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In this paper we present a new initial data set for use in numerical relativity investigations
involving black-hole—gravitational-wave interactions. The initial data are time symmetric and are
constructed on a spacelike hypersurface with the topology of a single Einstein-Rosen bridge (S* xR.).
The two “sheets” of the bridge are chosen to be isometric through a two-sphere and this requires
the two-sphere to be a marginally trapped surface. The three-metric is in the form used by Brill and
others to study time symmetric gravitational waves, the form of the wave being chosen to maintain
this isometry. There are three parameters which control the amplitude, width, and range of the wave
from the isometry surface. Various physical results are determined as a function of these parameters
including the mass of the slice, the geometry of various two-surfaces within the slice, the location
and geometry of apparent horizons, and the form of curvature and radiation quantities traditionally
used in numerical relativity calculations. We also present a linearized analysis of the data sets.

PACS number(s): 04.20.Ex, 04.25.Dm

I. INTRODUCTION

An often stated goal of numerical relativity is the com-
putation of the fully three-dimensional spiral infall and
collision of two black holes. Progress toward this goal
began in the middle 1960s with the work of Hahn and
Lindquist [1] on the radial infall and collision of two holes
(known colloquially as “the two black hole spacetime”).
Despite the maturation of numerical relativity as a field
in the intervening 30 years, the fully relativistic spiral
infall problem has not been attempted, and there re-
mains a significant amount of work to be done in the
physics, mathematics, and numerical algorithms needed
to understand the complete nature of the problem. To-
day the urgency of computing the solution to the Ein-
stein equations corresponding to the spiral infall of two
concentrated bodies is made greater by the construction
of the Laser Interferometric Gravitational Wave Obser-
vatory (LIGO) (2], the first gravitational wave detector
likely to observe such an event. The purpose of this paper
and its companions is to describe a spacetime which may
be considered as a “simple case” in the numerical con-
struction of purely vacuum spacetimes containing very
distorted black holes. Such a spacetime is useful both as
a proving ground for numerical algorithms and as a tool
for honing our intuition about dynamic black holes.

In spirit this work follows the pioneering efforts of
Hahn and Lindquist, Cadez, Smarr, and Eppley on the
two black hole spacetime [1,3-5] and the work of Epp-
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ley, Miyama, and Abrahams and Evans on the pure Brill
wave spacetime [6-9]. In the former we have two black
holes, created by two Einstein-Rosen bridges, colliding
from an initial moment of time symmetry, in the lat-
ter we have the implosion and radiation of gravitational
waves in an otherwise empty spacetime. Both spacetimes
contain strongly time-dependent gravitational fields and
(possibly in the latter case) black holes. The black hole
plus Brill wave spacetime contains one hole, formed by
one bridge, surrounded by a cloud of gravitational radi-
ation of variable intensity. It therefore occupies a niche
between the two black hole spacetime and the pure Brill
wave spacetime. This spacetime is especially convenient
for the study of black hole dynamics because it is, in a
certain sense, a superposition of the Schwarzschild space-
time, which contains a bridge but no radiation, and the
pure Brill wave spacetime, which contains radiation but
has no bridge (although a black hole may form if the ra-
diation is sufficiently strong). Hence the initial data may
be set up to study any number of situations represent-
ing the interaction of a time symmetric, axisymmetric
cloud of gravitational radiation with a black hole, from
the perturbation of a hole by a low intensity wave up to
the collision of a hole with a wave whose mass is many
times the mass of the hole. The evolution of this data set
also may simulate the late stages of the collision of two
black holes, as a highly distorted black hole is expected
to form as the holes merge. Comparisons of the evolution
of these data sets with two black hole data sets will be
presented in Refs. [10,11].

The data is computed on an initial hypersurface with
the hypercylinder (S x R) topology familiar from the
maximally extended Schwarzschild solution. Hence we
have two asymptotically flat “sheets” connected through
a two-sphere, called a throat or bridge. The canonical
picture is an isometric embedding into a flat three-space
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of the equatorial plane of the Schwarzschild ¢ = 0 slice
(see Sec. IV) which has cylindrical topology and is geo-
metrically a parabola of revolution [see Fig. 6(b)].

In the pure Brill wave spacetime the “ground state”
(zero Brill wave amplitude) is the Minkowski spacetime
while in the black hole plus Brill wave spacetime it is
the Schwarzschild spacetime. The scenario is that of
a scattering problem: there is some incoming radiation
from past null infinity incident on a spherically symmet-
ric white hole. The white hole is deformed by the incom-
ing radiation, in the process emitting radiation of its own
and losing mass. The two radiation fields conibine in such
a way to form a surface of time symmetry upon which
they are momentarily “at rest.” This leaves the field in
a state where there is momentarily zero propagation of
energy (the “Poynting vector” [Bel-Robinson vector] of
the field vanishes): the radiation energy manifests itself
by the curvature of the spacetime and by its influence on
the shape of the hole. At this moment the hole attains
its minimum mass and switches from white to black. The
spacetime then duplicates itself: the black hole absorbs
radiation, increases in mass, and finally becomes spheri-
cal once again.

This paper discusses the properties of the time sym-
metric slice. A previous paper [9] analyzed the evolution
of perturbations from spherical symmetry and future pa-
pers will contain results on the evolution of large ampli-
tude initial data (see also [19] and for further properties
of the time symmetric slice see [20]). The history of this
type of problem in general relativity is as follows. The
first numerical construction of a single distorted Einstein-
Rosen bridge was by Collins and Williams [12] using the
method of Regge calculus; however the problem was only
briefly touched upon by them and no detailed analysis of
the data was given. The formulation of the initial-value
problem we use was used by Brill [13] to give an exam-
ple of the positivity of mass of a vacuum time symmetric
slice. Wheeler [14] contains an extensive physical exami-
nation of Brill’s initial data set (which we call time sym-
metric Brill waves). Both Eppley [6,7] and Miyama [8]
have numerically computed the initial data and evolution
of the Brill wave spacetimes. Abrahams [15] and Abra-
hams and Evans [16] also compute vacuum pure wave
solutions which are similar, though not identical in form,
to the pure Brill wave spacetimes.

This paper is organized as follows. Section II describes
the form of the initial three-metric and extrinsic curva-
ture. Section III discusses the mass of the initial hy-
persurface. Section IV discusses various aspects of the
geometry of the initial slice mostly through the use of
embedding diagrams. Sections V and VI contain an in-
vestigation of the location and geometry of apparent hori-
zons on the initial slice. Section VII exhibits the form of
various curvature and radiation measures usually exam-
ined in numerical relativity calculations, while Sec. VIII
gives a linearized analysis of the data. Finally Sec. IX
summarizes the work. The Appendix contains an expla-
nation of the numerical methods used in the solution of
the initial-value problem and the apparent horizon equa-
tion.

We use geometrized units throughout: G = ¢ = 1.
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Greek indices will run from 0 to 3, latin indices from 1 to
3. Four-dimensional quantities will be denoted by a pre-
fixed superscripted (4), e.g., “’R,,o3. Three-dimensional
quantities will have no prefix.

II. FORM OF INITIAL THREE-METRIC

The initial-value problem of general relativity con-
sists of finding a three-metric 4,5 and extrinsic curva-
ture Kg; which satisfy the Hamiltonian and momentum
constraints:

R+ (trK)? — K®*K 4 = 0, (1)

Dy(K® — 4°%trK) = 0. (2)

Here R is the scalar curvature and D, the covariant
derivative associated with -yg,. As is well known (e.g.,
[17]) making the initial slice a spacetime isometry sur-
face (i.e., time symmetric) requires the extrinsic curva-
ture tensor to vanish. Such a slice, usually labeled ¢t = 0,
is called a time symmetric surface because the spacetime
in the region t < 0 is isometric to the spacetime in the
region ¢ > 0. Hence on such a surface the momentum
constraint is satisfied identically.

This leaves only the Hamiltonian constraint, R = 0,
to determine the entire three-metric. We follow York
and co-workers (e.g., [18]) by writing the three-metric in
conformal form

Yab = ¥*4qp. (3)
The conformal transformation of the scalar curvature is
R=9"*R_8¥ %AV, (4)

and the Hamiltonian constraint becomes the linear equa-
tion

Av = 1¥R, (5)

where quantities with carets are formed out of 4, in the
usual way.

At this stage one chooses 44, and solves Eq. (5) for
¥. A common choice is to let 4,5 be a flat metric, so
that R vanishes, in which case the Hamiltonian constraint
reduces to the flat space Laplace equation

Av =o. (6)

For a manifold with a single throat the only asymptot-
ically flat, inversion symmetric solution is the spheri-
cally symmetric Schwarzschild solution [19] and so we
are forced to find another form for 4,p.

Brill [13] has described a method in which time sym-
metric initial data takes on a particularly simple form.
He originally used the method to prove the positivity of
the mass of a vacuum, time symmetric, asymptotically
flat hypersurface with R topology. We adapt his method
here to calculate axisymmetric initial data for a hyper-
surface of S? x R topology. This is the Einstein-Rosen
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bridge topology familiar from the Schwarzschild solution
(see [21]). In this work we have followed Misner [22],
York and co-workers (e.g., Bowen [23]), and others by
requiring the hypersurface to have two isometric regions,
usually called “sheets.” This creates an inner boundary,
called the isometry surface (which on the Schwarzschild
t = 0 surface coincides with the event horizon), and an
isometry operator which maps each sheet onto the other
in a metric preserving fashion. We have also chosen the
initial data to be equatorial plane symmetric. The calcu-
lation therefore takes place on a region bounded by the
axis of symmetry (@ = 0), the equator (§ = 7/2), the
isometry surface, and an outer boundary far from the
isometry surface.

Choosing spherical polarlike coordinates we let ~qp
take the form

ds? = o* [ez"(dp2 + p2db?) + p® sin20d¢2] . (7
The conformal metric has scalar curvature

; _2q —2 (0%q | O%q  Oq
— 2q 2(Y 4 1 4
R 2e"%p (ap2 + o2 T ap) ) (8)

and the Hamiltonian constraint becomes

%%  16*°T 280 10¥
— + —5—=—= + ——— + — — cotf
Op2  p2862  pdp p? 00
2 2
_ Ly (%a, 190 10a)
4 Op%?  p2002  pdp

The function ¢ must satisfy a set of boundary conditions
but is otherwise arbitrary. Specifically Brill showed that

in order for the mass of the hypersurface to be well de-
fined, ¢ must have the behavior

4(p,0) =0, lim g=0(p™"). (10)

In this work we have chosen a different radial coordi-
nate, 7, related to p by p = (m/2)e", in which the line
element takes the form

ds? = o4 [ez""(dn2 +db%) + sin20d¢2] . (11)

The coordinate 7 is dimensionless, with m appearing as
a length (or mass) scaling parameter (in spherical sym-
metry we have m = M). The Hamiltonian constraint (9)
is transformed into

82v /¥ OY 1 8%q 0%
W+W+55°°“’*‘z“’(5n‘z 50—2“1)-
(12)
In this work we choose g to be of the form

g=af(0)g(n)- (13)

The radial dependence is chosen to be the inversion sym-
metric Gaussian

g=e () fe(6-) (14)

with

+b
g =122 (15)
w
The angular dependence is given by the function f, which

in this paper is chosen to be
f =sin"0, (16)

where 7 is an even integer, usually 2 or 4 (unless other-
wise stated it will be assumed that n = 2). The function
q has three independent parameters a, b, and w which
specify its overall amplitude and the range and the width
of the radial function g. Throughout this work we will
refer to an initial data set generated by g parameters a, b,
and w by “initial data set (a, b, w).” (In other papers in
this series these parameters are given different symbols,
e.g., no for b and o for w. In each particular paper the
symbols are chosen to give the least conflict with the rest
of the paper.)

