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Impact of frame dragging on the Kepler frequency of relativistic stars
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It has long been known that in general relativity the centrifugal force on an element in a rotating
star involves the frequency of the star relative to the frequency at which the local inertial frame is
dragged by the rotation. Intuitively, one would expect that this would increase the critical frequency
at which rotation disrupts the star. Our analysis shows the opposite to be true and gives theoretical
underpinning to a commonly used empirical formula for the Kepler frequency of a rotating star.

PACS number(s): 04.40.Dg

I. INTRODUCTION 0 =M/B

The dynamical effects of rotation in gravitational fields
in some cases seem strange, and none is more strange
than the reversal of the centrifugal force in the vicinity of
a Schwarzschild black hole [1,2]. In this paper we discuss
another but unrelated phenomenon associated with the
rotation of a star, which, though less spectacular, runs
counter to classical expectation and accounts in part for
a numerical observation concerning the Kepler frequency.
Two groups independently made the useful observation
that the fully relativistic computation of the Kepler fre-
quency of a rotating neutron star at the mass limit of a
sequence can be approximated to an accuracy of better
than 10% by a factor, less than unity, times the classi-
cal expression for the Kepler frequency of a satellite in
circular orbit around the corresponding spherical nonro-
tating star [3,4]. The observation has been utilized in
papers too numerous to cite and provides an enormous
simplification of the problem because the solution of the
numerically intensive and complicated general relativis-
tic equations for a rotating star can be replaced by the
solution of the much simpler Oppenheimer-Volkoff (OV)
equations. The two groups of authors who provided this
valuable observation did so on the basis of numerical so-
lutions, and no hint was provided as to how this result
could emerge from the general relativistic (GR) expres-
sion of the Kepler frequency of a rotating star, which
is actually a self-consistency condition on the solution
and is a very different expression from the classical one.
We have given a partial explanation elsewhere [5], and
that work provided the hint that frame dragging plays
an important role and one that is counter to our classical
intuition.

A satellite in stable circular orbit at the equator of a
nonrotating star has a frequency in general relativity that
is precisely equal to the classical one [6]:
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In classical mechanics this expresses the balance of grav-
itational and centrifugal forces. Here M and R are the
gravitational mass and radius of the star, and 0 is the
uniform angular velocity of the satellite. In classical me-
chanics the same expression holds for the Kepler period
of a satellite at the equator B of a rotating axially sym-
metric star, but in general relativity the situation is dras-
tically altered, as is well known. Among the important
effects is the phenomenon of dragging of local inertial
frames by the rotating star [7—10]. Mach's critical at-
tention to the concept of inertial forces no doubt played
an important role in ultimately focusing attention on the
effects of rotating matter. Thirring appears to have been
the first to realize that in Einstein's theory a rotating
mass shell drags the local inertial frames [7]. The effect
was studied in greater generality by Brill and Cohen [10].
Shortly thereafter, Hartle incorporated the effect into his
calculation of the equilibrium configurations of rotating
stars [11]. He notes that the centrifugal force acting on
a Quid element of the star is governed by the rate of ro-
tation of the star, assumed to be uniform, relative to the
local inertial frames, which are dragged by the star's ro-
tation, in the same direction. The frequency with which
the local inertial frames are dragged is largest at the cen-
ter of the star, never exceeds the frequency of the star
itself, and goes to zero at great distance from the star.
It is this problem that we reexamine in this paper. The
above statement by Hartle is correct, but the words by
themselves imply that inasmuch as the centrifugal effects
are governed by the difference of two frequencies of the
same sign, the effects should be smaller; that is to say,
the Kepler frequency is correspondingly increased and is
larger than the value given by (1). This turns out to be
incorrect. The reason that the quoted words of a quar-
ter century ago do not convey the correct implication is
discussed in the next section.

