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In this paper we consider wormhole solutions for the action of "special Lovelock gravity" recently dis-

cussed by Banados, Teitelboim, and Zanelli. This action is, in odd dimensions, the Chem-Simons form
for the anti-de Sitter group and, in even dimensions, the Euler density constructed with the Lorentz
part of the anti-de Sitter curvature tensor. We present a systematic study of classical wormhole solu-

tions in the special Lovelock theory with various matter content, including a perfect fluid energy-
momentum tensor, axionic field, and conformal scalar field.

PACS number(s): 04.20.Jb, 04.50.+h, 11.10.Kk

I. INx RODUcTION

The study of field equations in more than four dimen-
sions has received a great deal of attention in recent
years. The five-dimensional monopole solution has been
explicitly constructed by Sorkin [1]and Gross and Perry
[2] by embedding the Taub-NUT (Newman-Unti-
Tamburino) gravitational instanton [4] into five-
dimensional pure Kaluza-Klein theory. In recent years,
we have extended this construction to higher-dimensional
Kaluza-Klein theories [4]. We have exhibited new classes
of instanton solutions to the empty space Einstein equa-
tion [5]. On the other hand, the multidimensional gravity
Lagrangian could contain an arbitrary number of terms,
consisting of the invariants which can be constructed
from powers of the Riemann curvature tensor. Especial-
ly, the Lagrangian can be formed by a linear combination
of dimensionally extended Euler densities [6], which can
be considered as the topological generalization of the
Hilbert-Einstein Lagrangian. This generalization is often
called "Lovelock gravity" [7]. Moreover, the classical
dynamical equations associated with the Lovelock La-
grangian are of the second-order field equations.
Zwiebach [8] and Zumino [9] have shown that, if the
low-energy limit of the supergravity obtained from string
theory is to respect unitarity, the corrective terms have to
be set in groups giving rise to these Euler densities in
such a way that they would lead to ghost-free nontrivial
interactions. Static spherically symmetric solutions for
the Lovelock theory have been studied by several authors
[10]. However, in those references no choice of Lovelock
coeScients is made, making it diScult to extract physical
information from the solution. Recently, the black hole
solutions have been studied in Lovelock theory with a
special choice of coefficients [11]. The action is, in odd
dimensions, the Chem-Simons form of the anti —de Sitter
group and, in even dimensions, the Euler density con-
structed with the Lorentz part of the anti —de Sitter cur-
vature tensor [11].

There is much attention at present being focused on
the problem of wormholes, which are D-dimensional Eu-
clidean metrics that consist of two large asymptotically
Euclidean regions joined by a narrow throat. It is be-

lieved that the wormhole might play an important role in
the theory of quantum gravity. The possible conse-
quences on low energy physics compared with the Planck
scale are the possible loss of quantum coherence [12] or
an additional indeterminacy in the constants of nature as
Coleman argued [13]and the mechanism of setting down
the natural constants, especially the cosmological con-
stant [14]. Since the work of Giddings and Strominger
[15], many wormhole solutions have been constructed
such as axion fields [15], scalar fields with or without
spontaneous breaking of global U(1) symmetry [16],
Yang-Mills fields [17], and the coupled theory [18].
Wormholes in the Skyrme model [19], in string theory
[20], in higher-derivative gravity theory [21], and in
higher-dimensional spacetime [22] have also been investi-
gated.

In this paper, our goal is the study of the wormhole
solutions in Lovelock theory with the specialized
Lovelock coefBcients. This could open a way to solve the
problems of Lovelock theories: for example, (i) the ex-
istence of several families of classical solutions allows the
system to jump from one family to another in a random
way [23], (ii) the multivaluedness in the inversion of the
relation between the metric time derivatives and their as-
sociated momenta [23,24], and (iii) the existence of initial
data sets for which the Cauchy problem is ill posed, lead-
ing to an unpredictable evolution [25]. All of this sug-
gests that a special choice of the arbitrary coeScients
should be made. The choice proposed here produces a
unique solution, which are D-dimensional Euclidean
metrics that consist of two large asymptotically Euclide-
an regions joined by a narrow throat. It is shown that the
Lovelock corrections preserve the essential feature of
Einstein gravity models of giving rise to an essentially
unique wormhole solution. The outline of this paper is as
follows. In Sec. II we introduce the equations of motion
for an homogeneous and isotropic metric in the special
Lovelock theory. In Sec. III we consider the generalized
Tolman wormhole solutions. Section IV deals with the
axionic wormhole solutions. The wormhole solutions
with conformal scalar fields are studied in Sec. V. The re-
sults are summarized in Sec. VI. The Appendix contains
the calculation of the existence of a throat.
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II. EQUATIQNS OF MOTIQN

