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Magnetized plasmas in the early universe
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The fiuid equations governing a magnetized plasma in a spatially fiat Friedmann-Robertson-
Walker metric are formulated using the 3+1 formalism of Thorne and MacDonald. They are the
generalization of our previous work for a zero external field. These equations are first solved in the
ultrarelativistic limit where the electron-positron plasma is treated. The equations turn out to be
conformally invariant, so that the results closely resemble those of Sat spacetime. The nonrelativistic
limit is then studied in both the matter- and radiation-dominated eras. Here it is found that the
various magnetoplasma modes redshift at different rates, and are governed by the rate of expansion
of the Universe as well as whether the dynamics are dominated by matter or radiation.

PACS number(s): 04.40.Nr, 98.62.En, 98.80.Bp

I. INTRODUCTION

Plasma physics and cosmology are two well-established
fields in theoretical physics. In particular, analysis of the
linear modes of plasmas and the I emaitre-Friedmann-
Robertson-Walker model of our Universe are thoroughly
understood, yet a blending of these two disparate theo-
ries into a model for the behavior of plasmas in the early
Universe has received little attention in the past. The lin-
earized theory of plasmas in the early Universe is an ideal
area of study to pursue before tackling more complicated
nonlinear efFects.

There will be several periods of interest to us in cos-
mological evolution where we can study the behavior of
plasmas. From approximately t = 10 3 to t = 1 seconds
when the temperature T ) 10 K, there predominantly
existed an electron-positron plasma at ultrarelativistic
temperatures. This was followed by primordial element
formation, after which a plasma consisting mainly of elec-
trons and protons (hydrogen ions), with traces of helium
and other light elements existed. The plasma was be-
lieved to be in thermal equilibrium with photons, and
the energy density of the photons also exceeded that of
xnatter [I], so that this period has becoxne known as the
radiation-dominated era. As the temperature decreased
with expansion, at a few thousand degrees or t 10
seconds, recombination of the ionized hydrogen atoms
occurred so that matter became decoupled &om the pho-
tons. Also around this time the mass-energy density of
matter came to exceed that of the radiation so that the
Universe entered what has become known as the matter-
dominated era. We will consider the pertinent plasmas
at each of these stages of evolution.

We will also be concerned with the existence of pri-
mordial magnetic fields applied to the plasmas. The
literature on the origins and evolution of these fields is
vast. Cheng, Schramm, and Truran [2] have recently
investigated the efFects of these fields on big bang nucle-
osynthesis and temperature, and have obtained limits on
their size. Other good references on cosmical magnetic
fields are Zeldovich et aL [3] and Parker [4]. In particu-

lar, nonlinear dynamo theories and the evolution of these
fields are considered here. Some nonlinear plasma efFects
have also been investigated by Tajima and Taniuti [5],
who consider the nonlinear interaction of photons and
phonons in electron-positron plasmas. They hint at the
importance of these efFects to cosmology.

At present we restrict ourselves to the linearized theo-
ries in a Friedmann Universe. The first to study plasmas
in this regime appear to be Holcomb and Tajima [6,7].
Their Brst paper [6] obtains the equation of motion for
&ee photons, longitudinal and transverse oscillations as
well as Alfven waves for a plasma at ultrarelativistic tern-
peratures in a radiation-dominated Friedmann Universe
using a fluid approach. The second paper [7] discusses
plasmas at nonrelativistic temperatures in the matter-
dominated Universe. Here more attention is paid to plas-
mas in a constant external magnetic field.

Dettmann, Frankel, and Kowalenko [8] also have stud-
ied the early Universe u~magnetized plasmas in the ul-
trarelativistic (UR) (i.e., T )) m, ) and nonrelativistic
(NR) (i.e., T « m, ) limits in both the pre- and post-
recombination eras. For UR plasmas, they recover the
results of [6], which show that the various modes of os-
cillation redshift at the same rate. In particular, this is
shown to arise from the conformal Hatness of the met-
ric. Note that all bulk motions of the plasma are con-
sidered small, which will also be the case in this paper.
They also extend this treatment to a kinetic theory ap-
proach. In contrast to [7] however, they find that for
post-recombination unmagnetized plasmas the modes of
oscillation have difFerent time dependences to that of
photons, and the &equencies of each redshift at difFer-
ent rates. They also show that similar efFects result in
prerecombination NR plasmas.

We extend the work in [8] to that of plasmas in a con-
stant external magnetic Geld, obtaining results in both
the UR and NR limits for both matter- and radiation-
dominated Universes. We remark at this point in the
paper that the presence of a constant external magnetic
field would in principle perturb the Robertson-Walker
metric that we use, thus making the Universe anisotropic.

0556-2821/94/50(6)/3847(12)/$06. 00 50 3847 1994 The American Physical Society



3848 GAILIS, DEL l'MANN, PRANKEL, AND KOWALENKO 50

II. FORMALISM

The plasmas we wish to investigate in this paper are
governed by general relativistic equations, which come in
a four-dimensional covariant form. It is very convenient
to reduce these equations to the familiar 3+1 notation
employed in plasma physics by splitting the electromag-
netic field tensor F""into electric and magnetic fields E
and B, respectively, as well as splitting the stress energy
tensor. Then we may be able to use our intuition gained
from NR plasma physics, in particular being able to use
many similar procedures in the method of solution of the
equations.

