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We apply the techniques that have been developed over the last few decades for generating non-

trivially new solutions of the Einstein-Maxwell equations from seed solutions for simple spacetimes.
The simple seed spacetime that we choose is the "magnetic universe" to which we apply the Ehlers
transformation. Three interesting nonsingular metrics are generated. Two of these may be described
as "rotating magnetic universes" and the third as an "evolving magnetic universe. " Each is causally
complete, in that all timeline and lightlike geodesics do not end in a Snite time or afBne parameter.
We also give the electromagnetic Seld in each case. For the two rotating stationary cases we give
the projection with respect to a stationary observer of the electromagnetic Seld into electric and
magnetic components.

PACS number(s): 04.40.Nr, 04.20.Jb

I. INTRODUCTION

Begining in the late 1950s and continuing into the
1980s an interesting technique was developed for gener-
ating new vacunni, and Einstein-Maxwell, solutions from
a given "seed" solution having at least one Killing vector.
This was of special interest when the Killing vector field
corresponds to an azimuthal symmetry about an axis.
Even more &uitful was the case when the seed metric
had stationary axial symmetry about an axis with two
corresponding Killing vector fields 8/8$ and 8/8t . The
technique, as we shall apply it, starts with the differential
form K corresponding to a given Killing vector field K.
This Killing form in combination with forms associated
with the self-dual part of the Maxwell field, when present
in the seed spacetime, allows one to define succesively two
scalar potentials: one the Killing-Maxwell potential 4
and the other the Killing-Einstein potential 8 defined by
Ernst. Certain traxeformations of the scalar potentials
of the seed metric lead to nontrivially new potentials, a
new Killing form, and a new tetrad basis defining a new
metric.

The transformations from old to new solutions were
found piecemeal by various investigators. One of the ear-
liest, given by Ehlers [1], is the one we shall apply in the
present paper. Others were found by Harrison [2,9] and
Geroch [3]. Finally all were together codified in a group
structure by Kinnersley [4]. They have also been investi-
gated extensively first by Ernst and then by Hauser and
Ernst [5], whose procedure we follow here.

It is to be noted that even when a seed solution is
well behaved, even altogether &ee &om singularities, the

resulting solutions often are not well behaved, and there-
fore not of great physical interest. In this paper we apply
the Ehlers transformation using the magnetic universe [6]
as a seed solution. The magnetic»~averse is globally well
behaved with no singularities. In the magnetic imiverse
there are three Killing vector fields w'hich, applied indi-
vidually, allow the generation of three distinct new space-
times. Each of these spacetimes is timelike and lightlike
geodesically complete (nonsingular). Two of them are
stationary-axisymmetric representing rotating magnetic
universes. The third is cylindrically symmetric but non-
stationary, evolving in time.

In Sec. II we describe the seed metric, the magnetic
universe. We then describe the derivation of the poten-
tials, and the Ehlers transformation. In Sec. III we ap-
ply the Ehlers transformation to obtain the three new

[9] metrics. In Sec. IV we examine global structure and
demonstrate that each spacetime is nonsingular. We also
discuss the properties of the electromagnetic fields of each
solution. Section V contains our conclusions.

II. SEED METRIC AND TRANSFORMATION

Among configurations of matter or field that are in
static equilibrium under their own gravitational attrac-
tion one of the simplest is a parallel bundle of magnetic
Bux. Associated with the equilibria' magnetic field dis-
tribution is a well-determined geometry with cylindrical
symmetry [6]. The field distribution together with its as-
sociated geometry has come to be called "the magnetic
universe. " The geometry of the cylindrical magnetic»~a-
verse is given by

2
ds =v (—dt +dz +dp) + —dgP=e' ~ e' + e~ ~ e~ + e ~ e —e ~ e

2
V2 ) (2.1)
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where z, P, p and t are the usual cylindrical spacetime
coordinates. Here v is given by v = 1 + p, and an
orthonormal basis of one-forms is