The Lovelock gravitational action for a D-dimensional manifold M can be expressed
[(D —1)l'2]

g ~ ~ C p 1q!
) 2A. . . Ag 2m —( 2mAe 2m+(A. . . e D

D ~ m a1 - aD
m=0

(2. 1)

Here e' is the D tetrad associated with the manifold M and Rb =des&+co,'Acerb is the corresponding curvature two-
form, and cob is the spin connection, a;=[0,1, . ..,D —1 j, and e, . . . , is the Levi-Civita tensor. The coeScients C

1 D

are arbitrary real constants; [x] is the integral part of the x. As the first term in (2.1) must correspond to the Hilbert-
Einstein Lagrangian, we take

1Ci=
16m.GD

(2.2)

with GD the D-dimensional gravitational constant. GD must not be confused with the efFective four-dimensional gravi-
tational constant for universes in which D —4 dimensions are compactified. In any case, assuming all Lovelock terms
(m ) 1) to be corrections to the Hilbert-Einstein action in low energy limit, one must require C, to be positive; other-
wise, the gravity theory would not be attractive in the limit.

In this paper, we take the metric of D-dimensional isotropic spacetime to be

ds =de +a (r)dQ (2.3)

where r is the Euclidean time, a(r) is the scale factor, and d QD, denotes a line element of the unit (D —1)-sphere. D
dimensional anisotropic spacetimes, which could eventually lead to compactification of the extra D —4 dimensions, will
be considered elsewhere.

Lovelock theory with the special choice of coefBcients was recently discussed by Banados, Teitelboim, and Zanelli
(BTZ) [11]. In odd-dimensional spacetime (D =2n —1), it is possible to construct a Lovelock Lagrangian invariant un-
der the anti —de Sitter group by making a certain choice of the coefBcients C . The construction method is very similar
to the Chem-Simons action in three-dimensional spacetime. The idea of embedding D-dimensional gravity into
SO(D, 1}was also discussed by MacCarthy and Pagels in the case D =4 [26]. The particular form can also be found in
Ref. [27] and was earlier used in Ref. [28]. Following BTZ, one has

n —1 K

m=0

n —1
D+2m+ R A ' ' ' PR 2m —1 2mge 2m+lg. . . Pe P

1 D
(2.4)

where I is a length.
There is no analogue of the Chem-Simons action in the even-dimensional spacetime (D =2n). It is necessary to

break the full anti —de Sitter symmetry SO(2n, 1 ) in order to produce a nontrivial action [29]. The Lagrangian can be
written as

n —1

m=0
l D +2m& R 1 2P. . . PR 2m 1 2mge 2m+1'. . . Pe 2n

1 D
(2.5)

which may be regarded as the gravitational analogue of the Born-Infeld Lagrangian [11]. Equations (2.4) and (2.5) are
both the special case of the Lovelock Lagrangian in Eq. (2.1). Taking the homogeneous and isotropic metric (2.3), the
action (2.1}becomes

S= AD )(D —1)!gC J dt a ' [(D —2m)(1 —a )
—2maa(1 —a ) '], (2.6)

where AD (=2&i /I (D/2) is the area of the unit
(D —1)-sphere. From action (2.6) we can get the equa-
tion of motion as

m —1
2

G,',,=(D —2)!