The 3+1 split of spacetime equations has been inves-
tigated by numerous authors. We will use the formalism
due to Thorne and MacDonald [10]. As this has been set
out in great detail in [10], as well as having been exten-
sively reviewed in [6] and [8], we will be very brief here
in presenting the required equations. Note that we will
use unrationalized units with c = t = kg ——1, where kg

is Boltzmann's constant.
In our four-dimensional spacetime we introduce a fam-

ily of space-filling three-dimensional spacelike hypersur-
faces and an arbitrary time parameter g. This global
time parameter labels the hypersurfaces and increases
smoothly as one moves forward in time from hypersurface
to hypersurface. Orthogonal to these hypersurfaces will
exist a congruence of timelike curves, which we regard as
the world lines of a family of fiducial observers (FIDO's)
with respect to which the various physical quantities un-
der consideration are measured.

We will be using the spatially Hat Robertson-Walker
metric, often written as

ds = dt +R (t)(dx +d—y +dz ) (2.1)

Here x, y, and z are comoving coordinates and t is proper
time of the FIDOs which are at fixed x, y, and z. We
make the coordinate transformation

However, we can still employ this metric in this paper,
as we can either assume a small enough magnetic field,
compared to the limits from the cosmic microwave back-
ground radiation [9], or choose to solve our equations for
magnetic fields which are coherent on scales smaller than
the horizon.

Section II brieHy reviews the 3+1 formalism of Thorne
and MacDonald which is used to display the general rel-
ativistic equations in a more familiar form reminiscent
of conventional plasma physics. We also introduce the
metric and its conformal Hatness property.

Section III treats the electron-positron plasma at UR
temperatures, and solves completely the longitudinal and
transverse modes of oscillation.

Section IV treats an electron plasma on a background
of positive ions in the NR limit. The longitudinal modes
of oscillation are solved completely in both the pre- and
post-recombination eras. The transverse equations turn
out to be highly coupled, and require a detailed numerical
study which we defer to future work. We find that the
results in [7] are both incorrect and incoinplete.

ds =R (g)( d—rI +dx +dy +dz )

(2.2)

(2 3)

to exhibit the conformal Hatness property of the metric.
Although both t and g are global time parameters, we
find q more convenient to work with, as will become clear
when the plasma equations are exhibited.

FIDO proper time t is related to q by the lapse function

dt
A = (2.4)

~P o ~i@ (2.5)

Here u" is the FIDO four-velocity, from which we can
define the metric of the spatial hypersurfaces:

PV PV + P V (2.6)

We may use p" and u" to project four-tensors into
their equivalent FIDO observed scalars and spatial three-
vectors. The spatial three-vectors are orthogonal to
u". We will use the FIDO measured quantities p„j",
E", B", ~, S", and R'"", which have been defined in
Eqs. (2.4)—(2.10) of [8].

We will choose the orthonormal basis to work in for our
spatial tensors. This is physically the most appropriate
choice, as the components of tensors take on the numer-

++
ical values as measured by a FIDO, and p becomes a
Euclidean metric. Vectors and tensors measured with re-
spect to an orthonormal basis will be denoted by carets;
however, all derivatives will be explicitly with respect to
the coordinates (iv, x) and denoted by (', 8), respectively.

The 3+1 form of Maxwell equations, charge conserva-
tion, I orentz force equations, and energy and momen-
tum conservation for continuous media have been de-
rived in [10]. They have subsequently been adapted to
our problem in [6] and [8]. We simply remark here that
Eqs. (2.30)—(2.37) in [8] are our constitutive equations
for the magnetized plasma. Equations (2.38)—(2.42) in
[8] define the more convenient barred variables (E, B,
and so on) in terms of the orthonormal variables (E and

B).

III. ULTRARELATIVISTIC LIMIT

A. Formu1ation

We wish to study a magnetized electron-positron
plasma in the early Universe at UR temperatures of ap-
proximately T & 10 K. We will use a hydrodynamic
treatment, and thus generalize our previous zero field re-
sults [8].

Since all the frequencies scale the same way with re-
spect to B, it turns out to be fairly straightforward to
apply classical kinetic theory to the UR limit, since there
are no explicit time dependences. This has been done for
a zero external magnetic field Bo = 0 by [8]. We do
not attempt this treatment here for B0 g 0, but rather
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e=r (p+pi ),
s = r'(p+ p)v

W = r'(p+ p) v g v+ p 1,

(3 1)

(3 2)

(3.3)

where now v and the boost factor 1 correspond to the
bulk motion of the plasma, p is the total (rest plus inter-
nal) energy density in the rest frame, and p is the pressure
in the rest &arne. Assuming equal densities of particles
and antiparticles, that is taking only leading order terms
thus neglecting chemical potential, we may express these
quantities in terms of temperature using

2S+ 1 &(4)
2z z t,'(4)

1P= P3

(3.4)

(3.5)

use the hydrodynamic treatment throughout this paper.
This is in keeping with the spirit of the approach used in
the NR limit, where analytic results cannot be obtained
using kinetic theory, and involved numerical work is the
only way to make progress.