(2.6)

For example, in the special case of the magnetic universe,

e'—:vdz, e~ —= —dP, e~ —= vdp, e' = vdt .p
v

(2.2) W = —(e —ie ) = —dpAdg —2idtr dz.M 2 pp - ts
V v2

The volume form is e = v2pdt A dz A dp A dP. We use a
notation where vectors are written in boldface type and
forms in. italic type. The Maxwell field, which varies only
with radius p, is given by

F = —dpAdg
2p
v2

C1&= —d~ —
~

Ad/= —eche~= —e~~,
(vj v v

(2.3)

The three Killing vector fields are 8/Bs, 8/8$, and
8/Bt with corresponding one-forms v2dz, (p/v)2dg, and
—v dt. The three Killing fields give rise to three con-
served quantities for the geodesic equation. These quan-
tities have been used to solve the geodesic equation in
closed form [7).

We now discuss the solution generating technique.
Starting with a solution of the Einstein-Maxwell equa-
tions with a Killing field, one produces two scalar po-
tentials 4 and E'. One then uses these potentials with a
solution generating technique (e.g. , the Ehlers transfor-
mation) to find an orthonormal tetrad of one-forms for
the new metric.

First we introduce some notation, the so-called "step
product" M p N of two forms which leads to a con-
tracted form. This is only different from zero when the
degree of the form M on the left is not greater than the
degree of N. The step product of two one-forms is the dot
product. Given a one-form K and a two-form Q which
is the wedge product of two one-forms, Q—:u A v, we
define the step product

K p Q—:K p (u A v) = u(K. v) —v (K u), (2.4)

where the dot represents the usual inner product of two
fields, the same for vectors and the corresponding one-
forms.

Now let W be a self-dual two-form (where the dual of
a two-form F is —i' F). Then one can show that

2 x self-dual of [K A (K p W)] = —(K K)W. (2.5)

This relation will be particularly useful in enabling us
to reconstruct the electromagnetic field from a Killing-
vector-dependent scalar Maxwell potential 4 which we
shall now define.

Prom the Maxwell two-form we define the self-dual
Maxwell two-form WM by

where we define the symbol e ~ = e Ae~. The coordinates
and metric are dimensionless because we are measuring
all lengths in units of the "range radius" a = 2/Bo (grav-
itational length units) and where Bo is the magnitude of
the xnagnetic field on the axis (measured in Gauss). In
cgs units,

2t"2 j.g6 24
Q1/2

(2.7)

Now we define what we may call the "Killing-Maxwell
one-form" K p S™and the complex scalar Maxwell
potential 4 by

(2.8)

Here, in our case, TVM is linear and homogeneous in
F and *F and —with dS™= dF = d*F = 0 as
well as ZKF = LK*F = ZK& = 0; it follows that
d K pWM) 0

~

~

~

~ext we define the self-dual Einstein-Maxwell-
Harrison-Ernst two-form S'E by

W = —(dK + 24F) + i (*dK + 24'F), (2.9)

where 4 is the complex conjugate of 4. Then we define
the Killing-Einstein one-form K [

W@ and the scalar
Ernst potential E' by

dE'=K p W (2.10)

The integrability conditions for this equation are satisfied
as a consequence of the Einstein-Maxwell equations using
the vanishing Killing Lie derivative conditions analogous
to before. The constant in E' is fixed by requiring

Ref = f —/4/ (2.11)

where f is minus the norm of the Killing field; i.e. , f =
—K ~ K.

For a hypersurface orthogonal Killing vector K a useful
relation is found by substituting Eq. (2.9) into Eq. (2.10)
giving

df = df —24'dC'

This implies

dlmE' = i (Cd@ —ad@) . (2.12)

Thus, as is true in each of our three cases, if 4 is pure
real or pure imaginary, ImE' is a constant which may be
taken as zero. In more general situations ImE' will be
determined by Eq. (2.12).