[(D —
& )/2]

C (D —2m)G( ) b=T b

where

(2.7) a 1 —aX 2m ——(D —2m —1) 5',
0 J (2.9)

Pfl

1 —a
G 0

= (D —1)!—
(m) 2

(2.8) and i,j = 1,. . . ,D —1; and the specialized Lovelock
coe%cients are
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a (~)=H . (3.6)

D —2m
Cm

I
—D+2in D 2g 1m

8
I
—D+2m

m 7

From Eq. (2.2), we have

K—

in-'(D —2)
16m 6(n —1) '

ID —2

16mGn
'

HI. TOLMAN WORMHOLE

(2.10}

(2.11}

Therefore, we have indeed found wormhole solutions
which are a generalization of a Tolman wormhole in D-
dimensional spacetime.

B.Lovelock-Tolman wormhole

for the state equation p =0

Next we consider the generalized Tolman wormhole in
the specialized Lovelock theory in which the Lovelock
coeScients are chosen as in Sec. II. Taking Eqs. (2.6),
(2.8), (2.9), and (3.2) into account, the equation of motion
reduces to

A. I@dimensional Tolman wormhole in Einstein theory

It is well known that the simplest wormhole is the Tol-
man wormhole [30] which is a Euciideanized version of
the closed Tolman universe [31]. The D-dimensional Tol-
man wormhole solution of Einstein theory could be de-
rived as follows. The Einstein equation reads

1 —a
(D —I)!gC (D —2m)

m a
=P s

Nl 1

1 —a
(D —2)!gC (D —2m)

Nl a

(3.7)

Rab &Rgab =87rGT+b, a, b =0~ 1~ D 1 (3.1)

where T,b is the perfect fluid energy-momentum tensor,

a 1 —aX 2m —(D ——2m —1)
a a

(3.8)

T b =Pg b (p+P) U Ub (3.2)

where p is the pressure, p is the energy density, and U, is
the D velocity of the perfect fluid normalized by the con-
dition U, U'= 1. Taking Eqs. (3.1) and (3.2}into account,
the Einstein equation reduces to a =1+~ 2

1

2 '2 2/(, D —1)
ao S~GI'po

I (D —2)!(D—2)

Using Eqs. (3.7) and (3.8), we have pa '=const for
the state equation to be matter dominated. In the case of
odd dimensions, the first integral gives

—,'(D —1)(D —2)(a —1)= Sn Ga p, — (3.3)
(3.9)

(D —2)aa+ '(D —2)(D —3)a ———,'(D —2)(D —3)

=SnGa p . (3.4)

where ao=a(0) is a constant, and po=p(0) is also a con-
stant which will be interpreted as the energy density at
~=0. From Eq. (3.9), we have

Now we take the state equation to be radiation dominat-
ed, or matter dominated; then the first integral gives

a =1-' 2 ap
D —2

for p=(D —1)p,

a =1~ 2

D —3
'ao

for p=O,

(3.5)

where ao =a(0) is a constant which will be interpreted as
the radius of the wormhole. For either case of the state
equation in any dimension, when ~=O, a =O, a =ao, we
have a &0 which means a; exists. In the limit of
v~ ao, we have the asymptotic solution

-].s —0.6 0.6

FIG. 1. The numerical solutions of the state equation p =0
case in the Lovelock theory, corresponding to a;„=I and
8eGI p0=200l9.
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a= —ye' —y
' '1—

2

2 2ao 8mGl po

I (D —2)!(D—2)

2/(D —1)

(3.10)

where

aoy= +
I

ao
2

8m'Gl Po

(D —2)!(D—2)

2/(D —1)
0

l

2 1/2

(3.11)

Taking ~=~, as

ao

I
v. =—ln

2
8~Gl po

(D —2)!(D—2)

' 2/(D —1)

(3.12)

8+Gl Po

(D —2 }!(D—2)

ao

l
a(s, )=1'

we find the radius of the wormhole a;„=a(~,):
2 2/(D —1 ) —1/2

(3.13)

In the case of even dimensions, the first integral gives

'2 2 2
a a 8~Gl po ao

a =1+
l l (D —1)! a

D —1 2/(D —2)

(3.14)

In principle, Eq. (3.14) can be integrated since this equation is a separable equation for first order. The numerical calcu-
lations are shown in Fig. 1. When r= r, and a(v., ) =0, we can show ii )0 which means a;„exists (see Appendix). The
radius of wormhole a;„=a(r, ) is satisfied with the algebra equation as follows:

amin
2

a min

8~Gl2po ao

(D —1)! l

D —1 2/(D —2)

(3.15)

In the limit of r +00, we hav—e the asymptotic solution of Eq. (3.14):

a(r)=l sinh —.
l

(3.16)

Therefore, we have indeed obtained wormhole solutions which are a generalized Tolman wormhole in D-dimensional
spacetime.

