural to restrict the torsion degrees of &eedom such that
they do not propagate, unless it is found that theories
with torsion are internally inconsistent or in confiict with
experiment. We therefore turn to exploration of such a
theory.

III. CONSEQUENCES

The spin-0 Lagrangian 80 results &om setting a = 0
in (2.9), and adding the interaction given by (2.8):

Zo = b(B„T") + cT„T"+ 4T„jf (3.1)

To make the scalar nature. of this theory more explicit,
we can consider the equivalent expression l." = l.o + l.p,
where

We are, of course, using classical language; in a quan-
tum theory we would say that it is impossible to have four

propagating degrees of freedom without involving unphysical
ghosts. The problem is present, however, even at the classical
level.

(3.2)

Here, A is a field which functions as a Lagrange multiplier.
Varying with respect to A yields the constraint A = O~T";
substituting back into (3.2), we find that Zq vanishes, so
that l'.0 and l." define identical theories. However, we

may choose instead to keep A in the Lagrangian, and
after an integration by parts we obtain

l.' = cT„T"+ -T„j5 —bA —2bT~O„A. (3.3)

In this version there are no derivatives of the torsion,
and it is T„which functions as a Lagrange multiplier
[although the physics is, of course, still the same as (3.1)j.
Variation with respect to T„yields the constraint

b 3 .T„= —B„A ——j„5.c 8c
(3.4)

We can insert this back into (3.3) to obtain an expres-
sion solely in terms of A and j5. To make things look
conventional, we define m2—:—c/b, f:—(—8c/9)i~2, and

P = (—2b2/c)i~2k, which gives

m2

Thus this choice of torsion action is equivalent to a con-
ventional pseudoscalar field with mass m coupled to the
divergence of the axial vector current, along with an in-
duced four-fermion interaction. Notice that we must re-
quire that b ) 0 and c & 0 to guarantee that the (mass)2
of P be positive and that f be real.

While the Lagrangian (3.5) specifies the entire classical
theory, quantum effects (in the matter sector) will lead
to additional interactions. Specifically, there will be an
interaction with gauge bosons, mediated by triangle dia-
grams, due to the chiral anomaly in the current j5. The
torsion scalar couples to the divergence of j5, given by

O„jf = ~ F„„F""+) mg, . g;p5Q;,4' (3.6)

Nyo.
l-happ = QFpvF" .

8mf
(3.7)

Hence, while there is no interaction between torsion and
gauge fields at the classical level, quantnrn effects (in the
form of the chiral anomaly) induce a coupling, which may
help to place constraints on the theory.

We now discuss potentially observable consequences of
the theory defined by (3.5). In doing this, we may treat
the two scales m and f as completely free parameters,
and ask what values lead to detectable e8ects. However,
there is good reason to expect that both m and f should
be of order of the Planck mass MI . Indeed, if the La-

where F„„is the gauge field strength (we limit our atten-

tion to electromagnetism), F""= ze""~ E~ is its dual,
Ny is the sum of the electric charges of the fermions g;,
o. is the fine structure constant, and my, . is the mass of

Equation (3.6) induces an efFective interaction La-
grangian 8&+p between torsion and gauge fields:
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FIG. 1. Limits on parameters characterizing the pseu-
doscalar torsion theory. This theory is specified by two con-
stants m and f, each with dimensions of mass. We have plot-
ted the regions excluded by astrophysical and terrestrial data,
as explained in the text. The solid lines represent inescapable
limits, while the dashed line may be avoided by modification
of the induced four-fermion interaction. The star in the upper
right represents m = f = My = 10 GeV, which we argued
was a reasonable expectation. Clearly, the constraints are far
removed kom this point.

grangian includes the Ricci scalar constructed from the
connection (the usual Einstein-Cartan choice) as well as
pure torsion terms, there is automatically a contribution
to m2 of order M&2, as evidenced by (2.11). Thus, it
would require a certain degree of fine t~~n~ng for m to be
much less than Mp. Similarly, since f can be thought
of as m times a dimensionless constant which we would
expect to be of order»~ity, m f Mp is a reasonable
expectation. However, the resulting theory clearly leads
to no observable phenomena. A scalar particle with a
mass M~ would not be produced in any conceivable ex-
periment; furthermore, it would decay into fermions or
gauge bosons with a lifetime 7 f2/ms Mp [11],so
any bosons produced in the early»diverse would quickly
decay away. Thought of as a classical field, the effective
range of P is also given by I M& 10 I cm; no re-
alistic source would give rise to a long-range field which
might be observed. Hence, it is no surprise that torsion
has not been detected by any experiment, and the lack
of such detection should not be taken as strong evidence
that torsion plays no role in the fundamental theory.

While it is reasonable to locate the parameters of the
torsion theory in the Planck regime, it is nevertheless pos-
sible that they lie at much lower energies. Fortunately,
the resemblance of the interactions in (3.5) to previously
studied theories allows us to readily catalogue the limits
on m and f. These are presented in Fig. 1. It is clear
that the constraints, while interesting, do not approach
to Planck scale.