We should also brieay mention the possibility of for-
mulating this problem quantum field theoretically to take
into account particle creation and/or aiimhilation and
other quantum processes correctly. This type of approach
is quite involved and beyond the scope of the present pa-
per. Naturally it would yield a more inclusive descrip-
tion, but as discussed at some length in [8], the semiclas-
sical approach is appropriate to study the leading-order
properties of the plasma. An important exception is the
case of very strong magnetic fields (eBp/mz + 1), in
which there are large quantum effects [11]. We confine
ourselves to weak magnetic fields in this paper.

The hydrodynamic treatment involves treating the
plasma as a two-component perfect Quid —no viscosity
or heat conduction. The interaction of the Quid with
electromagnetic fields is governed by Eqs. (2.36),(2.37)
of [8], which we refer to as the energy and momentum

++
equations. The quantities e, S, and ~ in these equa-
tions are given by

which displays the correct time scaling of these variables
in a radiation-dominated Friedmann»niverse.

Assuming the bulk motion of the fiuid is NR, i.e., ~v~ ((
1, we linearize our equations:

T =Tp+Ty
n = np+ny

Then the equation of particle conservation (2.34) in [8],
which becomes

I

ng+np8'v = Oq (3.8)

can be combined with the energy equation (2.36) in [8],
to produce the adiabatic equation

T1

TQ
(3.9)

Extending the work of [8], we now assume a constant
external magnetic field Bp, so that

B = Bp+Bg, (3.10)

and the momentum equation (2.37) in [8] gives

v = q(E+vxBp)—
7.(3) — „— 8Ti

4r(4)Tp TQ
(3.11)

B. Longitudinal (electrostatic) osclllatlons

Longitudinal modes consist of k
~~

E oscillations. We
only require Poisson's equation

for fermions.
The above are the hydrodynamic equations of each

component of the Quid which we require. Following tech-
niques outlined in various plasma physics texts, for ex-
ample, Refs. [16]—[19], we may connect them with the
Maxwell equations to yield the various longitudinal and
transverse modes of oscillation, which we now discuss.

where S is the spin of the particles. 7 (z) is defined by
8 E =4xp, (3.12)

~(z) = (1 —2' ')((z) (3.6)
&om the Maxwell set. The source quantities required
&om the Maxwell equations are

+
r(3) ~(3)

2z z ((3) (3.7)

We may remove explicit time dependence from our
equations by defining

T=RT,
n=R n,

where ((z) is the Riemann zeta function. Here r refers
to a fermion plasma, and we have also introduced the (
function result in (3.4) to allow our formalism to concur-
rently apply to a boson —antiboson plasma [12—15].

We also require the particle number density, which in
contrast with the NR case is not proportional to p:

pe = penal ) (3.13)

gsnepv (3.14)

E=Ez, k=kz, BQ =Bpz (3.15)

where the sum on s is over electron and positron species.
Since there is no explicit time dependence in the equa-
tions, we use Fourier transform techniques, assuming har-
monic space and time dependence e'~ " "~ for the lin-
earized quantities.

There are two possible types of longitudinal modes pos-
sible, nainely E

~~
Bp and E J Bp. For the first case, if

we set
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we rederive the longitudinal mode found in [8] by com-
bining Eqs. (3.8)—(3.13). This wave propagates along the
z direction, and is given by the dispersion relation

where

k2
(d = QJ + —

)
-2 = -2

p 3
(3.16)

,2S+ 1~(3
27l'2 7' (4)

(3.17)

is the plasma frequency of an UR fermion plasma. We
achieve the same dispersion relation as the Bp ——0 case,
since oscillations along Bp are not afFected by the mag-
netic field.

In the Bo g 0 case, the particles also execute Larmor
gyrations in the x and y directions with frequency

(3.18)

where

1 7.(3) eBp

4~(4) T,
(3.19)

1 ~(3) q—2(dV~ =
4~(4) T,
1~(3) q—24)Vy =
4~(4) T,

.— 1 n1
(E + v„Bo) —ik

Ap

1A1(E„—v Bo) —ik„——
3 Ap

(3.20)

(3.21)

For simplicity, assume E = Ex, k = kx. We may then.
combine the above two equations along with the adia-
batic equation (3.9) and substitute into Poisson's equa-
tion to obtain the dispersion relation

is the cyclotron frequency for an UR fermion plasma.
For the E J Bp mode, if we set Bp = Bpz we obtain

&om (3.11) two coupled velocity equations

simplest case is the ordinary wave, where E
~[ Bo and

E J k. In this case, Poisson s equation implies there are
no charge density Quctuations, so we combine the other
Maxwell equations to obtain

II I

E = —Bx8xE —4vrg (3.23)

This equation, combined with the z component of the
momentum equation (3.11) leads to the same mode as
found in [8], which is logical, since E

~[ Bo, so that the
external magnetic Geld term of the momentum equation
v x Bp makes no contribution. The dispersion relation
for the electromagnetic fields is consequently

+kp (3.24)

The above equation. also gives the harmonic depen-
dence of the z component of the velocity, which oscillates
with the same frequency as the electromagnetic fields.
We may also solve for the z and y components of veloc-
ity, though, of course, the electromagnetic Gelds will not
exist in the z-y plane. Combining (3.8) and (3.9) with
(3.11),we immediately obtain the &equency of oscillation
of electrons and positrons in the x-y plane:

k2+—-2 = -2
C (3.25)

E=E x+E„Z

This particle motion perpendicular to the electric Geld is
peculiar to a two-component plasma. As will be demon-
strated later in the NR limit, a one-component plasma
will not exhibit such efFects.