Of course, there are other factors that affect the Kepler
frequency of a relativistic star, but they are not at issue
and have been analyzed elsewhere [5]. Our analytic dis-
cussion progresses in three stages, with an improvement
in the metric at each.
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II. ANALYTIC TREATMENT

While the classical result (1) holds for a particle in or-
bit around a nonrotating star also in general relativity,
it is easy to understand why it cannot hold, for several
reasons, for a mtating star in general relativity. The ra-
dially dependent dragging of local inertial frames must
perforce afFect the actual distribution of matter in the ro-
tating star, and hence the metric of spacetime is altered
by the rotation, that is, by the particular distribution
of matter, determined by the condition of equilibrium
or balance of forces. In classical mechanics space and
time are assumed to be absolute. In general relativity
the metric functions are dynamically determined by the
distribution of mass, which itself responds to the metric.
It should not be surprising therefore that the expression
for the Kepler &equency does not resemble the classical
one. Instead it is (cf. Appendix A)

u)(R) ((u(R) )
z- —— 1+

fIrc ( fIrc )
M
R3

2I (2I i
Rs gRs)

M
R3 (6)

B. Monopole-corrected metric

This approximate result has a very interesting struc-
ture, for it shows the classical result modified by a
prefactor. The prefactor leads to a reduction in the
relativistic Kepler frequency when u(R)/A~ ( 2 or
equivalently 4I/Rs ( 1. There is no apparent reason
why this limit must be obeyed, even if in practice it is
(cf. Refs. [5,14,15]). Therefore we proceed to an improved
metric.

2- Z/2

The primes denote derivatives with respect to
Schwarzschild radial coordinate r, and all functions on
the right are evaluated at the star's equator. More than
this, they depend also on O~, so that the above is not
an equation for O~, but a transcendental relationship
which the solution of the equations of stellar structure
must satisfy if the star is rotating at its Kepler frequency.
The frame dragging frequency u(r) satis6es a particular
boundary condition at the equator of the star that has
been written before and is derived in Appendix D.

2v 2M 2J
e "=1— + (7)

while Eq. (4) remains unchanged. Here J = IA is the an-
gular momentum. From Eq. (2) one finds for the Kepler
&equency

(u(R) ((u(R))
O~ —— 1+ &~a-)

Here we carry the analytic investigation one step fur-
ther by taking monopole corrections to the Schwarzschild
metric into account [11,16] (see Appendix B).In this case
Eq. (3) reads

A. Restriction to Schwarsschild metric

To obtain an analytic solution to the problem, we
shall, in a first step, take the metric which corresponds
to that of a static spherically symmetric star, i.e., the
Schwarzschild metric. This will provide a first orienta-
tion. Corrections to this metric will be considered in the
next sections. Thus at the equator we take

2M
R (3)

(4)

2I
(u(r)= —0, r)Rr3 (5)

(where I is the moment of inertia), we are able to write
an approximate solution to the transcendental equation
for O~. namely,

where for our approximate solution to Eq. (2) we take M
to be the mass of the rotating star and R its equatorial
radius. (The second of these equations looks strange,
but we follow an old precedent so as not to introduce
confusion [12—14]. See Appendix A for the general form
of the metric. ) Combined with the condition that outside
the star ur(r) must obey (cf. Appendix D)

2I (2I ) M

)
(8)

The prefactor in Eq. (8) always leads to a reduction of
the Kepler &equency below its classical value because
tu(R)/OJr ( 1. The dragging frequency cannot exceed
the star &equency [ll]. This universal limit is a result of
the improved metric.

It may be of some interest that Eq. (5) places a limit
involving the moment of inertia and radius of a star:

2I
3 &1.

C. Quadrupole-corrected metric

At the level of quadrupole corrections, there are cer-
tain terms that we can investigate only numerically. We
describe this in the Appendix C. For a broad sample of
17 equations of state (see Ref. [5]), the terins not suscep-
tible to analytic analysis are shown to alter the Kepler
frequency generally by less than 3%. So we ignore them.
Then the metric through to quadrupole corrections due
to rotation are
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2M J f 2M,
M, )

(10)

TABLE II. Model-dependent parameters ~, g and the ratio
~(R)/0 all computed in GR. The notation for the equations
of state (EOS's) is from Ref. [4].