Hence the procedure for obtaining a three-metric which
has vanishing scalar curvature is to specify the parame-
ters in ¢ and solve (12) for ¥. The numerical method is
described in the Appendix.

III. MASS

It is well known that no local expression for the energy
density of the gravitational field can exist in general rel-
ativity. However there does exist a well-defined notion of
the total energy of an isolated system as measured by a
distant observer. One sees this intuitively; it can be mea-
sured by observing the relative accelerations of geodesics
(freely falling masses) in the laboratory, a direct mea-
surement of the Riemann tensor.

The total mass energy of an isolated source was orig-
inally calculated in the Hamiltonian formulation of gen-
eral relativity by Arnowitt, Deser, and Misner [24].
Specifically they give the expression

M= —f (Yab,b — Yob,a) dSa. (17)

Here the metric is assumed to be in asymptotically Carte-
sian coordinates and the metric components are to ap-
proach those of a flat Cartesian metric no slower than
O(r~1!). The surface integral is to be evaluated at spa-
tial infinity.

O Murchadha and York [25] have examined the
Arnowitt-Deser-Misner (ADM) energy and momentum
formulas in the conformal decomposition formalism.
They derive the three-covariant expression

E—-FE= —if v,¥dse, (18)
27 Joo

for the difference between the energy E of the conformal
metric and the total energy E of the slice. For a confor-
mally flat metric F vanishes and we may compute the
ADM mass directly from (18). For a nonconformally flat
metric £ will vanish only if 445 has no “1 /7" parts in its
expansion at infinity. This is the case in the Brill wave
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three-metric if the function ¢ falls off at least as rapidly
as 1/r2. Our choice for g actually falls off more rapidly
than this, its rate is about

—n? _ 2 1
gx~e T ~e (lnr) =T$:. (19)

Hence for our initial three-metric we may write

E= ——1—f V. ¥dse. (20)
27 Jo

In terms of the metric (11) this is

m (OO0 W
Mt = — /Een/; (3_"7 - 5) sinf df. (21)

Since this expression is to be computed on some constant
7 surface the ADM mass computed from (21) is strictly
speaking a quasilocal mass measurement. However the
mass does converge to a fixed value as one takes larger
and larger values of 7 (see the Appendix for details).

In this section we propose to compute Manm as a func-
tion of the parameters a, b, and w in the function q. The
mass will be expressed in terms of the scaling parame-
ter m which sets the length scale of the problem. This
is clearly a completely arbitrary number, there being no
physically preferred length or time scales in the Einstein
equations. Figure 1 shows the mass as a function of a, b,
and w in units of m (see the Appendix for an estimate
of the numerical error in this figure).

We first notice that the mass is an initially decreasing
function of a for a > 0 (Fig. 2). This is rather counterin-
tuitive, as one expects any additional gravitational wave
energy to add to the ADM mass. However, in compar-
ing two data sets, say (0, 0, 1), with Mypm = m, and
(0.1, 0, 1), with Mapm = 0.952m, one is really comparing
two entirely unrelated hypersurfaces, that is, hypersur-
faces which are contained in different spacetimes. Grav-
itational wave energy has almost certainly been added,
but in the process one may have lowered the mass of
the hole in such a way that the total mass of the slice
was lessened. In other words, by adding the radiation,
the mass of the hole may have been made smaller by
some incidental geometrical property of the initial data.
For a < 0 the situation is different. The mass increases
monotonically and very rapidly.

The data contains another peculiarity: for a fixed
range and amplitude the mass increases as the width
w approaches zero and infinity. The latter is expected
since a Gaussian with fixed range encompasses more and
more proper volume the larger its width becomes, in ef-
fect spreading a wave of fixed amplitude over a larger
volume. As the width decreases the total mass imtially
decreases, because of the smaller volume, and then in-
creases, reflecting the increase in energy one expects for
a wave packet with predominantly high frequency compo-
nents. (Note that when w becomes smaller than about
0.5 the errors increase significantly, as discussed in the
Appendix and in [19].)

The variation with respect to the range b is less sur-
prising. The mass tends to be larger when the wave is
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localized on the throat, dropping off at first as b is in-
creased, and then increasing again. The increase near the
throat can be explained by the fact that a is not an abso-
lute amplitude; it is dependent on b. This is because the
inversion symmetric Gaussian contains two humps which
add together when placed close to each other near the
throat. The mass increases apparently without bound as
b increases again because of the logarithmic nature of the
coordinate 7. [One might also be tempted to explain the
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FIG. 1. ADM mass of the initial hypersurface as a function
of the Brill wave parameters a, b, and w. (a) The mass as a
function of @ and b with w = 1, (b) as a function of b and w
with @ = 1, and (c) as a function of a and w with b = 2. The
mass is in units of the scale parameter m. The grid size is
200 x 53 with the outermost zone at n = 6.
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FIG. 2. ADM mass of the initial hypersurface as a function
of the Brill wave amplitude a (for range b = 0 and width
w = 1). The mass is in units of the scale parameter m.
The grid size is 200 x 53 with the outermost zone at n = 6.
The hollow (solid) circles denote calculations with the angular
parameter n = 2 (n = 4).

behavior of the mass as a function of b by a (negative)
binding energy of the wave to the hole: as b is increased
this energy would be responsible for the initial decrease
in the ADM mass. This contribution would decrease as
b is further increased (presumably like 1/r) and at some
point the increase due to the grid geometry would dom-
inate. However we have not to date found a satisfactory
way to formulate this notion (the “interaction energy”
defined by Brill and Lindquist [26] does not apply since
we have only one Einstein-Rosen bridge)].

In the late 1950s when these types of initial data
sets (with R® topology) were first being investigated by
mathematicians and physicists, it was noted, on physi-
cal grounds, that one could not make the amplitude of
the Brill wave arbitrarily large. For a too large the slice
will not be asymptotically flat; the wave energy will be
enough to curve it into closure. Wheeler [14] states the
condition elegantly as follows: the mass energy in the
wave must not exceed its physical dimensions, roughly,
its wavelength. The notion was formalized by Cantor
and Brill [27] into the statement that not all asymptoti-
cally flat metrics may be conformally related to a physi-
cal metric having zero scalar curvature. Specifically they
show that if there exists a C* function f with compact
support such that

/ Rf2dV <8 / 496D F Dy fdV, (22)

then 44 is not conformally related to a physical three-
metric with vanishing scalar curvature. Note that here
Yap must itself be asymptotically flat. They showed that
for Brill waves on R? topology slices one may apply (22)
and obtain an upper limit on the wave amplitude. Eval-
uating the condition in the manner of Cantor and Brill,
with f = ¢, is inconclusive in the black hole plus Brill
wave spacetime because the integration is complicated
by the inner boundary on the isometry surface. This
boundary leaves a surface integral which is not present
in the R® case and hence it is possible that there may be
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both an upper and lower bound on the wave amplitude
(it seems likely that there always exists an f which gives
an upper bound).

IV. EMBEDDINGS

In this section we will explore the geometry of the
three-metric by examining the geometry of various two-
dimensional surfaces embedded in the initial slice. This
will be done either by computing internal measures of
the geometry of the two-surface or by embedding it into
a flat three-space.

An embedding diagram is a surface in a fictitious flat
three-dimensional space constructed such that it has the
same topology and intrinsic geometry as a chosen two-
surface in the slice. We have at this point no geomet-
rically or physically distinguished two-surfaces (except
for the throat and equator, which are isometry surfaces)
and in this situation it is most convenient to begin with
the constant coordinate two-surfaces (which include the
throat, n = 0, and equator, § = w/2). In the next section
we will consider the apparent horizon and its geomet-
ric properties, which is a particular two-surface of physi-
cal interest, though not necessarily a constant coordinate
surface (in our coordinate system).

There are three choices. The = const surfaces are
topologically two-spheres and are surfaces of revolution,
the § = const surfaces are topologically cylindrical and
are also surfaces of revolution, and the ¢ = const sur-
faces are also topologically cylindrical but not surfaces
of revolution. Of these surfaces, the first two, because
of their symmetry, present no difficulty in embedding
(for background see [19]). These embeddings are in
fact not uncommon in the general relativity literature
(e.g., [3,6,14,22,28,29]). The third has no symmetries
whatsoever and embedding surfaces of this (general) type
is considerably more difficult. Much is known about the
properties of these surfaces but, as a practical matter, the
problem of construction has not been definitively solved
(see Friedmann [30] for a discussion of the problem).

We begin by examining an embedding of the throat.
Figure 3 shows a series of cross sections of the embeddings
as a function of the amplitude parameter a. For a > 0
the surface is prolate, for a < 0 it is oblate, and for a
less than about —0.144 no surface exists at all which has
the appropriate metric. (The reason is that the Gaussian
curvature becomes negative on the axis and this prevents
an embedding in a Euclidean space.) The geometry of the
throat when n = 4 (f = sin*#) is similar to the n = 2
case: the embedding is prolate if a > 0 and oblate if
a < 0. Note that for a > 0 the embedding takes on a
distinct “dumbbell” shape and for a < 0 the surfaces are
more oblate than the n = 2 case. The embedding does
not exist if a < —0.24. .

A similar result has been found previously in a general
relativity context by Smarr [28]. He found that the em-
bedding of the event horizon of the Kerr metric becomes
more oblate the greater the angular momentum parame-
ter a/M, and it fails to exist at all for a/M > v/3/2. In
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the case of Kerr the oblateness is caused by the angular
momentum of the hole, much the same as in a rotating
liquid drop. In our case the distortion is caused by the
action of the gravitational radiation incident on the hole.