A considerably more complex case is the extraordinary
mode k J Bp, E J Bp. In complete generality, let us
write our fields as

1 2= Cu„+(u, + —k (3.22)
k = k x+ key

Bp ——Bpr . (3.26)
Here it is evident the plasma oscillations and cyclotron
oscillations combine their efFects, in analogy to the Hat
spacetime plasma results.

Particle conservation (3.8) and the adiabatic equation
(3.9) yield the relation

C. Transverse (electromagnetic) oscillations
T1 1= —(k, v + kvvv)
Tp 3~

(3.27)

There is a greater variety of transverse modes possi-
ble, depending on the orientation of E, Bp, and k. The

This may be substituted into the momentum equation
(3.11) and solved for v to give

. ~csV~=2
cuBo

- ~csVy=2
uBp

(
1 — "

i
E +

k2

( ur2, + k2/3)

E~
+ /

(3.28)

(3.29)

Note that here u„refers to the &equency of either positrons or electrons (u, of electrons = u, of positrons—), so
that these particles' respective velocities will be in opposite directions. This will lead to some simplification when the
velocities are substituted into Maxwell equations. Note also that the momentum equation gives no z component of
velocity in the extraordinary wave case.

We substitute this result along with (3.14) into (3.23) to obtain a set of homogeneous simultaneous equations for
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E and E, which only yields a solution if the determinant of the system is zero. This condition yields a rather
complicated dispersion relation:

Cd /31—
~2 ~2 k2/3

, ( u' —I„'/3
hp —ky —col"

(A&2 —Cu2 —k2/3)
p ~

~&

— .'/
~ (u2 —u2 —k2/3)

(3.30)

Note that the extraordinary mode has rotational symmetry in the x-y plane, so that we may in fact set either k or
k„equal to zero to facilitate an iinmediate solution of (3.30). The roots of the first set of square brackets on the right
hand side of (3.30) give the longitudinal modes as exhibited in (3.22). The roots of the second set of square brackets
on the right hand side of (3.30) give the dispersion relationship for the transverse modes, which are obtained now
&om

(cu —k ) = 8„ i

cu
—2 2 —2 (—2 ~ ~ ~ —2 —2

3) &
' 3)

which reduces to the ordinary mode if we set 6 = 0 as expected. The solution of this equation is

(3.31)

1
4J

2
4, 4 4, 42 + g)2 + k2 6 g4 + g4 + k4 + 2M2g2 + —&2k ——&2k2

l 3 " ' 9 ~' 3~ 3'
)

In solving (3.31) we have multiplied up to produce a
quadratic equation in cu2. In so doing we have introduced
a spurious solution as so often happens in such cases. By
setting u = 0 in (3.31) and (3.32), respectively, we read-
ily deduce that the positive square root in (3.32) is the
correct solution for the transverse modes of the plasma.

We may also deduce from the equations for E and
E~ that the waves are linearly polarized, in contrast to
the NR fIat spacetime case where they are elliptically po-
larized. The reason for this is that in the NR case, the
plasma is composed of electrons and ions which have dif-
ferent masses, whereas here we have electron and positron
efFects competing, which lead to cancellations resulting in
only linear polarization.

There is one more case to consider, namely, when
k

~~ Be and E J Be. In the NR case, this mode con-
sists of left- and right-circularly polarized waves. As in
the ordinary wave case, the momentum equation (3.11)
yields solutions for all the components of velocity of the
particles. Hence if we set

I

direction:

= —k-2=1-2 .
3

(3.35)

(3.36)

—1

(dBp
(3.37)

This time, when we substitute into (3.23), we find the
equations for E and E„decouple, and each yields the
dispersion relation

Note that this equation only describes the oscillations of
the particles along the z axis, and does not represent the
transverse electromagnetic wave.

The z and y components of the particle velocities may
be used to describe the propagation of a transverse wave.
The momentum equation has solutions in the x-y plane:

E=E x+E„y
k= ki,

Bp ——Bpi;, (3.33)

k2——1—
Qp

2

u,2/u2

(1 —u2/u2 (3.38)

we find that in the z direction

k Tg
V

caP Tp
(3.34)

which gives the frequency of particle oscillations in the z

which once again difFers from the Hat spacetime NR re-
sults. Here, as in the extraordinary wave case, the waves
are linearly polarized, exhibiting no left- or right-circular
polarization, in contrast with that observed in the Bat
spacetime NR case.