We will also need only the one-forms A and M

The integrability conditions for this equation are satis-
fied as a consequence of the source-free Maxwell equa-
tions, provided the Lie derivative of F vanishes along the
associated non-null Killing field; i.e., the electromagnetic
field is constant along the Killing trajectories. The inte-
grability is shown as follows: we have, for any two-form
W, the expression of the Lie derivative in terms of the
exterior derivative and the step product [8]:

DUKW=K p dW —d(K I W)
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de6ned by

and

dA@ = W@

dM = 2Re(fW ) .

(2.13)

(2.14)

These form potentials are chosen to satisfy the gauge
conditions K [ A = 8 and K ) M = ~f~ . The
consistency of these two conditions can be seen by ap-
plying the K contraction to Eq. (2.14) and noting that,
with the Lie derivatives of M+@ and A+ vanishing, the
K contraction corrunutes with the exterior derivative and
we have

d(K r M )=uRe Ed+ I
& ) =&R&(&&~)=~(l~l

2R E'+ ie[ f (2.15)

The more general formulas given in [5] simplify in the case
of the Ehlers transformation. It can be shown that the

We are now ready to discuss the Ehlers transformation.
Let P be a real number. Define the scalar A by

A =—1+ iPE.

The Ehlers transformation, expressed in the group for-
malism developed by Kinnersley [4] is

(1 )) 1 (1 iP 0) (1) ( 1
E' = — 0 1 0 8 = E'/A

&e') A
&0 0 1) ~C) ~eP)

which implies, for the norm of the transformed Killing
6eld in the new spacetime,

K = fdz =—— e
v'Ifl

(2.17)

(f ( 0 for x spacelike; f ) 0 for z timelike). Equation
(2.16) then simplifies to

f' K ' = —dx ~A~ + P E' dx —2PImA

which, upon using ~A~ = 1+P 8, can be written

transform K' of the Killing form K satis6es the equation

f' K' = f K)A) + P M —2PImA . (2.16)

In all three cases that occur with the Killing vectors of the
magnetic universe, which we will develop in the following,
E' is purely real and M@@ = 8' Ch~, where z is the
coordinate for the relevant Killing field. The vector field
is 8jBz and the form field is

f' K ' = —(dz + 2PImA )
(

e + 2PImA
& v'lfl

(2.1s)

Now a convenient tetrad in the new spacetime can be constructed from the tetrad used to describe the original

spacetime. The three tetrad forms orthogonal to K transform as

e -+e = (A)e (e J K) (2.19)

The remaining tetrad form which we shall designate e" (es
~~ K) transforms as

V'~
I

(d
~ +,P, Az) V'I I fl iKI

/A/
(2.20)

The Maxwell scalar potential transforms as

and Eq. (2.5) yields

4 4 (1 —iPZ)
1+ 'P~

W m W' = f' (K'A [K' ) W'] —i'[K'n, (K' ) W')])
= f' (K'n, dC' —i [K'wd4'])

(2.21)

(2.22)

or, separating out the real part on both sides of the equation, we have
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F -+ F' = f' K' Ad(Re@') + * f' K' Ad(ImC")

(e" ed(Red') + ' e" edjIeeO') ) (2.23)

A
(1 —P 8 ) e" A dC —2PC ' e" A d@

l~l'Qlfl

I~ I' v'If I
(l9 d (1 + d d )

e" e d/d/ + /O/(I —P d ) e e dd

+ ' (1+l38 )e" ed/O/ —2d /O/de" Add ).

C real=a:

4 imaginary, E' real: F' =—

In the two types of cases of interest to us here: (1) the seed 4 pure real and equal to 8 (the case of the P metric); (2)
the seed 4 pure imaginary, E real (the case of the t and z metrics), the general equation reduces as follows:

Choosing an observer with four-velocity u the Maxwell
tensor can be decomposed into the electric and magnetic
6elds measured by this observer. The electric and mag-
netic 6elds are given by

Using the Killing vector K = 0/8$ it follows that

K p TV = —dp
2p
V2

and therefore that 4 = —v . We then And that WE is
given by

8= —u p*F,

where u is the one-form corresponding to the vector u.
In our case we choose u to be minus the timelike tetrad
form.