C. Lovelock-Tolman wormhole for the state equation p=(D —1)p

2 D
aGl po ao

(D —2)!(D—2) a
D 2/(D —2) (3.17)

Using Eqs. (3.7} and (3.8), we have pa =const for the state equation to be radiation dominated. In the case of odd
dimension, the Srst integral gives

2 2 2/(D —1)

a =1+-2 for D =2n —1,
l l

2 ' 2
a a ~ Po ao

a =1+ for D =2n .
I 1 (D —1)! a

The equation of the radius of the wormhole is

amin
2

l
2/(D —1)

amin

8mGl po ao

(D —2)!(D—2) I

D 2/(D —1)

=0 for D =2n —1,

1+ mina

I amin

877Gl 2 aPo ao

(D —1)! I

D 2/(D —2)

=0 for D =2n .

(3.18}

In either case, when r=r, and a(r, )=0, we can show ii & 0 which means a;„exists and a;„=a(r,) (see Appendix).
In the limit of v~00, we have the asymptotic solution a(~)=1 sinh(~/l). Therefore, we have indeed obtained
wormhole solutions which are also the generalized Tolman wormhole in D-dimensional spacetime.



50 DIMENSIONALLY CONTINUED WORMHOLE SOLUTIONS 3791

IV. VVORMHOLE SOLUTIONS %'ll H AN AXIONIC FIELD

The axion is a prediction of the most elegant solution to the strong-CP problem of quantum chromodynamics,
Peccei-Quinn symmetry. If the axion does indeed exist, it has important astrophysical and cosmological implications.
In this section we will discuss the wormhole solutions in Lovelock theory with a spherically axionic field. We consider
the model which contains a (D —1)-form antisymmetric tensor field H. The action for axionic field is

Sm„= HA+ H, (4.1)

where ~ is the Hodge dual, and f is the Peccei-Quinn scale. The (D —1)-form field is defined as H =d8 so that dH =0.
In writing down the action we have omitted the possible topological term and surface term which are irrelevant to the
solutions discussed below. The action for the model is

s=s~„+s „,
where St „is defined in Eq. (2.1}. The field equations could be derived by using the method of variation:

(D —1)/2
C (D —2m)G&~&, b=f [(D —1)H„d.. . ,Hb

' '
2g,sH—,d. . . ,H' '],

m=0

If we take (D —1)-form field H to be

+a —1

H=
2 D 1 cij . kdx'Adx A Adx~ ~ ~

(4.2)

(4.3)

(4.4)

(4.5)

where p, is a constant, i,j=1, . . . , D —1, and ao is a constant which will be interpreted as the initial value. It is easy to
prove that the H equation dH =d e H =0 is satisfied. Considering the metric (2.3) and Eq. (4.5), the equation of motion
(4.3) could be reduced to

m

gC (D —2m)
m a

2g 2D —2Pao
~2 2D —2J" a

(4.6)

gC~ (D —2m�)

'm —1

1—6
g 2

a 1 —d
2m ——(D 2m —1—)

a Q
2

(D 1 )p2g 2D —2

~2 2D —2
y Q

(4.7)

In the case of odd dimensions, we have the first integral
4

2 2
2/(D —1)

1+ a
1

uo 8(D —1)n Gp, I

(D —2}f'
where ao=a(0) is a constant. From Eq. (4.8), we have

(4.8)

&«)=—Pe"'+ 1+4I ao

2 I

where

4
2 2

2/(D —1) 1/2
8(D —1)mGp, I

(D —2)f
(4.9)

2
aop=lt2 t2
I

If we take ~=~», and

~ 4
ao ao

I I

'2
Qo

I

'4
2 2

2/(D —1) 1/2
8(D —1)nGp, I

(D —2)f
(4.10)