When we solve the dispersion relation (3.38), we find

-2 1 -2
Ld +td +k + (d +(d +/C +2(d (0 +2ld k —2(d (3.39)

where once again a spurious mode is introduced. An
identical ar@~ment to that used in the extraordinary wave
case shows us that only the positive square root gives
the correct dispersion relationship for these transverse
modes.

To s»mmarize this section, we have obtained all the
important modes for an UR particle —antiparticle plasma
which may have existed in the first second of the Uni-
verse. The results were fairly easy to obtain due to the
fact that all of the equations scale the same way, and as
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can be seen, all of the modes redshift identically to a free
photon.

(3.8), we once again derive an adiabatic equation

R T = K(R n) 3 (4.9)

IV. NONRELATIVISTIC LIMIT

A. Formulation

We now turn to a NR treatment of magnetized plas-
mas in the early Universe. The period in cosmological
history we are now considering is the pre- and post-
recombination eras. At NR temperatures we need no
longer consider electron-positron plasmas. Now that ele-
ment formation has occurred, we will treat the plasma as
a one-component electron gas on a background of positive
ions (protons or helium nuclei).

There are two physically different eras we must con-
sider in this regime. In the pre-recombination era ther-
mal photons dominated the temperature of the Quid and
hence the geometry:

A] 3 Tg

no 2 Tq
(4.1O)

If we linearize the force equation, assume an e'"" de-
pendence in the linearized variables, and eliminate Tq

using the adiabatic equation (4.9), we obtain

where e is an arbitrary constant. Some concern might be
raised as to the adiabaticity of pre-recombination plas-
mas. Here the temperature is dominated by the photons
which continually heat up the plasma. Our linear theory
though, considers small oscillations which occur over a
much shorter time scale than these thermal equilibrium
processes; hence, adiabaticity is a good approximation.

We may linearize the adiabatic equation and intro-
duce the time-independent number density n = Rsn once
more to obtain

T-R-', (tb '
qt;) 2t,

(4.1)
ny5Tp g ( — v

v +ikR ———= —
~

E+ —x Bp
~np3m m ( R )

(4.11)

T R
2(t~3R=

i

—
i

(4.2)

Here t; is a fiducial time constant which for simplicity we
often take to be of the same order as t, so that R is of
order unity. This will facilitate analyzing the asymptotics
of our solutions, as the comoving coordinates x, y, and
z correspond closely to physical (proper) distances and
our "conformalized" variables are of the same order as
the corresponding physically measured ones.

In the post-recombination era, the thermal photons
had decoupled &om matter so that the geometry was
matter dominated:

n]
xk vR

no
(4.12)

Equations (4.11) and (4.12) are our fluid equations for
both electron and ion species. The species can be con-
nected by the Maxwell equations, but as already stated,
we will consider the ions as a positive background, and
include only the dynamical eKects of electrons in the
Maxwell equations.

where we have introduced v = Rv, and have included
the external magnetic field so that B = Bo + Bq. We
also require the continuity equation

photon ~ R (4.3)

We will now find that our equations have explicit time
dependences &om factors of R occurring, and unlike the
UR results, the various &equencies redshift at diR'erent
rates:

B. Longitudinal oscillations

For longitudinal oscillations, we assume k
~~

E, and
require only Poisson's equation &om the Maxwell set:

plasma u„= 4vrne2
(4 4)

ik E = 4xqng (4.13)

eB
cyclotron u, = R (4 5)

This is contrary to the results found by Holcomb [7], as
are all of our specific solutions that now ensue.

To set up the NR equations, we begin again with the
fluid quantities (3.1)—(3.3). This time we use the NR
equations of state for an ideal gas: E=Ex, k=kx, Bo ——Boz (4.14)

There are two cases to consider: when E
~[ Bp or when

E 4 Bo. In a similar fashion to the UR limit, the first
case gives precisely the same results as found in [8], as
the external magnetic field has no contribution along the
direction of k. For the second case, without loss of gen-
erality we let

p = n(m+ 2T)

p= nT

m)) T

(4.6)

(4 7)

(4 8)

and substitute (4.12) into (4.13) to obtain

R
6 = E

4' eno
(4.15)

Substituting (3.1)—(3.3) into the energy equation (2.36)
in [8], and combining this with the continuity equation

along with two nontrivial components of the force equa-
tion:
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ng 5TO
6 +ikR—

nosm
E+ —Bo )

e 6= ——Bo .mR

(4.16)

(4.17)

Equations (4.15)—(4.17) constitute the relevant set for
a description of longitudinal modes. They may be com-
bined to produce a third order differential equation for
E. We consider the pre- and post-recombination cases
separately.

X. Pre-tecombination

In this case To —— RTO is the pertinent time-
independent quantity. The third order equation obtained
looks complicated, but may be factored conveniently:

d 2 -t 1 — 2t ( 2 5 Tp —2 2tal—g' E+ E+ —'~u,'+-—k'+ '' ~E =0.
de rj g g

~ Sm

(4.18)

The expression in square brackets yields an homoge-
neous second-order equation which is easily solved. The
third solution is equivalent to the inhomogeneous solu-
tion of the second-order equation:

where Z is any Bessel function. Any two linearly inde-
pendent Bessel functions of the correct order are appro-
priate solutions. We choose the Hankel functions H& &

and H~ ~, because they resemble most the Bat spacetime
e+' ' solutions.