J2

where I, is the mass of the star at the mass limit of
the nonmtating and therefore spherical sequence (solu-
tion to the OV equations). After considerable algebra,
an equation similar to those derived above is obtained:

f1~= 1+(1+e)i „ i-(2+~)i „f(u(R)) f(u(R)it

( n~ ) ( n~ )

EOS
L

PALS
D
C

PAL3
FP
F
A

8
G

E

0.060
0.015
0.028
0.041
0.021
0.061
0.023
0.052
0.063
0.049
0.046

rl

0.074
0.660
0.390
0.232
0.445

—0.013
0.348
0.082

—0.040
0.100

—0.003

ca//Are

0.23
0.10
0,14
0.17
0.13
0.21
0.13
0.20
0.22
0.19
0.20

(& + )/(2 + n)
0.51
0.38
0.43
0.47
0.42
0.53
0.44
0.51
0.54
0.50
0.52

The expressions for e and g are derived in the Appendix
C. For a wide selection of models [4,5,14], we have com-
puted these parameters which we record in Tables I and
II, together with the ratio of frame dragging to Kepler
frequency of the limiting mass star as computed in GR.
The phenomenon of frame dragging causes a reduction
in the Kepler frequency if ~/AIc ( (1+ e)/(2 + g) [ob-
tained from Eq. (11)],which we see is indeed satisfied by
a comfortable margin in all cases.

The results of the above three subsections reduce to
Eq. (1) for a particle in a stable orbit around a static
relativistic star, since in that case ur(r)—:0.

D. Empirical formula

equator A of a rotating star of mass M at the termi-
nation of the stable sequence. The empirical expression
involves the radius and mass of the corresponding spher-
ical nonrotating star [3,4]:

Arc ——ni ' i, n=0. 625. (12)

Elsewhere we have shown how the M/R term in (11) is
reduced to this 6nal form by accounting for the radius
and mass augmentation due to rotation [5].

TABLE I. Model-dependent parameters e, g and the ratio
u(R)/0 all computed in GR. The last column is the limiting
value of the ratio that leads to a reduction in Kepler frequency
due to frame dragging.

Label
1
2

3
4
5
6
7

9
10
11
12
13
14
15
16
17

0.031
0.040
0.025
0.022
0.035
0.021
0.049
0.026
0.029
0.078
0.084
0.050
0.078
0.087
0.119
0.128
0.073

0.356
0.110
0.358
0.448
0.191
0.468
0.058
0.388
0.318

—0.209
—0.217
—0.024
—0.102
—0.234
—0.415
—0.418
—0.201

&u/QIr

0.17
0.20
0.16
0.15
0.19
0.15
0.22
0.16
0.17
0.28
0.29
0.22
0.27
0.29
0.35
0.36
0.27

(1 + ~)/(2 + ~)
0.44
0.49
0.43
0.42
0.47
0.41
0.51
0.43
0.44
0.60
0.61
0.53
0.57
0.62
0.71
0.71
0.60

These labels refer to the equations of state of Ref. [5].

We have shown above how the effect of frame dragging
on the Kepler frequency can be expressed as a factor,
slightly model dependent, times the classical expression
for the balance between gravity and centrifuge at the

III. SUMMARY

In this work we showed that the dragging of local in-
ertial frames caused by the rotation of any massive star
reduces its Kepler (mass shedding) frequency relative to
the Kepler period of a satellite in a circular orbit around
a nonrotating star, contrary to the intuitive expectation
that naturally follows from the fact that the centrifugal
force on fluid elements of the star is determined by the
frequency of the star relative to the local inertial frames
which are dragged in the direction of the star's rotation.

This counterintuitive behavior can be understood
mathematically as following from the fact that Eq. (2)
is not a formula for O~, but a transcendental equation,
in which all quantities on the right depend also on O~
and on ur(r). Thus to say that the centrifugal effect on
a fiuid element of the star at r depends on Qrc —u(r),
while true, does not inform us that there is a eduction
in the centrifugal effect with corresponding increase in
the Kepler frequency. We mention that this counterin-
tuitive behavior of the role of kame dragging, though
a peculiar effect of rotation, has nothing to do with the
still more bizarre "change in sign of the centrifugal force"
in the vicinity of black holes, which, as the discoverers of
this latter effect emphasize, has nothing to do with frame
dragging since it holds for a satellite in orbit around a
Schwarzschild black hole [1,2].
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which, in other words, is the expression for the rotational
&equency of a massive particle rotating in a stable orbit
of constant radial distance, i.e., r = R ~ and 8 = w/2,
&om the star's origin. For its evaluation, knowledge of
V is necessary. The relevant mathematical expression
for V will be derived now. Since the particle path is a
circular orbit, we can determine V simply as the extremal
of ds2(t, r, P), i.e., ds/dr = 0. From Eq. (Al) one obtains

