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Exact solution for scalar field collapse
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We give a class of exact spherically symmetric solutions for the Einstein-scalar field system. The
solutions may be interpreted as inhomogeneous dynamical scalar field cosmologies. The spacetimes
have a timelike conformal Killing vector field and are asymptotically conformally Sat. They also
have black- or white-hole-like regions containing trapped surfaces. The properties of the apparent
horizons are described in detail.

PACS number(s): 04.20.Jb

The gravitational collapse of distributions of matter is
one of the most important research areas in general rela-
tivity. The essential question posed is whether and under
what initial conditions a black hole or naked singularity
forms in the collapse. One of the aims of studying such
problems is to test the cosmic censorship conjecture [1],
one form of which states that gravitational collapse pro-
duces black holes.

A model system for studying this question is provided
by the Einstein equations minimally coupled to a mass-
less scalar Beld. While this full system appears to be
intractable, the simplified set of equations obtained by
imposing spherical symmetry is easier to handle. With-
out any matter fields, the spherically symmetric metric
does not contain any Geld degrees of &eedom. There-
fore, with a scalar 6eld, the system is electively a two-
dimensional 6eld theory and it can be described by a sin-
gle two-dimensional nonlinear difFerential equation [2,3].

There are a number of exact solutions known for this
system, almost all of which are either static or depend
only upon the time coordinate [4,5]. The first nonstatic
solutions were given by Roberts [6] (which are difFerent
from the one we give below). The equations have been
studied in detail by Christodoulou [2] who esta, blished,
among other things, that there exist regular solutions for
arbitrarily long times for particular types of initial data.

The model has also been studied numerically and there
are a number of interesting numerical results. The first
results obtained by Goldwirth and Piran [7] indicated
that there is a class of initial data that leads to black
hole formation. More recently it has been shown by
Choptuik [8] that, for large classes of initial data, there
is critical behavior at the onset of black hole forma-
tion: the black hole mass MBH is given by the equa-
tion MsH = K~c —c,~~, where K is a constant, c is any

1G„„=8wT„„,T„„=Q,„Q,„g„„gl P, Q—,p—, (1)
2

which may be written in the form

R„„=8vrg, „g,„.
The spherically symmetric solution we obtain is

(2)

ds = (at+ b) [—f (r)dt + f (r)dr ]
+R (r, t)(d8 + sin Hdg ),

where

one of the parameters in the initial data for the scalar
field, c, is a critical value of the parameter, and p 0.37
is an exponent independent of the shapes of the initial
data. It has been shown [9] that the same mass formula
is obtained for the axisymmetric collapse of gravitational
radiation. Thus this "critical" behavior appears to be in-
dependent of not only the type of matter fields, but also
the symmetries of the system.

It would be very useful to understand the universal-
ity of this result analytically. A modest approach is to
attempt to find an exact solution describing scalar field
collapse and to see if one can read oH' the critical behavior
by calculating the mass of the black hole.

Here we describe an exact solution for scalar 6eld col-
lapse and discuss some of its properties. While the so-
lution we present does not describe a realistic collapse
corresponding to the asymptotically Bat situation, it ap-
pears to be among the few exact nonstatic solutions
known for this system and has some interesting prop-
erties.

The Einstein-scalar field equations we consider (in
units G=c=1 ) are

f'() =(1-2 i ),
R (r, t) = (at+ b)r (1 —2c/r) (4)
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The scalar field is

P(r, t) = 6 ln[d (1 —2c/r) ~ (at+ b) ], (5)
1

4~~
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where a, 6, c, d are constants, u = 6~3/2, and the overall
sign of P is independent of the sign of a. The parameter
d in the scalar field is a trivial additive constant.

The only Killing vectors of the metric (3) are the three
associated with spherical symmetry. There is also a con-
formal Killing vector field V = 0/Bt such that

a
~Vgpv- at+ b

gp, v.

Asymptotically (r ~ oo) the metric is conformally flat.
Since the spacetime is not asymptotically Bat, it may be
interpreted as an inhomogeneous scalar field cosmology.

The Ricci scalar derived from (3) is

—2 —c1

12ca2(r —c) —3a2r2 f 2c
2r2(at -t b)s ( r )

2c2(1 —az) ( 2c~
+

(at + b)r4
I

r )
which shows that curvature singularities are present at
r = 2c, and at t = b/a for —both values of o..

While (3) is the most general form of our solution, the
ranges of the coordinates and the parameters are coupled.
As a result there are a number of special cases which we
now discuss.

I. a g 0, c P 0. The parameters b, c may be removed
by coordinate transformations, but a cannot. We may
set b = 0, c = 1, and a = kl without loss of generality.
The range of the t coordinate depends on the sign of
a, with 0 & t & oo for a = 1, and —oo & t & 0 for
a = —1. As shown below these two cases correspond
to white- and black-hole-like solutions, respectively, and
simply re6ect the choice of the arrow of time. There is
a spacelike (cosmological) curvature singularity at t = 0
and a timelike singularity at r = 2 [which corresponds to
R = 0 (4)]. The range of r is therefore 2 & r & oo.