We may assume the &equencies involved are much
greater than the reciprocal age of the Universe, that is

Qp p )) 1 4)pt )) 1, (d t; )) 1 (4.23)

Then we can proceed to derive asymptotic expansions for
(4.22) in various limits.

The appropriate asymptotic expansions for the above
conditions are found in Watson [21], pages 262—268, and
are also used in [8]. These expansions of Z„(z) are valid
for large v/i and z. We will merely quote the results
here.

We find the first two terms in the expansion of E.
Comparing successive terms in the expansion, we derive
a condition for convergence,

sr,4t"'t"' '+ '
I

—
I

+ ——pk' (t;) Sm »1, (4.24)

which in terms of FIDO-related quantities is essentially
just saying

(4.19)
where

MC)) 1 (4.25)

where c is an arbitrary constant. We may set c = 0 and
ignore this third solution. This can be seen in a sim-
ple way by comparing the analogous Bat spacetime NR
result found in aD elementary plasma texts. In the Bat
spacetime case, the general solution for charge density is

where

C
ny ——aqe' + a2e ' +-

(d 2 (4.20)

+u + ——k3m (4.21)

( 5'E = Z4;~.g,. 8t;
i

ur + ——k jrl i
Bm )

(4.22)

Here aq and as are arbitrary constants, and cj~2 forms
the analogous inhomogeneous solution. But c = 0 is nec-
essary, as our initial assumption constituted a constant
background density no with a perturbed oscillating den-
sity n~, which contained no constant background itself.
Thus c g 0 violates this assumption of charge neutrality.
This argument follows through for (4.19), with the ex-
ception that the nonoscillating solution of nq is now also
time dependent.

Taking c = 0, (4.19) may be solved (see [20]) to give

4P = co +cd + ——k
5 TO

3m (4.26)

Here ~ is the same as its Bat spacetime counterpart.
Since we are using a fiuid approximation (i.e., long wave-

lengths), we must assume

5 To)) ——kp 3m (4.27)

hence the condition (4.25) suggests that our expansions
are valid for either up )) u, or up &( u„as long as con-
dition (4.23) is met. To be more specific, let us give an
estimate of the magnitudes of our &equencies. Ass»~ing
no 109 particles per cubic meter, which is the gener-
ally accepted value around recombination, and t; 10
seconds, we find

(A)pC; 10, EL) C; 10 Bp (4.28)

where Bo is the magnetic field which is measured in
Gauss. Thus the theoretically possible values of Bo lie
well within our required range, so that we may ass»~e
either (dp )) co or up (( u .

Neglecting some irrelevant constant factors, we now
exhibit the first two terms for the electric field:

E a ~ exp + ~ ~ ~ (4.29)
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where

gt, f' 5Tp-—2t2+
~

—2+ k2
2 q" 3m

32 q 3a
(4.30)

We may obtain the locally measured &equency ~ from this result by difFerentiating the argument of the exponential
with respect to t:

&
&-"4

4dp+4d, /—
Et'r

-1j2
~2 (4 f

3/2 fd —4td (—
+ "y

128 t' (t, ) -~/2 '
(do + 4)

2)
1j2 1 ~0 ~o 42 2 2

~0+~c 1— + ~

128 t2 (4d2 + ~2)2
(4.31)

where for ease of presentation we have defined

5 ~TI 2 ~2 ~3~20= P 3~ ~ 0= ~0 (4.32)

Thus the frequencies resemble their Hat spacetime coun-
terparts with time-dependent correction terms. Note
however that the local &equencies ~0 and ~, decrease
in time as the plasma becomes less dense. We may re-
cover the Bat spacetime results by taking the long time
limit in the above equation.

There is another limit we may consider for our solution
(4.22). This is the case ~~ &) ~„where ~,t, is not neces-
sarily large, i.e., the Bo ~ 0 limit. This difFers &om the
above expansion in that although there we were allowed

grit;u~ )) &D, t; for ur, t; ) 1

v gt;a„» 1 ford, t, ( 1 (4.33)

To leading order we simply recover the solutions of [8],
so u, only displays an inBuence &om the first correction
term downwards. To first order we find

I

the condition ~„))~„we still required u, t; )) 1, since
the expansion was for Bessel functions of large order.

The relevant expansion in this case is given in Watson
[21] page 198, which is for H„(z) where z )) 1, but v is
unrestricted. Comparing successive terms in the expan-
sion, a condition for convergence is

E - g '~4exp ( 5Tp- )
t;ri

~

u~2+ ——k2 ~—
3m )

2)2+ 1

t g ~2+ -5~k2
(4.34)

(tt lur2 &tt ~ 1 1 &t)' '
~ =~p

I

—
I

1+ -=',
I

—
I

+
0 t*') 2 up2 (t; j 128 up2t2 qt; j

1 u)2 1 1
=&p

(
1+ ——'+ +

l 28 (g)2t2 )

+ ~ ~ ~

(4.35)

The FIDO-measured frequency can be seen to contain the first few terms of the binomial expansion of gl + &d2/~p2,

plus additional time-dependent corrections. Again the fiat spacetime result is obtained in the long time limit.