2 2
2!(D—1) '

I
1 1t4( ~I)4 8(D 1)nGp, I—

4 (D —2)f

1 1+—
4 2

In the case of even dimensions, the first integral gives
2

' 2D —2 2/(D —2)
a 8~Op, I ~o

I f2 a

then a(r, ) will be interpreted as the radius of the wormhole. We have
'4

2 2 2/(D —1) ' 1/2 1/2
~0 8(D —1)mGp I
I (D —2)f

(4.11)

(4.12)

(4.13)
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(4.14)
amin

When r =r, and d (r, )=0, we can show (2 (r, ) )0 which means a;„exists (see Appendix). The radius of the wormhole
(2;„=a(r,} is satisfied with the algebra equation as follows:

' 2 - - 2D/(D 2)
' ' 2D —2 2/(D —2)

1 8mGP 1 o

1 f2

In the limit of r~ 00, the asymptotic solution of Eq. (4.13) is a (r) = l sinh(r/l). So we indeed have obtained dimension-
ally continued wormhole solutions.

V. WORMHOLE SOLUTIONS WITH A CONFORMAL SCALAR FIELD

The action of a scalar field conformally coupled to the Hilbert-Einstein term can be written as

S „=fd xv'g [ ,'(a—~)2+qqZ]. (5.1}

For a spherically symmetric scalar field, we take /=a' '~
qr; the field equation could be derived by using the

method of variation:

[(D —i)/2] 1 (D 2)2
C (D —2m}G( ),b=

D f ag—
m=0 aD

d . (D —2)2
a ((2f)— /=0 .

d~ 4

The general solution of Eq. (5.3) can be written as

(5.2)

(5.3)

D —2 D D —2
f(rl) =aao sinh il +PaoDcosh (5.4)

where rl is the conformal time, i.e., dry=dr/a Using E. q. (5.4), the Lovelock-Einstein equation could be reduced to

(P —a )(D —2) ao
(D —1)!gC (D —2m}

a 4aD
(5.5)

'm —1
~ 2

(D —2)!gC~ (D 2m)—
m a

The first integral gives

a 1 —a
2m — (D —2m ——1 )

a a 2

(p2 a2)(D 2)2(2D

4(D —1}aD
(5.6)

2 T '2 D 2I(D —1)

d =1+

d =1+
2

a
1

2

2nGl (P a)'(D —2)—~o

(D —3)! a
L

2e.Gl2(P2 —a')(D —2)' (2o

(D —1)! a

' D 2I(D —2)

for D =2n —1,

for D =2n .

(5.7)

The radius

amin =0 for D =2n —1,
amin

of the wormhole solution is satisfied with algebra equation as follows:
' 2/(D —1) 2 2 2

D 2/(D —1)
l 2nGl (P —a )(D —2) (2o

(D —3)! 1

a min

'2

a min

4/(D —2)
2n.Gl (P2 —a )(D —2) (2o2

(D —1)! 1

D 2/(D —2)

=0 for D =2n .

(5.8)

In either case, when r=r„and d (r, )=0, we can show
a)0 which means a;„exists (see Appendix). When

the asymptotic solution is a(r) = l sinh(r/l).
Therefore, we indeed have obtained dimensionally con-
tinued wormhole solutions in Lovelock theory with a
conformal scalar field.

VI. CONCLUSIONS

The action of special Lovelock theory is, in odd dimen-

sions, the Chem-Simons form for the anti-de Sitter
group and, in even dimensions, the Euler density con-
structed with the Lorentz part of the anti-de Sitter cur-
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vature tensor. Adding these reasonable restrictions to
the Lovelock coefficient, it is shown that the Lovelock
corrections preserve the essential feature of Einstein
gravity models of giving rise to an essentially unique
wormhole solution. We have analyzed systematicaHy the
wormhole solutions to special Lovelock field equation
with various matter contents, including the perfect fiuid
energy-momentum tensor, axionic field, and conformal
scalar field. We found that the wormhole solutions
indeed exist for these models. A discussion of the con-
nection between the asymptotic forms and other results
would be of interest. The wormhole solutions are well
behaved in spite of the ill posed nature of the Cauchy
problem in the generic Lovelock theory. It is not surpris-
ing. BTZ have shown that the solutions are well behaved
for black holes and for cosmological models with
geometry very similar to that of Eqs. (2) and (3) [28].

