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Perfect fluid scalar-tensor cosmologies
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A method is investigated which enables exact solutions to be found for k = 0 Friedmann cosmo-
logical models with a perfect fluid satisfying the equation of state p = (p —1)p, where p is constant
and 0 ( p ( 2, in scalar-tensor gravity theories with an arbitrary form for the gravitational cou-
pling function u(P), which defines the theory. A number of explicit solutions are investigated for

p = 0 universes and infiationary universes, including those for theories in which &u(P) has a power-
law dependence on the scalar field P. When p = —p new varieties of infiation arise in which

a(t) oc t" exp (Hot ).

PACS number(s): 98.80.Hw, 04.50.+h, 98.80.Cq

I. INTRODUCTION

Scalar-tensor gravity theories [1—3] have become a focal
point of interest in many areas of gravitational physics
and cosmology. They provide the most natural general-
izations of general relativity (GR) and thus provide a con-
venient set of representations for the observational limits
on possible deviations &om GR. They are required for
a complete evaluation of the cosmological implications of
any "fifth force" variation in the behavior of gravity in the
weak-field limit [4,5] and associated ideas of "oscillating
physics" [6]. The evolution of extra dimensions of space
in quantum cosmologies produces behavior characteristic
of scalar-tensor theories [7,8]. Any variation of the New-

tonian gravitational "constant" with time may produce
unusual physical effects if black holes are formed in the
very early Universe [9]. It has also been shown that a
scalar field responsible for time variation in the gravita-
tional coupling can drive new forms of infiation [10,11].

In order to evaluate these efFects in scalar-tensor grav-
ity theories it is necessary to have exact cosmological
solutions for the entire span of cosmological evolution.
Only in this way is it also possible to constrain the the-
ory by simultaneously imposing the observational lim-
its arising from different epochs in cosmic history (pri-
mordial nucleosynthesis [12], contemporary cosmologi-
cal expansion dynamics) and the weak-field solar system
tests [5,13]. In the past this has been impossible because
exact cosmological solutions of scalar-tensor gravity the-
ories, characterized by a scalar coupling u(P), have only
been available in particular cases. In the most studied
(special) case of Brans-Dicke theory [1], where ur(P) is
constant, particular solutions are known for the Pried-
mann cosmological models with perfect Quid equations
of state when k = 0. When k g 0 only vacuum, radia-
tion, and stiff Quid solutions have been found. Recently,
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it has been shown by one of us [14] that Friedmann cos-
mological models of all k can be found in ur(P) theories
by a suitable choice of variables, but this method works
by exploiting the conformal invariance of the theory and
is successful only when the energy-momentum tensor is
trace-&ee, that is, for vacuum and radiation-filled mod-
els (incidentally, this method also applies to stiff fiuid
solutions because they can be reduced to the vacuum
case [15]). No exact solutions appear to be known for
~(P) cosmologies with other perfect fiuid equations of
state, for example, that of zero pressure (although an ap-
proximate study of some inQationary models was given
by Barrow and Maeda [11] and other qualitative stud-
ies have been made by Damour and Nordvedt [16]). In
this paper we show how an appropriate choice of vari-
ables permits an integration of the gravitational field
equations for k = 0 Friedmann models in u(P) theo-
ries with a general p = (p —1)p equation of state and

p constant. Two classes of solutions are of particular
interest: those for dust (p = 1) models, which describe
the post-recombination history of the Universe to a very
good approximation, and those with p = 0, which de-
scribe an era of in6ation dominated by a slowly evolving
scalar field with p = —p. The exact solutions obtained
in the latter case enable us to evaluate the forms of infia-
tion that arise from a wide class of u(P) gravity theories.
The p = 0 solutions, in conjunction with the radiation
solutions studied earlier [14], will allow us to construct
complete histories encompassing both the radiation era
and the dust-dominated era up to the present and to dis-
cover which variations of G(P) are ruled out by a com-
bination of primordial nucleosynthesis and solar system
gravity tests.

In Sec. II we introduce the field equations for the
scalar-tensor gravity theories. In Sec. III we give the
equations defining cosmological models in u(P) theories
in terms of new variables, which reduce them to inte-
grable form after the choice of one free "generating" func-
tion of one variable, which is equivalent to defining the
theory by specifying ur(P). In Sec. IV we give a number
of explicit dust (p = 0) solutions and discuss their asymp-
totic forms. In Sec. V solutions are given for the p = —p
case appropriate for simple in6ationary universes. We
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find that new forms of in8ation are possible. In Sec. VI
we discuss the behavior of the cosmological models for
general p for some interesting forms of u(P) where the
asymptotic behaviors are simple. In Sec. VII we consider
the radiation models in order to relate the methods in-
vestigated in this paper and in Ref. [14]. Finally, in Sec.
VIII we provide a brief discussion of the results.