Post mcombinetion

In the post-recombination case, temperature varies as B 2, i.e., To ——B To is the time-independent quantity. Once
again, using (4.15)—(4.17) we obtain a third-order equation in E, which may conveniently be factored:

9t,', 81t4 ( 2 5Tp —21—ri E + E+ 'u+ —'iu, + ——k
I

E =0.
dpi q g» g' ~

' 3m
(4.36)

As in the pre-recombination case, we have two homogeneous solutions to a second-order equation contained in the
curly brackets, and a third inhomogeneous solution, which again we may discard from arguments of charge neutrality.



50 MAGNETIZED PLASMAS IN THE EARLY UNIVERSE 3855

The solution is

(4.37)

As before, we choose the two linearly independent Hankel function solutions, and proceed to obtain appropriate

asymptotic expansions for the conditions (4.23). Comparing successive terms in the series, we obtain the condition

(, 5T, —,) Ft)
3t; u~ —

I

—
I

+I cu, + ——k
36t' gt) ( ' 3m ) (t) (4.3s)

which is equivalent to (4.25) and (4.26). Thus once again the relative magnitudes of ur„and u, are unimportant;
rather what is important is (4.23).

The expansion for (4.37) to first order turns out to be

E g /a / exp

1/2
ri & ~p sent9-2t2 ——ar nh

4 3t;
+ ~ ~ ~ (4.39)

where

9)2 g2
W

—1 2
b ~

—/
8

3m
15 f' 1)

1 ——
I cu„t; ——

Ia ("' 36)

(4.40)

(4.41)

The Buid approximation dictates that, for post recombination,

TP-2C;2)) —k —'
m

(4.42)

We find the locally measured &equency to be

)-2(s '~'
~a + ~.'a I

—
I

Et*) Et')

—2/3

1 f t lt'~ u)' ~~& I e 4~~
+ ~ ~ ~

72 (t) t ( p ) —2/s
I ~.'l, I

—'
I

+~~
I

1 ~„~,„—4~,2 2 2

~t +~ca 1 + 0 ~ ~

72 t2 (~2 + ~2)
(4.43)

where for ease of presentation we have defined

2—2 —2 1 ~tl -2= 3 2= ~p 36t~ t,&')
= a'+ -s~~k' td' = B4~'

cog c ~ca — ~ca .
(4.44)

5 Tp x
102P

9t,. ——k2g
3m (4.45)

We may wish to take the Bp M 0 limit in a post-
recombination plasma as well. By examining the argu-
ment of the Bessel function in (4.37) we see that we will

merely recover the results of [S] if we assume ~k2 ) 1.
To obtain a full small-argument expansion for E, we have
to take a very long wavelength limit. To obtain an esti-
mate for A we substitute the correct numerical values for
the various quantities in (4.37) to give

(t)
cd =cd'

I

—
I =avdp (4.46)

Including the next order, for general v and z &( 1 &om
[21] and [20], we find

H~'& ~ ('&( ) -~—r( ) I

—
I I

1+ +".I,"(
i2 ) i 4(v —1)

I

A &) 10 meters. At recombination the radius of the
visible Universe was ~ 3 x 10 m; hence, we are now
dealing with oscillations of wavelength approaching this
order.

We now require the small z expansions of H~ ~ and

H„. To leading order we simply recover the plasma
oscillations

where A the wavelength is measured in meters. So for
this to be a small expansion parameter, we would require which gives for (4.37)

(4.47)
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(St,'. , 5r, ,& 27t,' 1 (, 5r. —,iE I1
'~ exp +i 3u)pt;ln ' ~2+ ——k2 + 2 I

~ + k I+'(2' ' 3m ) 4g2 mt, ( ' 3m )
(4.48)

(tb 1 (tl ~'+- —'k
1+

(d
+ ~ ~ ~

(4.49)

Thus to this order, the Bat spacetime, frequencies as
given in Eq. (4.26) have been recovered.

Comparing the various results of our longitudinal
modes calculations we see that we have found the am-
plitude of oscillations E to decay in time in most intri-
cate fashions. This is in marked contrast to that of a
free photon, or to Bat spacetime plasma physics, where
all amplitudes are constant. We have also found time-
dependent correction terms to the locally measured fre-
quencies which could not be guessed. Thus the curved
spacetime, within which we work, significantly affects the
time-dependent behavior of plasmas.

v, =v, B»y ——B» (4.58)

we obtain

m
v—ikB» + 4xenp-
R

B = —ikE.

(4.5S)

(4.60)

(4.61)

of Bp, we assume no constant perturbed field so that
B»~ ——B», ——0. Thus we find 8~ = 8„=0, and if we let

C. Transverse oscillations

k=kx, E=Ei, Bp ——Bpz (4.50)

Then the force equation (4.11) yields

I e
v~ = — vyBp

mR (4.51)

Transverse waves turn out to present a far more
formidable problem mathematically. One case which is
solvable analytically is the ordinary wave mode E

~~ Bo,
ki Bp.