The four-fermion interaction (s&, )j„sos allows us to
place a limit on f, independent of m. Such terms have
been studied in the context of composite models for
quarks and leptons, in which the effective theories often
include four-Fermi interactions induced at the composite-
ness scale [12]. The interaction between two axial vector

currents is parametrized by a mass scale A~~, related to
our f by f = A&&/32m. Constraints on A~~ arise from
electron-positron annihilation experiments, in which the
four-fermion interaction contributes to a charge asymme-
try over and above that expected in the standard model.
The best current limits on such an interaction come &om
e+e ~ qq observations at KEK TRISTAN [13]. These
experiments yield a limit A~~ & 3 TeV, or

f &3x10 GeV. (3.8)

which, however, is only valid for f & 10s GeV. This
enables us to rule out the bottom left corner of Fig. 1.

Astrophysical effects of the P bosons lead to constraints
in the m fplane -for somewhat higher values of f. The
interactions of P, as specified by (3.5) and (3.7), are pre-
cisely those of a pseudo Goldstone boson (PGB) resulting
&om the spontaneous breakdown of a global symmetry at
a scale f, followed by the explicit breakdown of the sym-
metry at a scale A = gmf We can. use this similarity
to our advantage, by applying astrophysical constraints
on PGB's to the theory at hand; however, we wish to
emphasize that the resemblance is (as far as we know)
purely coincidental. There is no spontaneously broken
symmetry for which P is the pseudo Goldstone boson;
indeed, some of the essential physics is different.

Frieman and Jaffe [11]have presented a comprehensive
list of astrophysical constraints on PGB's; we s~~mma-

rize the processes most relevant to our purposes. In the
regime left unconstrained by ground-based experiments,
the most effective bounds come &om processes in which
PGB's lead to energy loss in stars. Brie6y, there may
be a range of parameter space in which the mass of P
is low enough that it can be produced in a stellar inte-
rior and the coupling to oridinary matter is sufficiently
strong that the rate of production is significant, while
at the same time sufficiently weak that the PGB will
often escape without further interaction, providing an
additional channel for energy loss from the stellar core.
Three distinct manifestations of this eH'ect lead to inter-
esting bounds: shortening the lifetime of heli»m-burning
(horizontal branch) stars, preventing helium ignition in
low-mass red giants, and shortening the duration of the
neutrino pulse &om supernova 1987A. The most effective
bounds come &om SN 1987A; in this case, the coupling
of 4 to nucleons can cool the supernova core and notice-

This limit is possible to circ»mvent, however, by adding
a fundamental four-fermion interaction to the initial La-
grangian (3.1). The effect of such a term would be to
alter the relation between the torsion coupling constant
f and the parameter A~~ governing the strength of the
four-fermion interaction, without changing any of the dy-
namics of the torsion scalar P. With this in mind, we have
indicated the limit (3.8) by a dashed line in Fig. 1.

The interaction of P with fermions also leads to con-
straints &om laboratory experiments. The most efFective
limits come from searches for neutral bosons in T -+ P+p
and J/Q ~ P + p events [14]. Current data enable us to
place the limit

m &1x10-' GeV,
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ably decrease the duration of the neutrino burst. This
leads to the constraint

m&6x10 GeV, (3.10)

valid for 5 x 10 & f & 10 GeV. Larger masses would
not affect the supernova, since in that case m would be
higher than the characteristic energy of the supernova
core. (We are being somewhat loose in quoting these
bounds; more precise information can be found in [11].)
The resulting gap between f = 10s GeV and f = 5 x 10s
GeV can be closed using the efFects on horizontal branch
stars and red giants; the former arises because energy
loss via the Primakoff process (P ~ p by scattering off
electrons or nuclei) decreases the time a star will spend in
the heliu~-burning stage, while the latter results when
bremsstrahlung (P production in electron-nucleus scat-
tering) allows red giant cores to cool sufficiently to pre-
vent heliu~ ignition. Taken together, these phenomena
lead to the bound

m) 2x10 GeV,

applicable for all f & 10s GeV. The astrophysical and
laboratory constraints are summarized in Fig. 1. We
also note that a separate set of astrophysical efFects is
expected for very low-mass or long-range fields; details
may be found in [15].

It is important to note that some of the most restric-
tive cosmological limits on PGB's have no analogue in
the torsion theory specifically, those &om production of
PGB's in the cary Universe via cosmic string decay and
vacuum misalignment [11,16]. In each of these cases the
constraint arises because, in certain regions of parameter
space, PGB's dominate the energy density of the Uni-
verse: O~h2 & 1, where 0 is the density parameter of a
Robertson-Walker universe and h is the Hubble constant
in units of 100 km/sec Mpc. Determinations of the age of
the universe imply that 0& qh & 1, leading to limits on
m and f However, t. he production of particles by string
decay or vacuum misalignment depends intimately on the
nature of P as a pseudo Goldstone boson, the angular de-
gree of freedom in a tilted Mexican hat potential result-
ing from spontaneous symmetry breaking. The torsion
theory, in contrast, leads to neither strings nor vacuum
misalignment; hence, these constraints are inapplicable.
(Conventional thermal production of P particles can con-
tribute significantly to the density parameter, but only
in a small region of parameter space which is already
excluded by the argument &om SN 1987A.)