II. SCALAR- TENSOR GRAVITY THEORIES

delay phenomena in the solar system to lie within the
bounds imposed by observation.

III. FRIEDMANN UNIVERSES

Consider the Friedmann-Robertson-Walker universes
with the metric in (t, r, 8, @) coordinates given by the
usual line element with the curvature parameter k:

Scalar-tensor gravity theories [2,3] can be derived from
the Lagrangian

df.2

ds = dt —+a (t) +r (d8 +sin 8' )1 —kr2

(4)

84, = pR — 8 $8 Q+ 16' GNZ~(4)

where R is the Ricci curvature scalar of the spacetime, P
is a scalar field, u(P) is a dimensionless coupling param-
eter, and, finally, 8 represents the Lagrangian for the
matter fields. It is apparent that the scalar field plays
a role which in Einstein s GR is taken by the gravita-
tional constant. Since P is now a dynamical variable,
these theories exhibit a varying gravitational "constant. "
The archetypal case of Brans-Dicke theory arises when
we specialize ur(P) to be a constant in the Lagrangian
Eq. (1).

Taking the variational derivatives of the action Eq. (1)
with respect to the two dynamical variables g s and P
yields the field equations

When the matter content of the universe is a perfect Quid

obeying the general equation of state p = (p —1)p with

p constant and 0 & p & 2, the field equations become
(where an overdot denotes differentiation with respect to

(u(P) $2 k 87r pH'+ H —— —+ —= ——
6 $2 a2 3 $

'

1 ~(P) 1
Roc —

2
goo R=, 4;o4p — goad;.4"—

1 ~ah+ —[Q;~g —g~gf, ~' ] + 8mGN

8z.p (3p —2) sr+ 3 1

3$ 2(u(P) y3 2 2(u(P)+3 4
'

QP = [8z.G~ T —~'(P) P,,P"],1

(3)

where T = T, is the trace of the energy-momentum ten-
sor T of the matter content of space-time and GN is
a dimensionless normalization constant which fixes the
present-day value of the gravitational constant G (in
what follows we set units so that G~ = 1). Note that a
further relation T ~.

g
——0, establishing the matter con-

servation laws, holds true. This ensures that the princi-
ple of equivalence is satisfied. We see from Eq. (3) that
the matter acts as the source of the scalar field P, which
helps generate the space-time curvature associated with
the metric. Matter may create this field, but the latter
cannot act back directly on the matter, which responds
only to the metric [17).

The strength of the coupling between the scalar field
and gravity is gauged by the parameter m(P), which here-
after will be termed the coupling function. When ~ ap-
proaches infinity (~ m oo) the scalar-tensor theory ap-
proaches Einstein's general relativity provided that we
also have u'/us m 0 in this limit [3]. This is necessary
for light-bending, perihelion precession and radar echo-

p+3pH p = 0, (8)

where the Hubble parameter II:—a/a. These equations
difFer from the corresponding equations of Brans-Dicke
theory through the presence of additional terms involving

in Eqs. (6) and (7) and reduce to those of GR when

P is a constant.
It is important to appreciate that the solutions of

these field equations are defined by four integration con-
stants while the GR solutions only depend on three [18].
In addition to the present values of a(ts), a(to), and

P(to) oc 1/G(to), we also need P(to) [or p(to)]. In Brans-
Dicke theory this extra f'reedom was eliminated by some
authors by imposing that gas should vanish for a ap-
proaching the initial singularity at a = 0 [1,19]. This
ensures that the solutions are of a power-law type, with
exponents which are mildly difFerent &om their general
relativistic analogues, and represent »~~verses where the
matter fields dominate the &ee P field during the entire
expansion. Such solutions are to be contrasted with the
general (k = 0) Brans-Dicke solutions found by Gurevich
et al. [20] where this restrictive assumption is not made.
The general solutions exhibit two distinct regimes: an
early period during which the expansion is dominated by
the scalar field and approximates the vacuum solution of
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Eqs. (5)—(7) and a late period during which the solutions
asymptote towards the matter-dominated power-law be-
havior. In what follows no restrictive assumption will be
made regarding the boundary conditions satisfied by P(t)
at t = 0 and so our analysis will be kept fully general.