For a given initial data set we may show embeddings of
a series of constant 7 surfaces and obtain an idea of how
the distortion changes as 7 increases. Figure 4 shows
such a sequence for the data set (a, b, w) = (1, 0, 1).
The surfaces are very prolate near the throat, less so
as one nioves outward, and by n = 2 they are nearly
spherical. As one might suspect, for data set (-0.144, 0, 1)
the surfaces are oblate near the throat and decreasing in
oblateness until again by n = 2 they become spherical.
In (1, 1.5, 1) the throat is nearly spherical, the constant
n surfaces becoming more and more prolate, reaching a
maximum near = 1.5, and then becoming spherical
again.

Another measure of the geometry of the constant 7 sur-
faces which has been used before, e.g., Smarr [28], is the
ratio of their polar to equatorial circumference Cy/C..
As a glance at the embedding diagrams suggests, Cp/Ce.
is greater than unity for @ > 0 and less than unity for
a < 0. In Table I we show the ratio for the throat as a
function of @ with b = 0 and w = 1. Note that as the

'(a),

Y (ADM mass)

(b)

Y (ADM mass)

X (ADM mass)

FIG. 3. (a) Embedding of the throat (n = 0) into a flat
three-space as a function of the amplitude a with range b = 0,
width w = 1 and angular parameter n = 2. The flat space
coordinates are in units of the ADM mass for each data set.
The grid size is 200 x 53 with outermost zone at = 6 in
each case. Positive values of the amplitude produce prolate
geometries while negative values produce oblate geometries.
(b) The same embeddings with angular parameter n = 4.
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Y (ADM mass)

0 1 2 3 3
X (ADM mass)

FIG. 4. Embedding of a series of 77 = const surfaces for the
initial data set (a, b, w) = (1, 0, 1). The flat space axes are in
units of Mapm. The grid size is 200 x 53 with the outermost
zone at 7 = 6. As one moves away from the throat the surfaces
are less prolate, becoming spherical at large radius.

amplitude is increased the distortion can become quite
large, with C,/C. exceeding 100 for a > 3. As in the
embedding diagrams it is instructive to see the ratio for
a family of constant 7 surfaces. We show two such fami-
lies in Figs. 5(a) and 5(b). In Fig. 5(a) the ratio C,/C. is
shown for the family (a, 0, 1) where the wave is centered
on the throat, and in Fig. 5(b) it is shown for the case
(a, 2, 1) where the wave is centered away from the throat
at n = 2. Again, for a positive the ratio is greater than
unity and for a negative it is less than unity. Note that for
a negative the ratio apparently may become very small.
This is not possible for surfaces in flat space. Consider a
very thin disk in flat space with radius r and thickness d.
As d/r becomes very small the polar circumference ap-
proaches 4r, the equatorial circumference 27, and the
ratio approaches the limiting value 2/7 (= 0.637). Thus,
for axisymmetric surfaces embedded in a flat space the
ratio Cp/C. cannot be smaller than 2/x. For the throat
this value is passed at about a = —0.34. That the initial
slice permits such a surface is an indication of its devi-
ation from both Euclidean geometry and the spherically
symmetric geometry of the Schwarzschild initial slice.
Now let us turn to the constant § embeddings. Here we
have the slight complication that surfaces other than 6 =
m/2 are endowed with a conical “skew.” One can see this
clearly by imagining the constant § surfaces of the usual
spherical polar coordinates in flat space; they are cones
with opening angle 8, except for § = 7 /2 which is a plane,
and 6 = 0, which is a line. In general § = 0 is a one-
dimensional curve for which no embedding can be defined
(curves have no intrinsic geometry). Hence we explore
embeddings of the equator only. (This is the tactic of
Wheeler [14], Eppley [6], and Bardeen [29].) Recall that
the spherically symmetric embedding is the parabola of
revolution [Fig. 6(b)], in cylindrical coordinates

z=+/8M(r — 2M) (23)
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TABLE 1. Ratio of polar to equatorial circumference of the surface 7 = 0 as a function of the
amplitude a with b = 0 and w = 1. The grid size is 200 x 53 with the outermost zone at = 6.

a -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cp/C. 0.2803 0.5189 1.000 2.020 4.282 9.497 21.90 52.14 127.2
or, in parametric form,
z = 4Msinh(n/2), r = 2M cosh®(n/2). (24)

A few samples of equatorial embeddings for different
distortion parameters are shown in Fig. 6. For a > 0 the
embeddings retain the basic shape of the spherically sym-
metric case, but for larger amplitudes the throat becomes
longer and thinner. For a < 0 the diagrams show the for-
mation of a shape reminiscent of the classic “bag of gold”
geometry [14]. Wheeler [14] and Eppley [6] both found

Cp/Ce

0.5

|
0.6

t
o.s[

i
L
0 1 2 3

FIG. 5. (a) The ratio of the polar to equatorial circumfer-
ences, C,/C., of the constant 7 surfaces as a function of 5
and the Brill wave amplitude a is shown for family of space-
times (a, b, w) = (a, 0, 1). The grid size is 200 x 53 with
the outermost zone at 7 = 6. As before, negative amplitudes
lead to oblate surfaces and positive amplitudes produce pro-
late surfaces, and the surfaces become spherical away from
the throat. (b) Cp/C. is shown for the family (a, b, w) =
(a, 2, 1). The same trend for positive (negative) amplitudes
to produce prolate (oblate) surfaces is seen, but the maximum
distortion is found where the wave is centered, the surfaces
becoming spherical both near and far from the throat.
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FIG. 6. Isometric embeddings of the equatorial plane for
initial data sets (a, 0, 1) with a = —0.59 (a), a = 0 (b),
and a = 1 (c). The diagrams are each plotted out to proper
distance 8 Mapm (about 7 = 2.7 in each case) and the flat
space coordinates are in units of the respective ADM masses.
As the amplitude a becomes more negative, the geometry
develops a shape akin to the classic “bag of gold.”
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this type of geometry for the embedding of the equator
for “pure” Brill waves, that is, Brill waves on a Euclidean
topology. For this topology a bag of gold occurs when a
minimal area surface appears. The existence and loca-
tion of minimal area surfaces is an important physical
problem and is taken up in the next section. In our case,
as we shall see, the throat is automatically an extremal
area surface and therefore a bag of gold will be produced
if a minimal surface occurs outside of the throat. Note
that since we are looking at the equator only it remains
unclear that, for example, (—0.59, 0, 1) really represents
a bag of gold. We shall see in the next section that in
fact (—0.59, 0, 1) has no extremal area surfaces other
than the throat; the throat is a global minimum.

We note that for a < —0.59 the diagrams do not ex-
ist. The reason for this is that, as seen in Fig. 6(b), they
are beginning to “fold over,” i.e., become horizontal, just
outside of the throat. It turns out to be rather difficult
for a surface of revolution to perform this particular geo-
metrical feat (this is explained in more detail in [19]) and
so this result is not particularly surprising.

Again the equatorial embeddings for the n = 4 data
sets are similar to the n = 2 data sets. The embeddings
“fold over” and cease to exist at @ = —0.59 in this case
as well.

V. APPARENT HORIZONS

A compact orientable two-surface is said to be trapped
if its outgoing normal null congruence has negative di-
vergence over the entire surface and marginally trapped
if the divergence is exactly zero over the surface.
On an asymptotically flat hypersurface the outermost
marginally trapped surface is called the apparent hori-
zon. Trapped surfaces are generally spacelike or null and
since matter or radiation may cross a spacelike or null
surface from one side only they behave as one-way mem-
branes, in much the same way as event horizons [31].
In a celebrated theorem, Penrose [32] showed that the
formation of a trapped surface in a spacetime signals the
onset of a spacetime singularity and it can be shown that
if a trapped surface exists in a spacetime then it neces-
sarily lies within an event horizon, assuming the cosmic
censorship hypothesis holds. (For information about the
apparent and event horizons during the evolution of these
initial data sets see [10,19,33].)

If k# is the outward pointing null normal to a two-
surface S then the condition that S be a marginally
trapped surface is that the divergence of k* vanish:

V, k¢ =0. (25)

This may be translated [18,34] into a condition on the
umt spatial normal s of S

Vuk# = Dgs® — trK + Kaps®s® = 0. (26)

On a time symmetric slice this reduces to the “minimal
surface” condition

Dgs®* =0 (27)
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and the properties of apparent horizons are particularly
amenable to analysis.

Gibbons [35] has shown that an isometry surface is also
one of extremal area; this means that the throat of our
initial slice is automatically a marginally trapped surface.
In addition he shows that any minimal area surfaces oc-
curring on a slice with non-negative scalar curvature must
be of spherical topology. On a time symmetric slice the
scalar curvature vanishes by the Hamiltonian constraint
and so all minimal area surfaces are of spherical topol-
ogy. Note that the apparent horizon, being the outermost
trapped surface, must be minimal in area. Hence the ap-
parent horizon on a time symmetric hypersurface must
be a two-sphere. (Hawking [36] shows that the apparent
horizon must have spherical topology at all times.)

Now the aim of this section is to find and examine
apparent horizons on the initial hypersurface. Given the
above we are already well on our way: we know that there
always exists at least one trapped surface, the throat,
which by construction of the manifold is always of spher-
ical topology. If a minimal surface should occur outside
the throat we know that it too must be a two-sphere.
Given an initial data set the usual strategy, and the one
adopted here, is to attempt to find two-surfaces satis-
fying Eq. (27) by an iterative procedure. We use the
method of Cook [34] which converges on solutions given
a sufficiently good initial guess. The relevant equations,
numerical properties of the method, and accuracy of the
solutions are described in the Appendix. Here we state
that in general searches for apparent horizons were done
systematically, using a variety of initial guesses, and that
reasonable care was taken to assure that the solution
found was indeed the outermost trapped surface.