II. a P 0, c = 0. The parameter a may be removed by a
coordinate rescaling, and the metric is homogeneous and
conformally Hat with t as the conformal factor. There is
a cosmological curvature singularity at t = 0 as in case I.

III. a = 0, c g 0. The parameter b may be removed
by a coordinate transformation. The metric is now static
and is one of a class of known solutions [4,5]. These
known static solutions, however, have an arbitrary ex-
ponent o, in the function f(r) of Eq. (4), whereas the
present case for our metric gives only the fixed values

o. = 6~3/2. There is a timelike curvature singularity at
r = 2c, so the horizon is shrunk to a point. The metric
is asymptotically Hat.

The parameters a, c are similar to the parameter k
in Priedmann-Robertson-Walker cosmologies, which dis-
cretely distinguishes the spatial curvatures of the metrics.
Here a and c distinguish, respectively, static &om non-
static metrics, and homogeneous from inhomogeneous
ones. The main qualitative features of the above results
are sununarized in Table I.

For comparison with recent numerical work [8,9],
where the scalar field and its time derivative are specified
as part of the initial data on a spacelike hypersurface, we

note that the data for our solution are

P(r, t = t, ) = ln[d(l —2c/r) ~ '(a&o+d)+ ],
1

4 vr

1 3
4'(" '=")=

4(.t, +~)
(8)

The asymptotic behavior of P is

y(r = oo, t = to) = ln[d(ato+ b)+~].
4 7r

(9)

These are not the initial data associated with the stan-
dard collapse situation [8,9], where the data are ingoing
pulses with a specified amplitude and width. The data
are in fact singular at r = 2c, which is why there is always
a curvature singularity at this coordinate value.

The general metric (3) is not static so it is of interest to
investigate the existence and properties of the apparent
horizon(s), if they exist. This horizon is the three-surface
on which outgoing or ingoing null rays are momentarily
stationary. The presence of the horizon indicates that
there are regions containing trapped surfaces, which cor-
respond to black or white holes.

For dynamical spacetimes which are not asymptoti-
cally Hat and contain a cosmological singularity (such as
ours), it is not straightforward to determine the masses
of any black holes. In the absence of a clearly defined
concept of energy, a good measure of the "size" of the
spherically symmetric black hole is given by the proper
radius of the apparent horizon, R~H. In general this ra-
dius will vary from one spatial surface to the next, but it
provides a definite mass at late times if limq~ R~H(t) =
constant. This provides one motivation for studying the
evolution of RAH for non-static spacetimes, regardless of
their asymptotic properties.

TABLE I. Summary of spacetime properties. The parameter 6 and the value of o. do not affect
these properties. There is a spacelike singularity at t = 0 for the nonstatic cases.

—1

Nonstatic
future AH
black hole
timelike singularity
atr=2

Static
timelike singularity

at p=2

Nonstatic
conformally Hat

Nonstatic
past AH
atr=2

atr=2
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The apparent horizon surface is given by

g R, Rp ——0.nP (10)

time (AH)

For our metric this gives the following equation for the
radial coordinate of the apparent horizon r(t) on a given
time slice:

2
[r——c (1 + a) j (1 —2 c/r)at+ b r2

dt & 2c1
t~ = ———6 1 —— (12)dr ( r)

this ratio for our metric (with a g 0) is

t~H„(1—2/r)
2l1 —(1+~)/rl'

The magnitude of this ratio is always less than or equal to
one. The apparent horizon is, therefore, always spacelike,
except at particular r values where it is null. These values
are r = 2 danr = 2.16 for a = ~3/2, and r = 2 for
n = —y5/2. As r -+ oo, this ratio tends to 1/2. At the
apparent horizon the scalar field is not singular. Also,
we see from (12) that for both values of a the light cones
open up to a slope of +1 as r -+ oo (since the metric is

(13)

time (AH)

This equation has no nontrivial solution for a = 0 which
corresponds to the static metric (case III above), whereas
for a g 0 there is always an evolving apparent horizon.
Since (11) is dificult to invert to get r~H(t), in the fol-

lowing we will instead consider it as an equation t~H(r)
which gives the time surface on which a given value of
r is the radial coordinate of the apparent horizon. It is
not possible to write (ll) in terms of the proper radial
coordinate R, except for large r (or t), in which case
RAH 2C

The apparent horizon can in general be spacelike, null

or timelike in diferent spacetime regions. This is easily
determined by calculating the ratio of the slopes of the
apparent horizon and the outgoing null ray. Since the
null rays are given by

1.5

0.5

Proper radius(R)

F&G. 2. The apparent horizon for a = —~ and c = 1 5 = 0.

conformally Minkowski in this limit).
Figures 1 and 2 are plots of tAH as a function of the

proper radial coordinate R for a = +~3/2 and a = 1 for
the nonstatic metrics I. We now describe the horizons
for each case.