III. THREE GENERALIZED MAGNETIC
UNIVERSES

We now apply the Ehlers transformation to the mag-
netic universe to produce new [9] spacetimes. We get a
different spacetime for each of the Killing vectors of the
magnetic universe.

A. The P metric

The two-form W for the magnetic universe is given

by

W = —dp A dP —2idz A dt .E 2p
V2

Using Eq. (2.10) we then find

e= —v '

We then find, using Eqs. (2.9) and (2.13), that

A = —v dP —2izdt .

Then using Eqs. (2.10) and (2.14) we find

M =v dP.

The new tetrad is given as

e' = (v' + P2)
'~' dz,

e = p(v2 + P ) [dg + 4Pzdt],

e' = (v' + P')' '
dp,

e' = (v' + P')' '
dt .

(3.2)

W = —dp A dP —2idt A dz .
V2

3.1
Thus the metric is given by

ds' = (v' + p') [—dt2 + dz' + dp2) + p2(v2 + p') [dp + 4pzdt] (3.3)

The new Maxwell tensor is given in terms of the new
tetrad by

v —p2 2
4' 1F =2 2e Ae + 2e Ae

(v'+ p') (v +p)
(3.4)

The corresponding electric and magnetic fields are

4 V

(v2 + p2)2

a=2 " P',
(v2 + P2)

The electric and magnetic fields point in the (plus or
minus) z direction. Note that in the P ~ 0 limit the
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metric and Maxwell tensor reduce to those of the mag-

netic universe. Thus the parameter P can be regarded as

the magnitude of the rotation.

B.The t metric

Similarly using Eqs. (3.7) and (2.14) we find again that

ME~ = e'dt

We are now ready to compute the new tetrad. Since
2- X/2

A = 1 + iPE' and here ~A~ = 1 + P (v —4z )
find that three of the tetrad vectors are given by

Using the Killing vector K = 8/Bt it follows that

p WM = 2idz, 4 = 2iz .

It then follows from Eq. (2.9) that

(3.6)

e' = [A[ vdz,

e2 = /A/ pv 'dye,

~@= d (v2 —4z2) A dt + 4id (p v z) A dP .

It then follows from Eq. (2.10) that

f =e —4z2 2 (3 7)

e = fAf vdp.

Finally using Eqs. (2.20) and (3.8) we find that the last
tetrad vector is given by

Now using Eqs. (2.9) and (2.13) we find

A = Edt + 4ip v zdP.

e = ~A~ (vdt + 8Pp zdP) .

Thus the metric is given by

ds =(1+pE) vdz + vdp + pv dp —(1+pE) vdt+8pzp2dp

The new Maxwell tensor is given in terms of the new tetrad by

(s.9)

F=2~A~ v (1+PE E+16z )e Ae + 8PE'vzpe Ae

+2~A~ v P (E' 1+P E +8z P E' —1)e Ae + 4vzp(1 —P~E )e Ae (s.lo)

The corresponding electric and magnetic fields are

E=2~A~ v P (E 1+PE +8z PE —1)e + 4vzp(1 —Pt )e

B=2~A~ v (1+ P E' E+ 16z )e —8P E'vzpe (3.11)

Note that the electric and magnetic fields each have coro-
ponents in both the z and p directions. Here again the
metric and Maxwell fields reduce to those of the magnetic
universe in the limit as P -+ 0.

C. The s metric

ds =(1+PE) vdt + vdp +—pv dP

+ (1 + P'E') [edz + 8Ptp'dP] (3.12)

where the scalar E is here given by E' = —(v + 4t ).