We first discuss the location of the apparent horizon.
We know that in spherical symmetry the apparent hori-
zon is located at 7 = 0. Given the equatorial embed-
ding diagram [Fig. 6(b)] of the previous section we may
suspect that a new minimal surface will form for a suf-
ficiently less than zero. On the other hand it appears
the for a > 0 no new mimmal surfaces will form. In
fact, a minimal surface outside of the throat will form
in both cases as long as |a| is sufficiently greater than
zero. With the wave centered on the throat (b = 0) and
w = 1 new extremal area surfaces are found if a > 3.03 or
a < —0.65; for —0.65 < a < 3.03 the throat remains the
apparent horizon. Figure 7 shows the coordinate position
1(0) of the apparent horizon. In most cases the horizons
are found to be quite close to the 77 = const two-spheres
(this holds for the n = 4 cases as well). Note that an
outer minimal surface does not form until a < —0.65.
Hence the embeddings in Fig. 6 have no minimal sur-
faces other than the throat. This result is more or less
in consonance with Eppley’s [6] and Miyama’s [8] results
on apparent horizons in Brill wave spacetimes. However
Eppley found that the new apparent horizon occurs more
or less simultaneously with the suggestive bulge in the
equatorial embedding diagrams; here the bulge is seen at
a significantly lower amplitude than where the new ap-
parent horizon occurs. It should be remarked that they
worked on a manifold with Euclidean topology and used
a quantitatively different ¢ function, one which fell off as
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Coordinate location of apparent horizons for (a, 0, 1)
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FIG. 7. Apparent horizons on the initial hypersurface for
the data sets determined by —1.0 < a < —0.65, b = 0, and
w = 1. The left vertical axis represents the symmetry axis
(6 = 0) and the lower horizontal axis is the equator (8 = w/2).
For the amplitude @ > —0.65 the horizons are all found on
the throat (n = 0). Note that even though the horizons are
located near coordinate two-spheres, the intrinsic geometry
can be quite distorted. The grid is 200 x 53 with the outermost
zone at n = 6.

r—3 rather than r— 127,

Compressing the Brill wave forces the new minimal
surface to appear at a smaller amplitude. For w = 0.5 a
new minimal surface appears at a = —0.57 and a = 1.36
rather than a = —0.65 and a = 3.03 in the case w =1
(b = 0 in both cases). This makes sense since one expects
concentrated regions of curvature to create trapped sur-
faces more easily than more extended regions. (Although
in our case there does not yet exist a standard, physically
meaningful, notion of local mass energy; we apply our in-
tuition strictly on the functional form of ¢. In addition
recall that the mass tends to go up if w is made small
enough, indicating that these slices have small concen-
trated regions of mass energy.)

The method used to find stable minimal surfaces was
equally able to find unstable minimal surfaces (i.e., sur-
faces whose mean curvature vanishes but which may be
globally deformed to a surface of smaller area) if a suffi-
ciently good initial guess was made. In both these cases
(b=0; w =1 and w = 0.5) the throat becomes an un-
stable minimal surface when the outer trapped surface
forms. The area of the 7 = const two-spheres, plotted
in Fig. 8 for the w = 1 case, decrease as one moves out
from the throat reaching a minimum in the neighborhood
of the apparent horizon and then increase without limit.
Since the horizon is nearly a coordinate two-sphere we
expect the minimum area coordinate sphere to be very
near the apparent horizon.

Moving the Brill wave outward should decrease the
likelihood of forming a new minimal surface and this is
in fact what happens. With b = 0.5 a new outer mini-
mal surface appears at a = —0.84 and with b = 1 this
occurs at a = —1.42. In the b = 1 case there are actu-
ally two minimal surfaces, the throat and the apparent
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FIG. 8. The area function (A/167)*/2 of the constant 7
two-spheres as a function of 7 for the initial data sets (a, b, w)
= (-1, 0, 1) and (—1.5, 1, 1). The quantity is in units of
Mapnv. The small dot shows the location of the intersection
of the apparent horizon with the equator (8 = n/2). The grid
is 200 x 53 with outermost grid point at n = 6.

horizon, with an unstable minimal surface in between
them. The area of the constant n surfaces are shown in
Fig. 8 for the data set (—1.5, 1, 1). Note that in the
b = 0 case the apparent horizon appears to disengage
smoothly from the throat as a is lowered through —0.65.
That is, one can always find an apparent horizon arbi-
trarily close to the throat for a close enough to —0.65.
For the b = 1 data sets this is not the case. The horizon
appears at a = —1.42 in the neighborhood of n = 1.23.
For a > —1.42 the horizon stays on the throat; we could
not locate any intermediate positions.

The geometry of the apparent horizon, when it coin-
cides with the throat, was discussed in the previous sec-
tion. For the remainder of this section we will discuss the
geometry of these new “outer” apparent horizons. A few
things may be guessed from what we already know: the
horizons will in general have the geometry of oblate (pro-
late) spheroids when a < 0 (a > 0), since this is the case
for the constant 7 surfaces, their ratio of polar to equa-
torial circumference will be less than (greater than) one,
and in general we cannot expect an embedding diagram
to exist in every case.

In Fig. 9 we show the polar to equatorial circumfer-
ence ratio and embedding diagrams for the apparent hori-
zons when the wave is centered on the throat. Note that
the apparent horizons become more spherical as a is de-
creased rather than more distorted as in the case when a
is near zero. This is because the horizon is moving farther
away from the throat where the distortion is concentrated
(in these data sets). For these horizons the embedding
diagrams do not exist unless a is less than about —0.82.
The story is much the same for the b = 1 cases. The
unstable minimal surfaces for these initial data sets are
also oblate as are their throats. A typical case is (—1.5,
1, 1) which has C,/C. equal to 0.73, 0.38, 0.50 for the
apparent horizon, unstable minimal surface, and throat,
respectively.
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As in the case of the embedding diagrams, the appar-
ent horizons for the n = 4 data sets are similar to the
data sets with n = 2. For a given amplitude the appar-
ent horizons are located at about the same coordinate
radius and have similar geometry. Typical cases are the
data sets (a, 0, 1). Minimal surfaces appear outside the
throat for a < —0.66 and a > 2.4 which are oblate and
prolate, respectively. Data sets (a, 2, 1) have outer min-
imal surfaces if a < —2. In general at high amplitudes
(la] > 1) the n = 4 data sets are more likely to form
outer an outer minimal surface than the data sets with
n = 2 for a given set of Brill wave parameters.

VI. RADIATION EFFICIENCY

The second law of black hole dynamics states that the
area of the event horizon cannot decrease with time. The
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FIG. 9. (a) The ratio of polar to equatorial circumferences
of the apparent horizon is shown for various configurations
with negative amplitude. All such configurations are oblate.
Larger magnitude Brill waves tend to produce more spherical
geometries. (b) Embedding diagrams for the apparent hori-
zons of initial data sets (a, 0, 1) with —1 < a < —0.65 are
shown for angular parameter n = 2. The flat space coordi-
nates are in units of the ADM mass of each initial data set.
The grid is 200 x 53 with the outermost zone at 7 = 6 in each
case.
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law is usually applied in the following manner: Consider
a multiple black hole spacetime (i.e., a spacetime which
contains a spacelike slice on which the event horizon con-
sists of multiple disjoint surfaces) at a time in which the
holes are in a quasistatic state, that is, they are very
far apart and have small relative velocities. Add up the
“Schwarzschild” masses of the individual holes to obtain
a total mass. Look again at the spacetime after some or
all of the holes have merged and the system is once again
in a quasistatic state. Again add all the “Schwarzschild”
masses. The difference between it and the first sum is
the maximum possible amount of energy which has been
generated (i.e., has escaped to infinity) in the form of
gravitational radiation by the coalescence. The fraction
of the ADM mass represented by this radiation is usually
called the maximum radiation efficiency of the source.

In this section we aim to compute the radiation effi-
ciency of our spacetimes. There are two problems: at this
point we have not computed an evolution of the data, and
as a consequence we have not located the event horizon,
and the data sets do not in general describe quasistatic
systems. We proceed as follows: In accord with the sec-
ond law the irreducible mass of a black hole is defined to
be [34,37]

area of event horizon
MEH = \/ . (28)

167

In analogy to this we define the mass of the apparent
horizon to be

area of apparent horizon
Mpg = \/ pI;61r . (29)

Now on a time symmetric surface the apparent horizon
is the outermost minimal area surface hence the only case
where the event horizon could have smaller area is if it lay
inside the apparent horizon near another local minimal
surface. However it can be shown that if an event horizon
exists it must lie outside of the apparent horizon [36].
Since (in our case) the apparent horizon is the outermost
minimal area surface, any surface lying outside it must
have greater area. Thus if there exists an event horizon
on the initial slice its irreducible mass must be greater
than M,y.

The radiation efficiency of an initial data set is defined
to be the difference between the ADM mass and the ir-
reducible mass in the final state, long after the hole has
become spherical:

MADM — final MEH

Mapm
Mapm — initial Mgy

efficiency =

< 30

< Mo (30)

< MapMm — initial May . (31)
MapMm

Hence the third fraction in (31) serves as an upper bound
on the radiation efficiency of an initial data set. That is,
we must have



3770

< Mapm — final Mgx

0

Mapm
Mapwm — initial My

<
Mapm

<1. (32)
We will call the second fraction in (32) the mazimum
radiation loss (MRL) of an initial data set.

As is well known, the above argument implicitly as-
sumes the cosmic censorship hypothesis. That is, we
have assumed that the curvature singularity to the fu-
ture of ¢t = 0 (which we suppose exists) is hidden from
future null infinity. Penrose [38] has pointed out that if
one could create an initial data set which violates

Mau < Mapm (33)

then the cosmic censorship hypothesis would be in serious
jeopardy. Jang and Wald [39] have shown, subject to
a certain mathematical condition, that time symmetric
hypersurfaces for which the apparent horizon consists of
a single component cannot violate Eq. (33). And indeed
in the black hole plus Brill wave spacetime we have not
found an initial data set in which (33) has not held.

We perform several experiments. In Figs. 10(a) and
10(b) the MRL is shown as a function of the Brill wave
parameter a for a wave centered on the throat with unit
width w. Figure 10(a) shows results for negative am-
plitudes, while Fig. 10(b) shows positive amplitude con-
figurations. For a < 0 it is an initially increasing func-
tion, reaching a maximum of 0.034 at about a = —0.5
and then decreasing as a further decreases. As shown in
the previous section, an outer minimal surface appears
in these data sets for ¢ < —0.65. Figure 10(a) shows
that the outer minimal surface appears just before the
Penrose inequality (33) is violated. Afterward the area
of the throat continues to decrease while the area of the
outer minimal surface increases so as to just satisfy the
inequality. Figure 10(b) shows that for ¢ > 0 the MRL
is again an increasing function of a. It reaches a max-
imum of just over 0.3 near a = 2 and then decreases,
and again, an outer minimal surface forms at a = 3.03
before Eq. (33) is violated. The data sets with angular
parameter n = 4 have similar characteristics. Outer min-
imal surfaces appear for a > 2.4 and a < —0.66 in a way
which satisfies the Penrose inequality. The cases a < 0
with b = 0.5 and b = 1 are similar to the b = 0 case
with the exception that the MRL is larger, about 0.05
(at a = —0.7) for b = 0.5 and about 0.14 (at a = —1) for
b=1.