In odd-dimensional Tolman wormhole and axionic
wormhole cases, the solutions can be described by ele-
ment functions. In principle, other separable difFerential
equations (3.14), (3.17), (4.13), or (5.7) can be easily in-
tegrated. In practice, the integration is not an element
function. As an example, the numerical integrations are

I

shown in Fig. 1 for D =5, 6, 7, and 8. Discussions could
be easily generalized to other theories and further exam-
ples will be considered elsewhere.
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APPENDIX

L,emma. In the Lovelock theory of D-dimensional iso-
tropic spacetime with the special coeScients (2.14) and
various matter contents, including the perfect fiuid
energy-momentum tensor, axionic field, and conformal
scalar field, the function a(~) will have a minimum at v,
according as the d (r, }=0.

The usual rule for determining minima is to find the
roots of a(r, )=0 and d(r, ))0. We will show that
d(~, }=0 implies a(r, })0. From Eqs. (2.7}-(2.11), we
will have

r

n —1 n —1
12m

mm=0

'm —1

1 —a
a 2

a 1 —d
2m ——(D —2m —1)

a a 2
~0 (D =2n —1), {Al}

or

n —1 n

g (D —2m) 1
m=0

2 m —1

1 —a
Q

2

d 1 —a
2m (D —2m ———1)

a a 2
&0 (D =2n), (A2)

for the various matter contents. In D =2n —1 case, we have

n —1 n —1
12m

mm=0

'm —1

1 —a
a 2

a~ d n —1—=l-
a dl

n —1
I 2m

m

'm —1

1 —a a
a 2

2—2I2 1+$2
Q

n 2
a

(A3)

and

n —2= g 2(n —1} 12

m

n —1 n —1 ~ 2
'm

g (D —2m —1) 1

m=0 m a2

n 2

'n —1
~ 2

+2(n —1 }12"
a 2

r

'n —1

1 —a=2(n —1) 1+1
Q

2

When r=a~ and d (r, ) =0, using (A3) and (A4), we have

+ I2n 2 (A4)

a
a{~,}~

~
~ 1+

I2 a min a min

2 n 2 n —1
I I

Qmin

2 n 2

&0. (A5}

Using the relation

(D —2m)
m

=2n
m

{A6}

the proof of the D =2n case is similar to that of odd dimensions.



3794 XIN-ZHOU LI 50

[1]R. Sorkin, Phys. Rev. Lett. S1, 87 (1983).
[2] D. J. Gross and M. J. Perry, Nucl. Phys. B226, 29 (1983).
[3]A. Taub, Ann. Math. 53, 472 (1951);E. Newman, L. Tam-

burino, and T. Unti, J. Math. Phys. 4, 915 (1963); C. W.
Misner, ibid. 4, 924 (1936).

[4] X. Li, F. Yu, and J. Zhang, Phys. Rev. D 34, 1124 (1986);
J. Xu and X. Li, ibid. 40, 1101 (1989);X. Li, Phys. Lett. B
205, 451 (1988);J. Xu and X. Li ibid. 208, 391 (1988).

[5] J.Xu and X. Li, J. Math. Phys. 30, 1861 (1989).
[6] F. Muller-Hoissen, Phys. Lett. 163B, 106 (1985).
[7] D. Lovelock, J. Math. Phys. 12, 498 (1971).
[8] B.Zwiebach, Phys. Lett. 156B, 315 (1985).
[9]B.Zumino, Phys. Rep. 137, 109 (1986).

[10]J. T. Wheeler, Nucl. Phys. B268, 737 (1986); B. Whitt,
Phys. Rev. D 38, 3001 (1988); R. C. Myers and J. Simon,
ibid. 38, 2434 (1988);D. L. Wiltshire, ibid. 38, 2445 (1988);
G. A. Marugan, Class. Quantum Grav. 8, 935 (1991);
Phys. Rev. D 42, 2607 (1990).

[11]M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. D
49, 975 (1994).