The steps used to find the new metric using the Killing
vector 8/Bz are completely analogous to those used in the
case of the 8/Bt Killing vector. In fact the z metric can
be found from the t metric using the complex coordinate
transformation t + iz, z -+ it. We will not repeat the
derivation; but simply write down the metric: & = pcos 1+ Jg

(4.1)

y = psin 1+P
Then p = x + y so any smooth function of p2 is also
a smooth function of x and y. Using Eq. (3.3) some
straightforward but tedious algebra shows that the metric
in these coordinates is

IV. NONSINGULARITY:
GEODESICS AND COMPLETENESS

In this section we demonstrate that these new metrics
are nonsingular. It is clear Rom the coordinate compo-
nents that the metrics are smooth for p & 0. We now
show that the metrics are smooth on the axis as well.
Note that in general cylindrical coordinates are badly
behaved on the axis; so we must introduce Cartesian co-
ordinates and show that the corresponding coordinate
components of the metric are smooth. First consider the
case of the P metric. Introduce Cartesian coordinates x
and y by
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ds = (v +P ) I
—dt + dz ] + (v +P ) 8P [2Pzp dt —(1+P ) dt (xdy —ydx)]

+ (v'+P') (1+P') (dx' + dy') + (v+1) (v'+ 2P'+1) (xdx + ydy)' (4.2)

The metric components are all smooth functions of the Cartesian coordinates (x, y, z, t). Thus the topology of this
spacetime is B and the metric is smooth everywhere.

Now consider the t metric. Here we introduce Cartesian coordinates x and y by x = pcosP, y = psinP. Again
p2 = x + y2 so a smooth function of p2 is a smooth function of x and y. The metric is given [using Eq. (3.9) and
some straightforward but tedious algebra] by

ds =(1+ PE')v dz —v (1+PE) dt+8Pzv '(xdy —ydx)

+ (1+ p C )v dx + dy + (v+1)(v +1)(xdx+ydy) (4.3)

g""S„S„+~ = 0, (4.4)

where S„=BS/Bx" and r is 0 for null geodesics and 1

Again the metric components are smooth functions of
the coordinates (x, y, z, t). The z metric can be obtained
&om the t metric by the transformation t m iz, z m it.
Thus we have also demonstrated that the z metric is
smooth.

We now study geodesics in the three spacetimes and
demonstrate that the spacetimes are timelike and null

geodesically complete (i.e., nonsingular). The geodesics
will be found using the Hamilton-Jacobi equations. We
6rst 6nd a function S satisfying

for timeline geodesics. The trajectory of the particle (or
light ray) is then given by solving the equation

z" = g""S

Here x" gives the coordinates of the particle and an over-
dot denotes derivative with respect to afBne parameter.

A. The P metric

Using the form of the metric we 6nd that the Hamilton
Jacobi equation becomes

v2 +S2 + S2 + S~2 — (4PzSy —Si) + K(v + P ) = 0. (4.5)

This equation can be separated as follows:

S= Zzdz+ Rpdp+ L —Et. (4.6)

Here L and E are constants. Substituting in the
Hamilton-Jacobi equation (4.5) we find that the longi-
tudinal and radial momentum functions Z and R are
given by

Icpv = (v + P ) [B~z B~z —B~t B~t] (4.8)

separation constant U = E —Z is the "transverse
energy" [7]. The presence of a third conserved quantity U
in this more general case is related to the fact that this
spacetime admits a Killing tensor. The Killing tensor
K„„is given by

- 1/2
Z = (4PzI, + E) —U' The geodesic equation then becomes

(4 7) U. („.+P.)
~ i- 1/2—p

' I,' —K (v' + P')

2 - 1/2
v2 + p2

Here U is a separation constant. The constants —S~ ——E
and S@ ——L are conserved quantities related to the
Killing vectors 8/Bt and 8/BP, respectively. Essentially
E is the energy of the particle and L is its angular mo-
mentum. In the limiting case, P = 0, when the solution
returns to being that of the seed magnetic universe, the

—1 - Z/2
z = (v'+P') (E+ 4PzL)' —U'

(4 9)

j= p (v +P ) I —4Pz(v +P ) (E+ 4PZL),

t = (v'+P') (E+ 4PzL) .