Moving the range outward increases the MRL dramati-
cally. In Fig. 11 we show the MRL as a function of a with
b = 2. Note that in this case it appears as if the curve
is turning over as a gets much less than zero, indicating
that an apparent horizon would form for those data sets.
From this figure we see that it is possible to create initial
data sets in which potentially large amounts of radia-
tion may escape to null infinity. Data set (2.8, 2, 1) has
Mapm/Man about 9.4 (MRL = 0.89), while, increasing
the range parameter to b = 3, for (3.3, 3, 1) it is just over
34 (MRL = 0.97). To emphasize, in this latter case the
“wave” part of the initial data contains 97% of the mass
of the system, over 30 times the initial mass of the hole.
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MRL = 1 — Mau/Mapm as a function of the amplitude a
with range b = 0, and width w = 1, and angular parameter
n = 2 for amplitudes a < 0. Circles are used to mark the
data for the apparent horizon, while boxes are used for the
throat if the horizon has detached. For —0.65 < a < 3.03
the throat is the apparent horizon while for a outside that
range the apparent horizon lies outside of n = 0. The grid
size is 200 x 53 with the outermost zone at n = 6. (b) The
continuation of (a) with a > 0. In this diagram we include
configurations for both angular parameters n = 2 (solid line)
and n = 4 (dashed line) showing that the apparent horizon
detaches from the throat at lower values of the amplitude for
the n = 4 data sets.
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FIG. 11. The maximum radiation loss (MRL) as a function
of the amplitude a, with b =2 and w = 1 (n = 2). The grid
size is 200 x 53 with the outermost zone at n = 6.
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VII. CURVATURE QUANTITIES AND
RADIATIVE VARIABLES

In this section we investigate the form of various cur-
vature quantities and radiative variables traditional to
numerical relativity calculations. We follow the work of
Smarr on the two black hole collision [4], Eppley and
Miyama on the pure Brill wave spacetime [7,8], Anni-
nos [40] on plane symmetric cosmologies, and additional
work on the evolution of the black hole plus Brill wave
spacetime by Bernstein [19]. We will examine the well-
known Newman-Penrose spin coefficients and projections
of the Weyl tensor, the quadratic curvature invariant 7,
and the York curvature tensor described in [41]. The
often used Bel-Robinson vector vanishes on a time sym-
metric slice and so cannot be included.

We begin with the curvature invariants of the Riemann
tensor. In a general spacetime (one containing matter)
14 independent scalar quantities can be formed out of the
Riemiann tensor [42-44,18,45]. In a spacetime containing
only electromagnetic fields the number reduces to nine,
and in a vacuum spacetime there are only four. The
simplest of these is the “square” of the Riemann tensor,
usually denoted I,

2] = ("R‘“’"‘ﬂ“)R,,,,ap (34)

and on a time symmetric slice this reduces to the simple
form

I = 4R°*R,,. (35)
For the Schwarzschild solution it is a straightforward af-
fair to compute

24 M2 3

I= = , 36
ré 8 M4 cosh'?(n/2) (36)

where r is the Schwarzschild radial coordinate. Spatial
variation of I has been used in the past as a means of
tracking the propagation of gravitational radiation [4,8]
in the sense that it appears to match well with other mea-
sures of the radiation during the evolution (in particular
with the Bel-Robinson tensor).

In specific gauges the Newnian-Penrose quantities have
precise physical interpretations [46]. However in a 3+1
calculation it is usually impractical to compute the quan-
tities in these gauges and here we resort to evaluating the
quantities in a convenient, albeit relatively unphysical,
manner.

In order to compute the Newman-Penrose quantities
we must choose a specific null tetrad. This may be re-
duced to choosing a family of two-surfaces which foliates
the t = const hypersurfaces and for convenience we have
chosen the constant 7 surfaces in this work. Hence the
tetrad consists of two null vectors k* and I* orthogo-
nal to each other and to the n = const surfaces, and two
complex “null” vectors m* and m* which span those sur-
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faces. Assuming unit lapse and zero shift on the initial
slice and with the three-metric in the form (7) these are

1 1
HF=—11,- , 0,0 37
vz ( e 0.0) 7
1
i
( \Ilzeq P2 sinﬂ) ’ (39)
1 1 -1
mt=—10,0, ——, ———— ). 4
" ﬁ( ' Qea’ U2 sin()) (40)
The spin coefficients are
K = —k,,mtkY, v =l,,m"",
p = —ky,mtm”, g =, m'm”,
(41)
o = —ky,mtm?, A=, m*mY,
T = —ky,, m*lY, m =1, 'k,
€= %(m“;yﬁ“k" — ky,ym*mY),
v = 3 (lup k" — Mym*1Y),
(42)
B = 1(mum*m” — ky,m*mY),
a= %(l“;yk“ﬁ" — ., miTmY),
and using the tetrad above these reduce to
p=p, c=2A pB=-a, (43)
T=V=—-T=—K, (44)
e=v=0, (45)
1 4w,
= — 2 46
o= 575z (1 52) (46)
1 2¥
= —— + s 47
s (104 5% (a7)
ql"’
=—-—"1— 48
7 2v/2 192 (48)
1 2V 4
=—— t — ). 49
a 2\/ﬁeq\l’,‘z(c00+ T ) (49)
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The relevant projections of the Weyl tensor are

o = Cpursk#m*k*m?, (50)
Uy = Cpuask 1%k m®, (51)
U, = 1Cuask*l” (KM — m*m?), (52)
U3 = Cpasltk P, (53)
Uy = Cpnsltm” M md, (54)

which reduce to

Uy =Wy, ¥;=-0s3, (55)
_ 1 g, Yo Yog6 , Yndn
\1’2 = ez—q\Il_“ —7 c0t0 + \Il cot0 ‘11 + \I/
¥ 00 To\® v,\? 1
3 ( v) 2w 2|’ (56)
1 d,n Uage , Y04
\113———-62("1’4(2 c°t0+_——q; +—\Il
30 ¥, ¥ 0
aYe ¥ 57
+ \I,Z L] 4 ( )
_ 1 g, Ve g60 , Y96 dnn
Uy = Zagd (—2— cotf + v cotf — 5 + v 2
¥ nqq Y g9 3 (\I’ 3)2
_Ynda ¥, , ‘ 58
2 v e (58)

In the Schwarzschild solution these take the values

T=v=n=Kk=€e=y=0=A=0, (59)

1 tanh(n/2)

= , 60
° V8 M cosh?(n/2) (60)

1 cotd
= - , 61
= T /32 M cosh(n/2) (61)
‘1’0:‘111:‘1’3:‘1/4:0, (62)
e LM

 8MZcosh®(n/2) 13

Note that for a time symmetric initial data set I is related
to the Weyl tensor components by

I=28[(T4)%+3(¥2)% + 4(¥1)?]. (64)

Finally, York [41] has proposed a measure of curvature
for each three-dimensional hypersurface which retains the
symmetry properties of the Weyl tensor and characterizes
the conformal three-geometry in a natural way. Specif-
ically he constructs the tensor, which we call the York
curvature tensor:

Bab — _%75/6€aef,7bdeef‘ (65)

Here €2 is the three-dimensional Levi-Civita tensor and
R,pc is defined to be

Rabc = DcRab - DbRac + % (7acDbR - 7achR) ) (66)

R, being the Ricci_tensor, and R the scalar curvature
formed out of yap. B° is constructed to be symmetric,
traceless, transverse, and conformally invariant.

The point of the York curvature tensor is that, in a for-
mal sense, it captures the 2 dynamical degrees of freedom
of the gravitational field. In spherical symmetry it van-
ishes identically because in this situation all three-metrics
may be written in conformally flat form ., = ¥*f,s.
The conformal factor ¥ solely determines the field and
¥ may be regarded as a constrained or not freely specifi-
able part of the gravitational field [17]. In axisymmetry
the tensor has only two nonvanishing components (in an
appropriate coordinate system) which are related by the
transversality condition. Hence it has just one degree of
freedom. This again makes sense because in an axisym-
metric spacetime one may always eliminate one of the
two polarizations of the field by a coordinate transfor-
mation (a rotation of the observer). Our examination of
the York curvature tensor is purely experimental as little
is known about it apart from what is given in Ref. [41].
The work of Anninos [40] and Bernstein [19] suggests
that the York curvature acts in some respects like a ra-
diative quantity, much like the Bel-Robinson vector and
the Newman-Penrose quantities.

In axisymmetry (3°® has two nonzero components,
which with our initial three-metric are

Gl = —1(e? sind)2/3(g .99 cotl + g, cotd — g g cot® f
+%q,eee —4,09,60 —dnnd6 —4d6 + %qmne), (67)

B* = —1(esinf)*/3(q, cot? 0 + ¢.nq.00 — 3q,nmn

+qnqnm — %q,noo +4,9)- (68)

Note that since ,5"" is conformally invariant we may com-
pute it exactly given the form of q. The resulting expres-
sion is complicated and we do not write it here.

In Fig. 12 we show some of these quantities as surface
plots for the initial data set (0.1, 2, 1). To show the
variation along the throat more clearly and to give some
indication of the topology we have used a radial offset
of one (in the 77 coordinates), the value one being chosen
purely for aesthetic purposes. While all of the functions
show oscillations near = 2, the peak of the function g,
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only ¥, and I have maxima there (here I is plotted as
the ratio of the computed value to a “spherically sym-
metric value” computed by (36) with M the ADM mass
and r the areal radius of the constant 7 shell). These
two quantities are second order in the derivatives of the

N N
N

N
N’
—_a  H Hhih

R
T T TR Hik
N W
NN \\\\\\\\\\\\\\\\\\\\“\\
N::}‘\\\m\\\}&\\“\\\\}“‘“\\
IR

equator

N
NN

NN
RN NN
X m\};\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

LTITRTIRETATAN

York*23

FIG. 12. Various curvature and radiative quantities plotted as a function of n and 6 for the data set a = 0.1, b =2, w = 1.
(a) The curvature invariant I divided by the spherically symmetric value (36) using the areal radius of the constant 7 shell
for 7 and the ADM mass for M. (b) Weyl tensor component ¥4, (c) spin coefficient o, (d) York tensor component B*3, and
(e) York tensor component ﬂ.”. Each quantity is in the appropriate units of the ADM mass. The grid size is 200 x 53 with

outermost zone at 7 = 6 in all cases.
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metric while o and 32 are first and third orders, respec-
tively. Also note that I has a (relative) peak on the axis
rather than on the equator. When the sign of a is re-
versed this peak occurs on the equator while the peak in
¥4 remains on the equator (¥4 vanishes identically on
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the axis). Figure 13 shows the same plots for I and ¥4
when the amplitude is increased to a = 1.

VIII. LINEARIZED TREATMENT

In the previous section we have examined a number
of radiation indicators based on nonlinear constructions,
such as the Weyl tensor. In this section we consider a
perturbation expansion of the initial data set about a
spherical, Schwarzschild background spacetime. If the
Brill wave amplitude a vanishes, the Schwarzschild solu-
tion results, so for a small we may appeal to the well-
known perturbation theory for black holes to analyze the
solution. This analysis is based partly on the wave form
extraction technique pioneered by Abrahams [15] that
was used in Ref. [9] to obtain wave forms for moderately
distorted black holes.