[12]S. W. Hawking, Phys. Lett. B 195, 337 (1987); Phys. Rev.
D 37, 904 (1988); S. B.Giddings and A. Strominger, Nucl.
Phys. $307, 854 (1988); G. V. Lavrelashvili, ibid. B299,
757 (1988).

[13]S. Coleman, Nucl. Phys. B307, 867 (1988).
[14]S. Coleman, Nucl. Phys. B310, 643 (1988); S. Weinberg,

Rev. Mod. Phys. 61, 1 (1989); S. B. Giddings and A.
Strominger, Nucl. Phys. B321, 481 (198&); T. Banks, ibid.
8309, 493 (1988); I. Klebanov, L. Susskin, and T. Banks,
ibid. B317, 665 (1989); J. Polchinski, Phys. Lett. 8 219,
251 (1989); J. Perez-Mercader, ibid. 223, 300 (1989); R.
Brustein and S. P. DeAlwis, ibid. 223, 305 (1989); J.
Preskill, Nucl. Phys. B323, 141 (1989); W. Fischler, I.
Klebanov, J. Pochinski, and L. Susskind, ibid. 8327, 157
(1989); S. Hawking, ibid. B335, 155 (1989); X. Li and Y.
Zhong, Chin. Phys. Lett. 7, 248 (1990).

[15]S. B. Giddings and A. Strominger, Nucl. Phys. B306, 890
(1988).

[16]K. Lee, Phys. Rev. Lett. 61, 263 (1988); B. Grinstein,

Nucl. Phys. $321, 439 (1989); L. F. Abbott and M. B.
Wise, ibid. B325, 687 (1989);J. D. Brown, ibid. B328, 213
(1989); S. Coleman and K. Lee, ibid. B329, 387 (1990); S.
Midorikawa, Phys. Rev. D 41, 2031 (1990); T. Goto and
Y. Okada, Phys. Lett. B 237, 52 (1990); F. S. Accetta, A.
Chodos, and B.Shano, Nucl. Phys. B333,221 (1990).

[17]A. Hosoya and W. Ogura, Phys. Lett. B 225, 117 (1989);
Y. Verbin and A. Davidson, ibid. 229, 364 (1989); Nucl.
Phys. B339, 545 {1990).

[18) A. Das and J. Maharana, Phys. Rev. D 41, 699 (1990).
[19]A. Iwazaki, Phys. Rev. D 41, 3280 (1990).
[20] S. B. Giddings and A. Strominger, Phys. Lett. 230, 46

(1989).
[21]H. Fukutaka, K. Ghoroku, and K. Tanaka, Phys. Lett. B

222, 191 (19&9);P. F. Gonzalez-Diaz, ibid. 233, 85 (1989);
O. Bertolami, ibid. 234, 258 (1990).

[22] R. C. Myers, Phys. Rev. D 38, 1327 (1988); Nucl. Phys.
B323, 225 (1989); G. A. Marugan, Class. Quantum Grav.
8, 935 (1991).

[23] M. Henneuax, C. Teitelboim, and J. Zanelli, Phys. Rev. A

36, 4417 (1987).
[24] C. Teitelboim and J. Zanelli, Class. Quantum Grav. 4, 125

{1987).
[25] Y. Choquet-Bruhat, J. Math. Phys. 29, 1891 (1988).
[26] J. G. MacCarthy and H. R. Pagels, Nucl. Phys. B266, 687

(1986).
[27] A. Mardones and J. Zanelli, Class. Quantum Grav. 8, 1545

(1991).
[28] M. Banados, C. Teitelboim, and J. Zanelli, m J. J. Giambi

agi Festschrift, edited by H. Falomir, R. Gamboa, P. Leal,
and F. Schaposnik (World Scientific, Singapore, 1990).

[29] S. W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38,
739 (1977).

[30] G. W. Gibbons and C. N. Pope, Commun. Math. Phys. 66,
267 (1967); P. J. Ruback, Class. Quantum Grav. 6, L21
(19&9).

[31]R. C. Tolman, Relativity, Thermodynamics and Cosmology

(Oxford University Press, Oxford, 1934), p. 413.