Poisson's equation implies n» ——0. We let

This set of equations is identical to the transverse set
found in [8]; thus, Be has no effect on the ordinary trans-
verse mode of a plasma. The full solution and asymptotic
evaluation of this mode is presented in [8]. Note that
due to the fact that we are considering a one-component
plasma, the particles have no velocity in the z-y plane,
in contrast with the UR limit, where it turned out to be
permissible due to the two components producing current
cancellations in Maxwell equations.

The other transverse modes that are possible yield
complicated systems of coupled differential equations.
We will merely derive the equations and not concentrate
on the solutions here. We begin with the momentum
and continuity equations (4.11) and (3.8) along with an
equation obtained by combining (4.54) and (4.55):

I e
vy = v~Bp

mR (4.52)
I

R = k(k.E) —k E+ 4vre —v —v —
~

. (4.62)
R i R)

I e
8, = ——E .

m
(4.53)

B»= —ikxE (4.54)

With B = Bp + B», we obtain, from the electromag-
netic equations of Maxwell's set,

From these equations we may find two transverse
modes, and corresponding to each of these modes a
pre- and post-recombination case, with Tp = RTp and
Tp = R Tp, respectively. We list the resulting sets of
equations, which cannot be simplified further by any
techniques known to the authors.

the results

I VE = ik x B»+4vrenp—

B»„=—ikE

(4.55)

(4.56)

X. Satreordinary maees

This mode consists of k i Bp, E 3 Bp oscillations.
We let

8 = ikB»y+4~enp —' (4.57) E=E x+E„y, k=kx, Bp ——Bpl (4.63)

and also B»:B»: 0 Hence from the definition and derive the equations
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Pre recombination

Post recombination

5 Tp 2t;k2
8 + —— 8

3m

E

E

e (E
m g

e (
mg"

2t;np
4me

—k Ey+

2t Bp 2t 'Bp

g " 'g2 )
2t'Bp 2t Bp t

e + * e
'g 'g

( ~

v ——v

2t;np (
47M

1 ev ——ey
)

(4.64)

II 2
~ + —V~

5 Tp 81t;k+ —— v4

II 2 I

Vy + —V

e (-
m g

e= ——
1

Emg"
9t2np= 4vre

92

E„=—k E~+

2 — 9t; Bp
2 v'9 )

2 — 9t; BQ+ E„—— ' e
'9 )

( 2
1v ——e~

I

9t,'np ( 2
4me ' 8„——8„

rl ( 7/ )
(4.65)

t Right. - and left hand c-ircslorly polarized eavee

E=E x+E„y, 4=A, Bp ——Bpi (4.66)

and derive the equations
Pre recombination

II e
v

m

II e
v

m

2t;Bp 2t;Bp
ri " ri' ")

( — 2t'Bp 2t'BpE„— ' e+ ' e

2tnp (E = kE +4~e —' 1e ——e
)

2t;np ( 1E„= Ic E„+4we
'—

1

e„——v„
)

(4.67)

Post recombination

2 ~ e (-~ 2 — 9t Bpe = ——v ——IE + E+ *2 v„—
m g ri

*
r12 ")

2 e (- 2-
e = —e ——1E+ E„——

m~ ~
9t; Bp

V
g2

9t;np ( 2E = kE +4we ' —1e ——e

9t,'np t' 2E„=—h E„+4ne '
1

e„——e„1)
(4.68)

The solutions of the above systems of equations require

This mode consists of k [[ Bp E J Bp oscillations. We
let

an extensive numerical study which is beyond the scope
of the present paper. We defer such an analysis to future
papers and suffice here merely to list the relevant equa-
tions. Note that both the z component of the velocity
equation and the z component of (4.62) now yield non-
zero solutions which are incompatible; hence, we must
have 8, = 0. This is once again due to the fact that we
are treating a one-component plasma. We can only have
non-zero velocities for a two-component plasma such as
the electron-positron system in the UR limit.

V. CONCLUSION

Using the formalism established by [6] and [8], we have
analyzed the various possible plasma modes in the pres-
ence of an external constant magnetic field in the spa-
tially Bat Robertson-Walker metric, in both the UR and
NR limits, using a Quid model. This completes the pro-
gram for studying high &equency linear oscillations using
a semi-classical approach.

At UR temperatures (T )) m) we found that all
plasma modes redshift at the same rate as that of a free
photon. The fact that we treated an electron-positron
plasma simplified the observable effects, predicting only
linearly polarized waves.

At NR temperatures (T (( m) we disagree with re-
sults found in [7], showing that the various plasma modes
redshift at different rates. We have shown that in all
the cases solved of pre- and post-recombination, the lo-
cally measured &equencies we obtain resemble the fiat
spacetime counterparts with time-dependent corrections,
which disappear as we take the Hat spacetime limit. The
expansion of the Universe has been shown to cause the
amplitude of oscillation of the various modes to decay in
time in quite an intricate fashion.
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There remains considerable work to be done in related
topics. A full solution of all the transverse modes in
the NR limit is yet to be undertaken. This will require
numerical techniques. Other linear plasma modes such as
the magnetohydrodynamic low frequency Alfven waves
and two stream instabilities may also be studied. We
intend to discuss these in future papers.
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