First we consider the spectrum of angular modes (¢
modes) that are present in the initial data for various
choices of the Brill wave function ¢q. If ¢ = 0 the solution
is spherically symmetric, corresponding to a pure £ = 0

\ \\\\
NHnkk
TR
AR

equator

equator

FIG. 13. (a) The curvature invariant I normalized to its
spherically symmetric value for data set a =1, b= 2, w = 1.
(b) Weyl tensor component ¥, for the same initial data set.
Each quantity is in the appropriate units of the ADM mass.
The grid size is 200 x 53 with outermost zone at 7 = 6 in all
cases.

mode. As q is turned on, the black hole becomes distorted
in a nonspherical way, inducing higher multipoles in the
solution.

The Hamiltonian constraint (12) can be written as

2 _, 1. (8% 8%

where V32 is the “theta” part of the laplacian operator.
If we expand the functions appearing in this equation in
terms of spherical harmonics as

v =Y 4O Y (70)
£=0
and
g="Y_ag"¥ ()Y, (71)
£=2

then using the relation
V2eYe = —£(£ +1)Yqo (72)

it is easy to show that for small a the nonlinearity of the
Hamiltonian constraint [i.e., the g ;; terms in (12)] will
mix various £ modes. For example, if the free function ¢
has the form

q = ag(n) sin’ 0 (73)

then for small a the resulting solution for ¥ (and hence
the metric) will contain £ = 2 terms of linear order in
a, but also £ = 4 terms of order a?. Therefore, even
the n = 2 data sets will contain an admixture of £ = 4
modes in the initial data, although at second order in
the amplitude parameter a. Similarly, the n = 4 data
sets will contain an admixture of not only £ = 2 (which
is present even at linear order in this case because sin? @
itself is a mixture of Y39 and Yy), but also £ = 6 at
second order in a.

We can extend this analysis to extract the Zerilli func-
tion 7 from the initial data. This function is gauge in-
variant, and its evolution obeys a simple wave equation.
It is a direct measure of the gravitational waves present
in the system, and was used extensively in the companion
paper [9] on the evolution of these black hole data sets.
In that paper we examined the time development of the
Zerilli function 9 at various fixed coordinate locations.
Here we consider the spatial dependence of this quantity
in the initial data.

As shown in Ref. [9], the Zerilli function can be ex-
tracted by dividing the metric into a spherical back-
ground part and a nonspherical perturbation. The per-
turbation is decomposed in terms of spherical tensor har-
monics, and using the orthogonality of these angular
functions various £ modes of the gauge invariant Zerilli
function can be extracted numerically from the initial
data. In Fig. 14 we show both the £ = 2 and £ = 4 Zer-
illi functions for the data set (a, b, w) = (0.5, 0, 1) and
angular parameter n = 2, with the Weyl tensor compo-
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Wave Extraction Comparison

—— | = 2 Zerilli Function
—— 1 =4 Zerilli Function

- Psi4 1 0.04
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Zerilli Functions

e oo

FIG. 14. Three different wavelike quantities are plotted as
a function of the radial coordinate n for the initial data set
(a, b, w) = (0.5, 0, 1) with angular parameter n = 2. The am-
plitudes of the £ = 2 (solid line) and £ = 4 (long dashed line)
extracted Zerilli functions are given by the left vertical scale,
while the Weyl tensor projection ¥4 (dashed line), measured
along the equator 6 = 7 /2, is given by the right vertical scale.
The nonlinearity of the Hamiltonian constraint generates the
£ = 4 contribution to the initial data, as discussed in the text.

nent ¥, along the equator § = /2 for comparison. As
expected, even for n = 2 there is a mixture of £ = 4 radia-
tion in the initial data set, although with a much smaller
amplitude. (The amplitudes have been normalized as in
Ref. [9] to give a true comparison of the energy carried
by each £ mode, and the quantity ¥4 has been normal-
ized as in Ref. [47].) These three different quantities are
well correlated spatially, indicating their wavelike nature.
Studies of the evolution of such data sets show that for
small amplitude, n = 2 Brill waves, the £ = 4 mode Zer-
illi function scales quadratically in the amplitude a, as
expected [19)].

IX. CONCLUSIONS

We presented a new family of initial data sets for use in
studying dynamical axisymmetric spacetimes containing
distorted black holes in numerical relativity. These data
sets combine the approach of Brill to create a nonlinear
vacuum, gravitational wave spacetime, and the Einstein-
Rosen bridge construction with an isometry connecting
identical three-surfaces across a throat. For simplicity
the data sets have been chosen to be time symmetric.
We have chosen a particular functional form for the free
gravitational wave data in the conformal three-metric,
containing four free parameters that specify the shape
and amplitude of the free wave data. The Hamiltonian
constraint then reduces to a linear elliptic equation for
the conformal factor ¥, which we have solved for a variety
of free parameter choices.

If the amplitude of the free data is chosen to vanish, the
isometric Schwarzschild solution results. If the amplitude
is taken to be small, a slightly distorted Schwarzschild

spacetime results that can be analyzed with perturbation
theory, and if the amplitude is chosen to be large a highly
distorted black hole spacetime is created. Some low am-
plitude data sets have been evolved and the results have
been discussed in Ref. [9]. The evolution of more highly
distorted black hole spacetimes are presented in [19].

Of particular interest in black hole spacetimes is their
horizon structure. For these initial data sets we have used
a method of Cook [48] to find apparent horizons in these
distorted black hole systems, and studied their mass and
intrinsic geometry. For a certain range of the parame-
ter space of the initial data we find apparent horizons on
the black hole throat, or isometry surface. But for other
ranges the horizon detaches from the throat and is found
outside it. We find that although the coordinate shape
of the horizon is generally rather spherical, its intrinsic
geometry can be extremely nonspherical in this system.
Depending on the free wave parameters, the horizon can
be oblate or prolate. For the prolate case the horizons
can have very long, spindlelike geometries, with the ra-
tio of polar to equatorial circumference exceeding 100:1.
If the black hole event horizon is strongly distorted, it
could raise interesting questions about the hoop conjec-
ture [49-51]. However, whether the event horizons will
have similar geometries is a question that can only be an-
swered by evolving these systems. A project to examine
the properties of the event horizon for these spacetime is
being undertaken and is beginning to yield results [33].

We have also examined the ADM mass of these space-
times and compared it with the mass of the apparent
horizon. In all cases, the ADM mass is found to be
greater than the apparent horizon mass, confirming the
Penrose inequality (33) for these data sets (see [39]). We
have also computed the maximum radiation loss for these
spacetimes, defined to be 1— Mau/Mapm. For wave data
localized near the throat this quantity is generally found
to be small (a few percent), but by moving the wave data
away from the hole it can be made quite large, approach-
ing 1 in some cases.

A number of other the properties of these initial data
sets have been examined, including the Riemann invari-
ant I, the Newman-Penrose projection of the Weyl ten-
sor, and the York curvature tensor. These quantities are
often considered as candidates for indicating the presence
of gravitational radiation, and have been studied in the
dynamical evolution of these data sets [19].
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APPENDIX A: THE INITIAL-VALUE
PROBLEM

This appendix will discuss the numerical methods used
to solve the Hamiltonian constraint (12) and the appar-
ent horizon condition (27). Sections 1 through 3 will
discuss the Hamiltonian constraint and Appendix B the
apparent horizon finder.

1. Formulation

The initial three-metric is

ds® = U* [e?Y(dn® + db?) + sin20d¢2] (A1)
and the equation to be solved for ¥ is the “eigenvalue
equation” (12)
8%v  9*%  9v 1 8%q 9%q
o + T cotd=—-T [ ataa —1]).
a2+ 67 T a9 =37 (anz * %62 )
(A2)

The function ¢ must satisfy a set of boundary conditions
but is otherwise arbitrary (though it may not be “too
large,” see Sec. III).

In addition to axisymmetry we choose the initial slice
to be equatorial plane symmetric and isometric through
n = 0. Hence the calculation takes place on a two-
dimensional domain with boundaries on the axis of sym-
metry (6 = 0), the equator (6 = 7 /2), the throat (n = 0),
and an outer boundary (usually » = 6). Boundary con-
ditions on the three-metric components on the axis and
equator can be determined from symmetry conditions.
For instance, it can easily be seen that axisymmetry and
equatorial plane symmetry require

_ Ov11
=0 60

Oy
00

= 0. (A3)

O=m/2

To derive the condition on 7;; at the throat let the
three-metric be written in the spherical polar coordinates
(p,0,4) and let the isometry surface be located at ra-
dial coordinate p = a. Let p’ denote the radial coordi-
nate on the other side of the isometry surface. Then the
inversion-through-the-sphere transformation from p > a
to p < a is given by

p=—. A4)
- (
By the usual tensor transformation rule we have
Y11(P = a) = m1(p = a), (A5)

where v}, is the metric component inside p = a. On the
isometry surface this condition, along with continuity of
the first derivative gives

(a’Yn n 2v11 )
dp a

=0. (A6)

p=a
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In the (7,6, ¢), with p = ae”, coordinates, the inversion
transformation (A4) is simply

n'=-n (A7)
and the boundary condition (A6) becomes

011
On

=0. (A8)

n=0

Now 7;; = ¥%e?? and so we may evidently choose the
boundary conditions for ¥ and g arbitrarily except that
together they must satisfy

og  20%
an Y on

The first choice, and perhaps the most natural, would
be to choose ¥ to have the same conditions as
in the Schwarzschild solution where we have ¥ =
V'2M cosh(n/2). Its boundary conditions are simply

(A9)

n=0

ov
a0

_ov
T

_ov
0=n/2 on

=0. (A10)

6=0 7=0

This choice is the one made throughout this work. Equa-
tions (A3) and (A9) give the conditions on g:
%
a0

_ o
oeo D0

_ Y

- —0. (A11)
O0=m/2 (97]

n=0

This leaves only an outer boundary condition to de-
termine ¥ uniquely. As York [18] has stressed, the outer
boundary condition on ¥ is crucial to obtaining good
solutions of the Hamiltonian constraint. In the (p, 8, ¢)
coordinates the spherically symmetric solution is

v-1+M

2 (A12)

and so one might set ¥ = 1 as an outer boundary condi-
tion. York has pointed out that this produces an error of
order p~! at the outer boundary, and he suggests using
the Robin condition
oy v-1
+——=0

9z A13
% T 5 (A13)

which gives an error of order p=3. In (7,6,¢) coor-
dinates the spherically symmetric solution of (A2) is
¥ = v/2M cosh(7/2) and so there exists no analogue of
setting ¥ = 1 on the boundary. In this work we have
chosen to implement the Robin condition (A13) which in
the (7,0, ¢) coordinates takes the form

or 1 m

_ — — —e = (.