@I 2vV2 I Q+vV I 2v (A6)

APPENDIX A: KEPLER FREQUENCY IN
GENERAL RELATIVITY

We are interested in models of compact stars that are
uniformly rotating, axisymmetric Quid configurations.
Therefore the spacetime is stationary and axisymmetric,
which corresponds to respectively time translation and
rotational symmetry. The line element can be written as
[17,14,18]

2 2v(r, S;A)dt2 + 2'(r, s;0) [dy ( 8. 0)dt]2
2p(r, 8;0)gg2 + 2A(v, 8;0)d 2 (Al)

As a consequence of the underlying symmetries, the met-
ric functions v, Q, y, , and A are independent of t and P.
The function ~(r, 8;0) denotes the angular velocity of
the local inertial &ames (dragging of the local inertial
&ames). As indicated, it depends on the radial coordi-
nate r and the azimuthal coordinate 8, and is propor-
tional to the star's rotational velocity O.

The &equency 0 is assumed to be constant throughout
the star's Quid. The frequency ur(r, 8;0) = 0 u(r, 8;—0),
which is the star's rotational &equency relative to the
frequency of the local inertial frames, is the one on which
the centrifugal force acting on the mass elements of the
rotating star's Quid depends [ll]. It is this &equency
relative to which the Quid inside the star moves.

From Eq. (Al) one finds, for a material particle rotat-
ing at the star's surface (constant r and 8 coordinates),

where, according to Eq. (A4),

dP —u dt = (0 —ur)dt = Ve" ~dt .

Equation (A6) constitutes a quadratic equation in the
equatorial velocity V. Its solutions are

(A7)

The solution V+ corresponds to corotation, which is
the desired one in connection with the stability of the
star to mass shedding. The other solution corresponds
to a counterrotating satellite at its Kepler &equency.

In summary, Eqs. (AS) and (AV) are to be solved si-
multaneously in combination with the stellar structure
equations by means of a self-consistent iteration proce-
dure in order to find the general relativistic Kepler &e-
quency of a rotating star model of given central density
[14,15].

APPENDIX B:MONOPOLE CORRECTION TO
THE METRIC

For our purpose we recall only the metric functions v
and vP occurring in Eq. (Al). These are given by [11,16]

2a (~,8;0)

(dy
gdr) ~dr dr) (A2)

= e (")(I+ 2[ho(r; 0) + h2(r; 0)P2(cos8)]), (Bl)

For the purpose of brevity, the arguments of the functions
here and in the following are omitted. From u& = Ou,
where u~—:dP/dr and u~ = dt/dr, one obtains dP/dr =
0dt/dr. Thus the time component of the particle's four-
velocity is given by

2Q(v, 8;0)

sin 8(1+2[@2(r;0) —h2(r; 0)]P2(cos 8)), (B2)

where

dt e

dr gi —V2 ' (A3) (B3)

where

V —= e+ (A4)

denotes the particle's orbital velocity (u" = u = 0).
Equation (A4) serves to express the star's rotational &e-
quency in terms of V and the frame dragging &equency,

0 = e" +V+co,

The functions h~, m~ (l = 0, 2), and us of Eqs. (Bl)
and (B2) stand for the monopole and quadrupole per-
turbation functions, and the quantity I2 is the second
order Legendre polynomial, P2(x) = (3+2 —1)/2. In
the nonrotating limit, the perturbation functions vanish
identically, and the metric functions reduce to those of a
Schwarzschild star.

The monopole function ho is given by
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24(r)h
( )

LM J2
+ —,r&B.4

By means of the empirical formula of Eq. (12) one ob-

tains, for Eqs. (C3) and (C4) (a = 0.625 g2/5),

Neglecting the quadrupole perturbation functions in
Eqs. (Bl) and (B2), one obtains, for the metric functions
at the star's equator,

2 ( bR) ( 10M i ((u(R)i
5 ( R, ) 1 4 R) I OK) (C5)

(B5)

(B6)

The quantity b,M in Eq. (B4) denotes the mass increase
of a rotating star caused by rotation; J (:—IO) refers to
the star's angular momentum.

r)= —
I
1+

I
1+420( R, )

16M. I (~(R))'
+7 1+—

7 R) qO~)
3( 5M, 1R)

+6 R 4M)l (C6)

APPENDIX C: QUADRUPOLE CORRECTION
TO THE METRIC

The quadrupole functions h2 and vq of Eqs. (Bl) and
(B2) are given by

with the definition AB = B—B„where R, denotes the
radius of the nonrotating maximum-mass star.