First consider the case L g 0. Then p oscillates between
a minimum and a maximum value. The coordinate z is
then given by
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dzdA

~ g(z + 4p*r)' v~
(4.10) z= dA v + E2 —U2. (4.11)

where A is the aKne parameter of the geodesic. Thus at

any 6nite value of A the coordinate z remains 6nite. It
then follows from Eqs. (4.9) that P and t remain finite

for all 6nite values of A. Thus the geodesics are complete.

Now consider the case where L = 0. Then p is bounded

unless r = 0. (When e = L = 0 the coordinate p still

remains finite for finite A.) The coordinate z is then given

by

Thus z remains finite at finite A. Using Eqs. (4.9) one
can then show that P and t also remain finite for finite A.

Thus the geodesics are complete. We have thus shown
that the P metric is timelike and null geodesically com-
plete.

B. The t metric

Using the form of the metric we find that the Hamilton
Jacobi equation becomes

S2+ Sz+ (vip Sy —8pzpvSt) —(1+p&) St + &(1+/3~)v (4.12)

This equation can be separated as follows:

S = 'R(z, p) + LP —Et . (4.13)

Note that 'R cannot be further separated. This metric has no Killing tensor; so we have only the two constants of the

motion E (the energy) and L (the angular momentum).
The geodesic equation becomes

p = v '(1 + P'Z') 'R, ,

z=v (1+PE') 'R, ,

P = (1 + P 8 ) vp
'

(vp 'L + 8/3zpE),

t = (1 + pzf2) v E —(1 + p E'
) 8pzp (vp L + 8/jzpE) .

(4.14)

Using Eqs. (4.14) in the Hamilton-Jacobi equation (4.12) we find

p + z —v E + v (1+PE) (vp L+8/3zpE) + ~(i+PS) v =0.

It then foIlows that

p' + z' &v 4E'

and since v ) 1 we find that (p( & )E( and [z~ & )E[.
Therefore p and z remain finite for all finite affine pa-
rameter A. It then follows from Eqs. (4.14) that P and t

remain finite for all finite A. Thus this spacetime is nuQ
and timelike geodesically complete.

This method cannot be used to show completeness of
the z metric. However, the fact that the z and t met-
rics are related by a (complex) coordinate transforma-
tion leads us to believe that the z metric is also null and
timelike geodesically complete.

TABLE I. Results: new solutions of the Einstein-Maxwell equations generated from the magnetic universe.

New metric
Seed Killing form K
Norm f
Maxwell potential 4
Einstein potential E'

One-form A
One-form M

New tetrad form e
I Is'Tetrad forms e J e

z metric
~ = v2gz

2—v

4 = —2it
E. = —

(
* + 4t*)

A = 8 dz —4ip v 'tdP
M~~ = Z2gz

] + p2/2

iAi (vdz + 8Pp tdP)
JA(e

metric

K~=(p/v )dP
f = —p'/v'
4p = —1/v
Ep= —1/v'

A~ ———v 'dP —2izdt
M = dP
] + p2 2

pv 'iAi '(dp + 4pzdt)

JA(e

t metric
K' = —v2c

f =v
4g ——2iz
Eg ——v —4z
AP = 8qdt + 4ip v zdP
M&& —g2gt
] + pe+2

iAi (vdt + 8Pp zdP)
JA(e
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V. SUMMARY

The results are summarized in Table I. New Einstein-
Maxwell spactimes are generated &om the magnetic uni-
verse as a seed metric. The latter has three Killing vector
6elds K„K4„Kt,. The new metrics are found by apply-
ing the Ehlers transformation with the Maxwell-Ernst
and Einstein-Ernst potentials to find the new Killing
form and the new tetrad basis forms.
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