B + 2\11 \/ 7€ 0 (A14)
The standard procedure for solving Eq. (A2) is as

follows: specify a suitable function ¢, then approximate
the Hamiltonian constraint (A2) according to some finite
difference scheme and solve the resulting set of coupled
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linear equations. Here we have chosen the standard sec-
ond order centered finite difference operators. Denoting
by ¥, ; the value of ¥ at the grid point labeled by 7 (the
7 index) and j (the @ index) we have

ov ~ ‘I’,‘+1,j - ‘I’,'_l,j

= o A15

on Ay (A15)
S : : A16
an? (An)? ’ (A16)

0¥ Vi1 —¥ij

%~ 280 (A1)
P | Wijy1 — 2% + Wiy (A18)

862 (A6)2
These are substituted into Eq. (A2) resulting in an n, x
ng inhomogeneous linear system for the n, xng quantities
¥; ;. [The system is inhomogeneous because of the outer
boundary condition (A14).]

The linear system can be solved by a variety of meth-
ods. A number of different algorithms were explored and
these are discussed more fully in [52]. In this work a gen-
eralized conjugate gradient residual method in the pack-
age PCGPAK by Scientific Computing Associates was used
along with a multigrid code written by Greg Cook and
several solvers written by John Towns.

2. Alternative formulations

In spherical symmetry the Hamiltoman constraint
(A2) has the solution

¥(n,0) = V2M cosh(n/2). (A19)

From a purely numerical point of view this is to be con-
trasted to the solution of the Hamiltonian constraint us-
ing the coordinate p = (m/2)e":

¥(p,0) =1+ 1. (A20)
2p
The latter form of ¥ has the attractive property of itself
asymptotically becoming constant and all its derivatives
vanishing. The solution in 7 coordinates, on the other
hand, does not have such behavior. It and all its deriva-
tives are exponentially increasing for large values of 7.
The finite difference approximations (A15)—(A18) are
derived by expanding the function ¥ in a Taylor series
around the point at which the approximations are de-
sired. By manipulating several such series it is possible
to get any number of higher order terms to drop out,
resulting in an approximation of arbitrarily high order.
For instance, the second order approximation of the first
derivative comes from making two such expansions and
subtracting them. (For the details see [53] Sec. 3.2.) The
expression, including truncation error term, reads

37177

0¥ _ Wi1; — Wiy _ (An)? 0¥
on 2A7n 6 on

+0[(An)*]. (A21)

So in the case of an exponentially increasing ¥ the trun-
cation error becomes larger as 7 increases while in the
case of (A20) the ratio of the truncation error to the
next leading term decreases as p~2. This means that so-
lutions generated in the 7 coordinates are not going to
be as accurate as those generated in (p, 0, ¢) coordinates
on the same computational domain.

One solution to the problem is the following: simply
factor ¥ in the 7 coordinates as

\II=\II'1/E e"?,
2

and solve R = 0 for ¥’. In spherical symmetry the solu-
tion is

(A22)

U =1+e" (A23)
Using the transformation p = (m/2)e" gives
, m
=14+ —, A24
0 + 2 (A24)

exactly the form (A20) (in spherical symmetry m = M).
This form of the solution, while having good far zone
behavior, suffers from the fact that the isometry inner
boundary condition (A9),

oy v

is an “anti-Robin” condition: compared to (A13) the ¥
terms have the wrong relative sign since the normal vec-
tor to the relevant boundary points in the opposite direc-
tion. This condition does not lend itself to the standard
proofs of uniqueness for the initial-value problem and can
be awkward when used with some standard techniques
for solving elliptic equations (see York [18] for comments
and references).

Another solution, one which preserves the original
boundary condition at the throat, is provided by the fac-
torization

¥ = ¥'v2m cosh(n/2). (A26)

This gives the Hamiltonian constraint the form

82y 52 v’ oY
3_7]2 + 302 + tanh(’r]/2)% + 30

cotf

_ 1., d*q  0%q
= 4‘1’ (3’!72 +302 , (A27)

and has spherically symmetric solution
v =1. (A28)

The Robin condition takes the form
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ov’
v —1=
oy © 0 (A29)
for factorization (A22) and the form
ov’
(1+4e™M+¥' —-1=0 (A30)

On

for factorization (A26). Note that m has dropped out
of the boundary condition, and hence out of the solu-
tion completely. This makes sense since m serves only
to set the length scale; i.e., it should “dress” the con-
formal factor rather than determine it. It stays in the
original formulation only because of the outer boundary
condition.

Of the three equations, the unfactorized version gave
solutions in the widest range of cases. Factorization
(A22) was implemented but it generally did not converge
in cases where (A26) did, and when it did was no more ac-
curate. The final scheme used to solve the Hamiltonian
constraint was to first have the code attempt to solve
(A27). If no solution was found then the original unfac-
torized version (A2) was tried. If no solution was found
for this equation as well then the code was stopped.

3. Convergence and accuracy

Once the linear system has been solved we may still
ask how well the Hamiltonian constraint (A2) is satis-
fied. The tolerances on most solvers can be set quite
low, so that, for instance, the linear system is satisfied
to within a part in 10'°. But this is only one measure of
how well the Hamiltonian constraint is satisfied and it is
arather artificial one at that. What we have chosen to do
is to solve the equation using the centered second order
operators and then evaluate the result with the centered
fourth order operators (the standard centered fourth or-
der differences were used, e.g., [53]). When this is done
the average residual (defined below) is typically much
greater than 1071°, in fact, it is usually on the order of
(An)* ~ 107 or so.

The maximum residual of the fourth order system can
be used in a convergence test, i.e., the change in the
maximum of the residual as finer and finer grids are used
indicates whether or not the scheme is convergent and if
it is at approximately what rate it is converging. This
is fine if one wants to compute convergence rates, since
in this case all one needs is the slope of the error as a
function of the grid spacing. But for a given grid spacing
it would be helpful of one could form a set of quantities
upon which a judgment could be made as to the overall
accuracy of the solution. In the case of a vacuum space-
time where the constraints must vanish, one cannot a
priori assign a level to them below which the solution is
deemed accurate. That is, with the constraints we have
the following question: “How small is small enough?”

One way of gauging this is by the following. In a space-

time with matter the Hamiltonian constraint reads
R — K, K + (trK)? = 2p, (A31)

where p is the mass-energy density of all matter fields

(in the frame at rest with respect to observers on the
t* congruence). In a free evolution scheme where the
constraints are not explicitly enforced we generally do not
have p = 0 and one way of measuring the “smallness” of
the given left-hand side of (A31) is to compute the total
mass it represents and compare that to the known mass
of each hypersurface.

We define the residual of the Hamiltonian constraint
to be

- 8 |°v, ot ov
e = PSe2a |52 | 962 ' 99
1 8%q 0%q

And we define the Hamiltonian mass to be the volume
integral of the Hamiltonian residual over the computa-
tional domain:

H, = / HiyesdV = / H,os U5 sinfdn d do.
A% %4

Here we use the original form of the Hamiltonian con-
straint (A2) rather than (A27) and retain the overall
factor of 8% ~%¢~29 in the scalar curvature. For typi-
cal “strong wave” parameters, say (1, 1, 1), H,,,/Mapu is
about 0.02 while for typical perturbation parameters, say
(0.1,1, 1), it is about 10 times smaller. Also note that if w
is much less than 0.5 then the Hamiltonian mass increases
sharply. For instance (1, 0, 0.25) has H,,,/Mapm = 0.37
(on a 200 x 53 grid, the standard size for computing al-
most all the results shown in this paper).

The convergence test is as follows: we pick a set of
physical parameters which characterize the initial data
in general and plot their values for one particular data
set as a function of the number of computational zones.
The initial data set chosen is (1, 1, 1). The physical
parameters chosen are the ADM mass measured on the
outer edge of the grid (Mapm) in units of the scale param-
eter m, the mass of the apparent horizon My in units
of Mapm, and from these two the MRL, the ratio of the
polar to equatorial circumference of the apparent hori-
zon, the logarithm of the average and maximum of the
residual of the Hamiltonian constraint in units of m™2,
and the logarithm of H,, in units of Map. The appar-
ent horizon is located at 7 = 0. The data is shown in
Table II, log,q Hy» and log,y Hmax are plotted in Fig. 15.
A least squares linear fit to the data show that the error
is decreasing at nearly second order in A7 and Af. Note
that we have not independently varied the resolution in
n and € as An and A0 are set to be approximately equal
on each grid.

As discussed above, the ADM mass is only properly de-
fined at spatial infinity. Hence although its measurement
over a finite two-sphere is converging as the number of
grid points is increased, it is converging to some value dif-
ferent than that which would be obtained as a limit when
the two-sphere is expanded to infinity. As a consequence
the limiting value of Mapy in Table II, unlike the other
numbers in the Table (excluding the MRL of course),
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TABLE II. Convergence of some of the properties of the initial dataseta=1,b=1,w=1.In
each case the outermost grid point is located at = 6.

Mpom (m) Man (Maom) MRL Cp/Ce logyo Hm log o Hmax 1080 Haverage
50 x 14 0.977173 0.699943 0.300057 1.651669 -0.63 -2.88 -3.96
100 x 27 0.972377 0.701846 0.298154 1.651082 -1.25 -3.47 -4.57
150 x 40 0.971489 0.702203 0.297797 1.650971 -1.61 -3.82 -4.92
200 x 53 0.971179 0.702327 0.297673 1.650932 -1.86 -4.07 -5.17
250 x 66 0.971035 0.702385 0.297615 1.650914 -2.05 -4.26 -5.36
300 x 79 0.970958 0.702416 0.297584 1.650904 -2.21 -4.42 -5.52
350 x 92 0.970911 0.702435 0.297565 1.650898 -2.35 -4.56 -5.66
400 x 105| 0.970880 0.702447 0.297553 1.650895 -2.46 -4.67 -5.77

cannot be taken at its face value. In Table III we show
the behavior of the ADM mass for spacetime (1, 1, 1) as
the outer boundary of the grid is moved outward. The
number of grid points and outer boundary value are cho-
sen to make the grid spacing the same for each case. Note
that the difference in the ADM mass with the boundary
located at n = 6 (areal radius approximately 209 Mapm)
and n = 8 (areal radius approximately 1535 Mapm) is
only about one part in 105.

Finally we point out that the location of the outer
boundary is not fixed, but, as a consequence of the fact
that the metric of the surface is the solution to the prob-
lem, varies according to the input parameters. If a con-
stant 7 shell has proper area A then we define its areal

l‘a.dius as
7 areal \' l .