APPENDIX D: FRAME DRAGGING
FREQUENCY' AT THE EQUATOR

OF A ROTATING STAR

h2(r) = —,
I
1+

I
+ AQ22I —1 I, r ) R,

J'( r ),(r
M, ) ' (M.

Ql —2M, /r (Ms

(Cl)

We derive the expression for the frequency of the lo-
cal inertial &ames, ~, at the equator of a rotating star,
which rotates with &equency O. The result is accurate
to order O(J/r4) [17], where J denotes the star's angu-
lar momentum (cf. Appendix B). We begin by deriving
an expression for the moment of inertia of a stationary
rotating, axisymmetric, relativistic star in equilibrium.
Under these restrictions, the expression for the moment
of inertia is given by [19]

r ) R. (C2)

The quantities Qzi and q22denote associated Legendre
polynomials of the second kind, and A is a constant [11].

As mentioned in Sec. IIC, at the level of quadrupole
corrections there are terms in the metric that can be
investigated only numerically. These are the expres-
sions proportional to the associated Legendre polynomi-
als. From a numerical study we Gnd that these mod-
ify the value of the general relativistic Kepler &equency,
Eq. (2), by less than 2—

3%%uo, depending on the equation
of state. Ignoring them, the auxiliary functions ~ and q
occurring in Eq. (11) are given by

I(A, O):—— dr dedPTs g g. —1
(Dl)

In the above equations, A denotes an axially symmetric
region in the interior of a body where all matter is ro-
tating with the same angular velocity O. The quantity
g refers to the determinant of the metric tensor. For the
metric of Eq. (Al), one finds [cf. Ref. [20] for details, ex-
cept for sign convention errors, so that the (e+ P) terms
of Eqs. (12), (13), (17), and (18) should have their sign
changed. Also, the upper and lower indices on 7 should
read as in this paper. Final result for I in both papers is
correct. )

e= —
I
1+ — IRsr (R),5(

2|, 5M) (C3) A+p+v+Q (D2)

r) = e+ 2 I
1+ —

I
R u) (R), ( 1R't, , ( O2~

4M, ) (~2 R
3( 5M. 1Ri
2i 6R 4M)

j~ = (~ + P)u (r, O)e +("'")

x[e "("")—(u(r O) e +("'")] (D3)

The expression for the moment of inertia of Eq. (Dl)
then leads to

m /2 R(8) A(r, A)+P(r, B)+v(r,B)+@(r,B)
[& + P(&)] ~(r O)

e2v(r, A) —2@(r,A) g(r O)2 O
(D4)
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which reads, in the case of a rotationally nondeformed
star,

R
J = IA = — dr r u (r, O)e

o gl —2m(r)/r

(Ds)

The quantity J denotes the star's angular momentum.
From the field equation Rso ——Sz'Ts, one obtains a dif-
ferential equation for & [11]:

which is used to Bnd

4 .dQ) =6J, ~=R,
dr

(D9)

from Eq. (D6). Throughout, B is used to denote the
equatorial radius in the case of a rotating star and sim-

ply the radius of a nonrotating spherical star, when no
confusion would arise; otherwise, in the latter case, R, is
used. Here use of Eq. (D5) has been made Fo.r r ) B
one has j = 1, and one obtains, from Eq. (D6),

d t'4. der l sdjr—
~
r'J(r) +4r' u(r) =0, r &B, (D6)dr g dr & dr

A~ = ——+B.r3 (Dlo)

where

x/z

'() = -' i'I-' (""i

From Eq. (D7) it follows that

(D7)

Since 2 ~ Q for r + oo (frame dragging vanishes at
infinity), one gets B = O. To determine the constant A in
Eq. (D10), we compute kG/dr from Eq. (D10) and make
use of Eq. (D9), evaluated at r = 8, leading to A = 2J.
Thus the angular velocity of the dragged inertial frames
at the star's equator is given by

4n'r(e +—P)e /gl —2m/r,dj= —4
dT (DS)

2I O. (Dll)
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