IV. DISCUSSION

We have discussed the empirical constraints on a the-
ory of gravity with a propagating scalar torsion degree of
freedom. This theory arises naturally out of a simple set
of assumptions, and the associated spin-0 particle is likely
to appear in a wide variety of Lagrangians with propa-
gating torsion. Whereas a natural expectation would be
for the mass scales characterizing the theory to approach

the Planck scale, the region of parameter space acces-
sible to experiment is naturally at much lower energies.
From this point of view, it is not surprising that torsion-
free general relativity is successful at explaining known
observational data.

It is interesting to contrast the theory examined here
with other proposals in the literature. Sezgin and van
Nieuwenhuizen [9] have studied tacyhon-&ee gravita-
tional theories, and present five Lagrangians involving
the metric and torsion. Their theory 1 is Einstein-Cartan
theory; theories 2, 4, and 5 propagate the massive scalar
particle described in this paper (as well as others); and
theory 3 propagates the massive vector particle corre-
sponding to the choices 5 = 0, a g 0 in our Eq. (2.9).
They did not discuss observational constraints on their
theories, or couplings to matter.

Meanwhile, several papers have considered theories in-
volving a scalar tension field coupled to B„j5"or F„„F"".
An early version of such a theory was proposed by Nov-
ello [17], who attempted to couple torsion to electromag-
netism in a gauge-invariant fashion. He argued that this
was possible if the dual torsion vector was restricted to
be the gradient of a scalar, T„= B„P Asim. ilar pro-
posal was examined in greater detail by De Sabbata and
Gasperini [18]. They computed the photon propagator
in @ED with a constant torsion background, and found
that the result was equivalent to the introduction of an
effective interaction T„A„F"" On the b. asis of this result
and the desire to preserve gauge invariance, they imposed
the restriction that the torsion vector be the gradient of
a scalar. The component (2.11) of the Einstein-Cartan
Lagrangian involving T„ then becomes a conventional ki-
netic term for a scalar field, 8„$0"P. Since the scalar
field only appears in the form 8„$, it is massless, and
the torsion can lead to long-range interactions. In a sim-
ilar vein, Hammond [19] has proposed an antisymmetric
two-index torsion potential g„, related to the torsion
tensor by T„„=B~ Q„„~ and coupled to electromag-
netism through an interaction of the form F" Q„Fi-.
nally, Duncan, Kaloper, and Olive [20] have examined
Einstein-Cartan theory with the addition of a constrain-
ing term QB„T", where P is treated as a Lagrange mul-
tiplier. This technique, without imposing any external
restrictions on the form of T„or P, introduces a propa-
gating massless scalar field which couples to B„js".

There are therefore two important distinctions between
these investigations of the consequences of scalar torsion
theories and the approach advocated in this paper. First,
in defining the Lagrangian, we have been able to describe
a propagating scalar torsion degree of freedom without
imposing external restrictions on the form of the torsion
tensor, or changing the degree-of-&eedom content by in-
troducing auxilliary fields as Lagrange multipliers. (In
this sense our approach is that of [9].) The second dis-
tinction, which is a direct consequence of the first, is that
we have fourid that the resulting scalar should be massive,
and indeed with a mass of order of the Planck scale. This
is not to say that the theories described above are neces-
sarily incorrect; we believe that the approach followed in
this paper is simple and natural, but at the current level
of understanding this is purely a matter of taste.
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The picture of torsion as an extremely short-range 6eld
r»~s somewhat counter to the intuitive conception of tor-
sion as a part of spacetime geometry. More concretely,
we are used to gauge theories giving rise to massless,
long-range 6elds, and the status of torsion as part of the
connection on the tangent bundle might lead us to ex-
pect the same in this case. This con6ict with intuition
may be resolved by noticing that the torsion is a tensor
which is linear in the connection. It therefore becomes
possible to construct gauge-invariant interactions which
give a mass to some of the connection degrees of kee-
dom. This is in contrast with the pure metric theory,
or with gauge theories on internal vector bundles, where
all gauge-invariant terms involve the curvature tensor,
constructed from derivatives of the fundamental Belds.
Thus, despite its origin as part of the geometry of space-
time, the physical manifestation of torsion can be signif-
icantly difFerent &om that of other "geometrical" 6elds.

The possible existence of torsion is of interest both
in the construction of quant»~ theories of gravity and
in the experimental search for deviations kom general
relativity. The important lesson of this paper is that the
absence of efFects of torsion in experiments should not
lead us to discount the possibility of torsion playing a
role in the ultimate theory of gravity.
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