In Table IV we show the areal radius of the grid edge
in units of m, Mapm, and May as a function of a with
b =2 and w = 1. With the outer boundary set at n = 6
the areal radius of grid edge is 203m in spherical symme-
try. As the Brill wave amplitude is changed this number

(A33)

Log error

[ —=— Hamiltonian mass
—— Hamiltonian average
—— Hamiltonian maximum

100 200 300 400

Number of radial grid points
FIG. 15. Convergence of the solution of the Hamiltonian
constraint for initial data set (1, 1, 1). The three curves
are log,q Hm, 10g,o Hmax, and log,, Haverage (top, middle, and
bottom, respectively). Least squares linear fits to the curves
have slopes -2.03, -1.99, and -2.00, respectively. The data is
taken from Table II.

remains relatively constant. However since Mapy is vary-
ing as a changes the areal radius of the grid edge varies
widely if measured in units of Mapy. Thus for data set
(1, 2, 1) the areal radius of n = 6 is only about 134Mspm
and that of (—1, 2, 1) is only about 49Mpv. Note also
that the areal radius of the grid edge can differ by a large
factor depending on whether one measures it in terms of
the apparent horizon mass or the ADM mass, as in the
case of data set (2, 2, 1).

APPENDIX B: LOCATION OF APPARENT
HORIZONS

This section contains details of the numerical method
used to locate the apparent horizons shown in this work.
In numerical relativity apparent horizon finding has a
long history, primarily associated with two black hole ini-
tial data sets. The litany of that research includes Brill
and Lindquist [26], CadeZ [54], Bishop [55], Nakamura
et al. [56], and most recently Cook [34]. Important ad-
ditions were the apparent horizons on the R? topology
Brill wave initial data sets of Eppley [6] and the horizons
on the single Einstein-Rosen bridge manifolds of Cook
and York [48]. The research has used a variety of dis-
tinctly different methods for locating the horizon. Brill
and Lindquist, Eppley, and Nakamura used a numerical
method for finding coefficients in a series expansion for
the surface. Bishop and Cadez reduced the problem to
the solution of an ordinary differential equation which
CadeZ analyzed as the equations of motion of a parti-
cle in a certain potential and which Bishop treated as
the geodesic equation for a certain metric. In this work,
however, we will use the method of Cook. Like Bishop
and CadeZ, he treats the problem as finding the solution
of a particular ordinary differential equation (ODE), but
unlike them he solves the resulting two-point boundary-
value problem using a relaxation technique rather than
the shooting method. (The recent method of Tod [57)
should also be mentioned. He considers the problem as
finding the equilibrium state of a parabolic system.)

Given a hypersurface ¥ with three-metric 745 and ex-
trinsic curvature K, the problem in general is to find
the outermost compact, orientable, two-surface S whose
outward pointing spatial unit normal s (that is, lying in
¥) satisfies
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TABLE III. Value of the ADM mass measured on the outer boundary as a function of the
boundary position for initial data set (1, 1, 1). The grid spacing is An = 6/199 in each case.
7 at boundary I 4.4623 4.975 5.457 6.000
Mapu/m at boundary| 0.9707069 0.9711462 0.9711768 0.9711788
7 at boundary | 6.482 6.965 7.477 7.960
Mapm/m at boundary| 0.9711984 0.9711807 0.9711821 0.9711829
b 1
Dgs® 4+ Kaps®s® — trK = 0. (B1) s = (1,—hg,0). (B7)

On the initial slice the extrinsic curvature vanishes and
(B1) reduces to the “minimal area” condition

D,s* = 0. (B2)
In general we may parametrize a spatial two-surface in
an axisymmetric spacetime by a parameter [ as

S= (n(l)va(l)v ?), (B3)

where, in principle, 1 and 6 are arbitrary (C?) functions
of I. However in this work we restrict our search to sur-
faces of the form

S = (h(6),6,¢)

(this restriction is also made by Cook [34] and Cook and
York [48]). This is not an unreasonable restriction since
it is known (see the discussion in Sec. V) that the sur-
face must be of spherical topology and so the required
curve should have end points at § = 0 and 0 = =/2.
The additional restriction embodied in (B4) is that the
curve is single valued in its # component. This should
not be troublesome since a double valued curve would
contain two “turn-around” points where one would sus-
pect that the divergence of outgoing normals would tend
to be larger, making it more difficult for such a surface
to be trapped.

From (B4) we may compute the coordinate compo-
nents of the tangent to the curve

(B4)

dh
o _ (2.1 B5
t (daa ) 0) ) ( )
and from the normalizations conditions
t%s, =0, s%,=1, (B6)

compute

V2e24/1 + (hg)*

Inserting this into Eq. (B2) yields
dr\?| [ 8q
1+ (E) ] (55 +

~ {1+ (%)2] (g—g+%%> =0. (B8)

Axial and equatorial plane symmetry require

d’h  dh
__+__

29% | coth
a6z " 4o teo

4 0¥
¥ 06

dh
do

_ dh

= — =0
dé ’

O=m/2

(B9)

=0

and, using L’Hospital’s rule, the equation at § = 0 re-
duces to

d*h 2 0¥
2 _ 2% 9
dé2 ¥ 9n ’ (B10)
and at = /2 to
d?h  8q 40Y
s B
dgz on ¥ In (B11)

Equations (B8), (B10), and (B11) are solved by finite
differencing k(6) according to the usual centered second
order differencing operators (A17) and (A18). This pro-
duces a set of ng coupled nonlinear algebraic equations
for the solution h(6). The equations are solved using
the well-known Newton-Raphson root finding algorithm
(Press et al. [58] or Cook [34]). The stopping criteria
was that the maximum of the residual [defined to be the
absolute value of the right-hand side of (B8), (B10), and
(B11) over the grid] be less than 1078. In general the
convergence of the method was quite good; one could
expect a lessening of the maximum of the residual by a

TABLE IV. Areal radius of the grid edge as a function of a with = 2 and w = 1. The grid size

is 200 x 53 with the outermost zone at n = 6.

a
Areal radius -1.0 -0.5 0 0.5 1.0 1.5 2.0

r/m 206.0 203.5 202.7 202.7 203.2 204.0 205.1
r/MADM 48.60 114.7 202.7 198.2 134.4 87.97 60.78
T/MAH 82.57 141.7 202.7 258.9 305.2 338.4 356.8
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TABLE V. Convergence of some of the characteristics of the apparent horizon for initial data
set (-0.8, 0, 1). The Gaussian curvature (GC) is in units of m~2. In each case the outermost grid

point is located at n = 6.

Grid size h(0) h(r/2) Mau/ Maom  Cp/Ce GC(6=0) GC(0=r/2)
50 x 14 1.214855 1.184160  1.0003427 _ 0.7750775 -0.003658277  0.03989346
100 x 27 | 1.210591 1.179164  0.9981326  0.7728590  -0.003896767  0.04020071
150 x 40 | 1.210102 1.178664  0.9977441  0.7726530 -0.003922605  0.04021569
200 x 53 | 1.209907 1.178445  0.9976104  0.7725616 -0.003933012  0.04022679
250 x 66 | 1.209814 1.178340  0.9975498  0.7725178  -0.003937938  0.04023202
300 x 79 | 1.209761 1.178279  0.9975154  0.7724921  -0.003940798  0.04023516
350 x 92 | 1.209732 1.178247  0.9974966  0.7724787  -0.003942297  0:04023680
400 x 105| 1.209714 1.178227  0.9974833  0.7724701  -0.003943259  0.04023785

factor of between 2 and 10 per iteration for a typical ini-
tial data set. (This type of linear convergence is typical
for the Newton-Raphson algorithm if the terms are eval-
uated numerically.) Typically less than ten, and usually
around five, iterations were required to reach the stop-
ping criteria. Of course, as is usual for this method, the
initial guess for the solution had to be reasonably good.
Choosing a surface too far out would make the method
diverge and there were some initial data sets which had
an analogue of the problem whereby the method encoun-
ters a local extremum and shoots off to infinity. Generally
speaking, a guess within one 7 unit (typically 1/6 the size
of the entire grid) was good enough.

In general h(6) will not occur right on a radial grid
point, instead falling somewhere in between them. An
interpolation scheme is needed in computing the values of
the metric and extrinsic curvature components and their
derivatives at h(6). Here we have used the monotoni-
cally constrained cubic spline algorithm of Hyman [59].

<35+

40t

Log error

-4.51

-5.0¢

100 200 300 400
number of radial grid points

FIG. 16. Convergence of the maximum of the absolute
value of the fourth order finite differenced residual of the
trapped surface equation for the initial data set (-0.8, 0, 1).
A least squares linear fit to the curve has slope -1.99. Run
parameters are identical to Table V.

This interpolant has two advantages over the usual cu-
bic splines: it is local and so should be computationally
less strenuous, and it is constrained to appear smooth
near discontinuities and sharp peaks. These considera-
tions generally do not come into play on the initial slice.
However during an evolution the equation (B1) has many
more terms and it is sometimes desirable to solve it on
every time slice and the computational savings may then
be significant. Also it is known that in general one can
expect the three-metric and extrinsic curvature compo-
nents to form large second spatial derivatives during an
evolution [19] and one would want the interpolant to be
able to handle this case. The order of the spline is de-
termined by the data out of which it is constructed. For
reasonably smooth data the spline is constructed to be
at least third order and in some cases fifth order. For not
smooth data the order is in general less, though since the
spline is local this applies only to the region in which the
data is not smooth.

In any particular initial data set there may be multiple
solutions to Eq. (B8). Even though one never knows ex-
actly how many solutions there will be, inspection of the
data and some prior geometrical experience (as with the
Schwarzschild spacetime) usually was enough to convince
that all solutions had been found.

We examine the initial data set (—0.8, 0, 1). Here the
throat is an unstable minimal surface and the apparent
horizon lies outside of the throat at about 7 = 1.2 (see
Fig. 7). Table V shows the convergence of the following
properties of the apparent horizon: its location on the
axis and equator, mass, polar to equatorial circumfer-
ence, and Gaussian curvature on the axis and equator.
A rate of convergence may be found by using the same
method as was used in the solution of the initial-value
problem: the solution to the second order finite differ-
enced system is fourth order differenced and then plugged
back into the equation. The absolute value of the max-
imum of the residual is then used as an error measure.
The data is shown in Fig. 16 and a least squares fit shows
that the rate is nearly —2. This may be expected on the
grounds that not only is the trapped surface condition
finite differenced to second order but so is the Hamilto-
nian constraint, whose solution determines the geometry
in which the apparent horizon is embedded.
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FIG. 12. Various curvature and radiative quantities plotted as a function of n and 6 for the data set a = 0.1, b = 2, w = 1.
(a) The curvature invariant I divided by the spherically symmetric value (36) using the areal radius of the constant 7 shell
for r and the ADM mass for M. (b) Weyl tensor component W4, (¢) spin coefficient o, (d) York tensor component 3'3, and
(e) York tensor component B*. Each quantity is in the appropriate units of the ADM mass. The grid size is 200 x 53 with

outermost zone at 1 = 6 in all cases.
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