o. = —~3/2. The light cones collapse to a horizontal
line at R = 0. There is only one intersection of the
spatial t surfaces with the apparent horizon curve, and
hence only a single horizon on each surface.

a = ~3/2. The light cones are collapsed to a vertical
line at R = 0. The behavior of the apparent horizon is
more interesting. The apparent horizon curve intersects
some spatial surfaces of constant t more than once and
gives the appearance of "multiple" horizons for particular
ranges of t. On such surfaces there are "domains" of
alternative trapped, norxnal, and trapped regions as the
coordinate R increases. In time sequence, a single horizon
forms and grows monotonically. Soon after, there is a
"pair creation" of horizons at t 3.3 and R 5.5. One of
these shrinks and annihilates the first horizon at t 7.2,
and thereafter only one horizon remains. It is interesting
that this pair creation and annihilation seems to occur
when the ratio (13) is zero. The cause of the trapped
and normal domains is a particularly nonuniforxn radial
distribution of the scalar field energy density for this a
value. Figure 3 shows a three-dimensional cross section

Irne
)&

R=O

2.5 7.5 12.5 Proper radius(R)

FIG. 1. The apparent horizons for a. = +~ and
c = 1, b = 0. The light cones (whose slopes are not to scale)
illustrate the spacelike character of the horizon. The singular-
ities are at R = 0 and t = 0. The trapped white-hole region
is t ( tAH.

t=o

FIG. 3. A three-dimensional cross section of the apparent
horizons of Fig. 1 (on a contracted proper time scale). The
initial horizon extends down to R = 0, t = 0.
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(14)

along future pointing null directions orthogonal to the
spheres, one can determine whether the apparent hori-
zon is past or future, and inner or outer, and what re-
gion is trapped. (See for example Ref. [10] for a general
discussion of apparent horizons. )

The expansions Hy of the area two-form
R2(r, t) sin 8 d8 A dP of the two-spheres are defined by

l'.) ~ ——Hy(u, (15)

where 8 denotes the Lie derivative and

0 2 0+ f2
Bt Br

8 2 t9t, f2
Bt t9T

(16)

are the outgoing and ingoing future pointing null direc-
tions. For a ) 0 (so that 0 & t & oo), we find

(17)

with t&H as given in Eq. (11). Thus it is the ingoing ex-
pansion 8 that vanishes at the apparent horizon, while
the outgoing expansion is 8+ ——2/tAH ) 0 at this hori-
zon. This implies that it is a past horizon. For a given
value of r, the symmetry two-spheres are trapped sur-
faces for t ( t~H, since this is the region where both the
ingoing and outgoing light rays have positive expansions
(the white-hole region). Similarly, the region t ) tAH is
a normal region where the outgoing light expansion (8+)
is positive and the ingoing one (8 ) is negative.

We note also that if «+8 [AH ( 0 the horizon is an
outer one (otherwise it is inner). For our metric (3), we

of the apparent horizon surface.
This "multiple" horizon situation is somewhat reminis-

cent of the Reissner-Nordstrom solution, except that for
the latter the horizons are everywhere null, whereas the
apparent horizon for our solution is everywhere spacelike
except at R = 0, 4.3 where it is null. However, the anal-

ogy cannot be carried too far since our spacetime has no
Cauchy horizons.

It is of interest to note a number of other features of
the apparent horizon. By computing the expansions of
the spacelike symmetry two-spheres

ds = B (r, t)(d8 + sin 8dg )

tAH, r«, 8-[AH = t~„
Prom (13) it follows that this is always less than or equal
to zero. It is zero at those points where tAH(r) is null.
Thus, according to this criterion (which distinguishes for
example, the inner and outer horizons of the Reissner-
Nordstrom spacetime), the horizon is an outer one. It is
important to emphasize that in spite of the appearance
of "multiple" horizons on spatial surfaces, the spacetime
apparent horizon curve is always outer: an observer on a
timelike trajectory &om the white-hole region will cross
only one horizon which will appear to be an outer one.

Summarizing the above results, for a = 1, the appar-
ent horizon is a past outer one and is spatial everywhere
except at R = 0, where it is null. The scalar field fiows
from the past trapped region t ( tAH (white hole) into
the untrapped region t ) tAH. An observer in the un-

trapped region sees both the t = 0 initial singularity and
the one at R = 0.

The time reversed case occurs for a = —1 (—oo ( t (
0). The horizon is now a future outer one and corre-
sponds to a black-hole situation. The future singularity
at t = 0 is covered by the spacelike horizon and the region
is a black hole.

We have given a new exact nonstatic solution for the
spherically symmetric Einstein-scalar field system. While
this solution does not shed light on the scalar field col-
lapse problem in the asymptotically fiat case (since the
solution is not asymptotically Hat), it nevertheless pro-
vides an example of a spacetime with evolving apparent
horizons. It would be of interest to seek other solutions of
this type, perhaps with other matter fields, correspond-
ing to realistic collapse situations.
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