The system of equations (5)—(8) allows considerable
simplification in the cases where the trace of the energy-
momentum tensor vanishes and the ur (P) theories are con-
formally related to general relativity [11].In these cases,
the wave equation (6) is sourceless and the general rela-
tivity solutions always arise as a particular (P = const)
case of the general solutions. By exploiting this situa-
tion, exact vacuum and radiation cosmological solutions
for scalar-tensor gravity theories for all values of k have
been found by one of us [14].

To address the remaining nonvacuum fiuid cases (p g
4/3) we resort to a generalization of the method of in-
tegration used by Gurevich et al. [20] in their study of
Brans-Dicke (BD) theory to the more complicated cases
where u depends on P. Our procedure will be applied
to the k = 0 models.

We introduce a new time variable g via

where gq and C are integration constants.
Now we differentiate y using the definition (11) and

a' P' (P') a' P (Q') x
42 a 4' (17)

to get

(y'l
v —ni E4) '

(18)

where we have defined the function

rl

x C+ M(2 —p) g2w(P) + 3dq dg . (19)
gl

By introducing another function g()7) we can absorb f (q)
into

(~-~) +
3 (9)

(20)

(we assume 2ur +3 ) 0) and two new dynamical variables

3(1-')—a3d

dg . ' (10)
where D is the integration constant arising Rom solving
the Bernoulli equation (18). The solutions to Eq. (18)
can be cast into the particularly simple form

as(2 —~) d

dg .
The k = 0 field equations (6) and (7) reduce to and

1„(4') "n —n d
(4) ., g(n)

(21)

y' = M (4 —3p) (12) 1

g) '-''= ao (22)

3 f2~' = 3M N2 —~)~+ 1]+—
I
-*+g I

(»)
2 (3 ) 2Ld+3

where the prime denotes differentiation with respect to
g and M is defined by 8vrp = 3Ma ~. In addition to
these equations, the Friedmann equation (5) yields the
constraint

2~(&(&)) + 3 = 4 —3p (f')
(23)

which follows &om Eq. (17). In terms of f(g) the be-
havior of the coupling a)(P), which defines the theory, is
given by

2

E3

y = M(4 —3P) ()7 —)7i) (15)

3
x = — —y + Q2(u + 3 C + M(2 —p)2

X /2id + 3 dYj

91
(16)

It is straightforward to integrate Eqs. (12) and (13). The
solutions are

where fo is another arbitrary constant. The u(P) depen-
dence is obtained by solving Eq. (21) with respect to P,
whenever this is possible. In practice a theory can be
chosen by specifying the generating function g(g) from
which P(i1) follows &om Eq. (21) and hence a()7) &om
Eq. (22), f(i1) from Eq. (20), ur(P) from Eq. (23), and
)7(t) from Eq. (9) if all the integrals can be performed.

It is worth noticing that the constant g~, which was
introduced in Eq. (15), can be set equal to zero without
loss of generality. This merely amounts to a translation
of the origin of the time variable. Henceforth, we use this
freedom and take gq ——0 = t.
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4 —3p-3(2-,)
'

ap( Pp ——M (4 —3p) .

(24)

The various constants C, D, and fp are not inde-
pendent. In fact, evaluating the Friedmann constraint
Eq. (14) we derive

when xl increases, then 2ur(p) + 3 increases with time,
while 2u(p) + 3 decreases if f (xl) grows slower than fBD.

To facilitate comparison with the BD solutions of
Gurevich et al. [20] we give their solutions using their
time variable (. Since in this case ur is a constant,
our time variable xl is simply proportional to ( [dxl =
/3/(2(asap + 3) d(]. For p g 4/3 one has

Consistency between Eqs. (15), (21), and (22) imposes
that pp ——1, and so we see that p = 1 defines xlx. From
the requirement that the BD theory be recovered when
~ = up is a constant we obtain the further condition

u(() = op(( —6)"'v'" ' ' (( —6)"'~"*+' (28)
(1++1+2~~ ) (16+1+1~g )

0'(() = 4'p(( —6)"&'"' ' (( —(i) "&"'* ', (29)

/2M(4 —3p) l
& 3(2-~) y

(26)

f»(~) = 3(2 —p)
2M(4 —3q)

M2 —px C xi+ xl /2up+ 3 (27)

If a theory is characterized by a function f(xl) [or equiv-
alently by a choice of g(xl)], which grows faster than xl2

The integration constants we have introduced de6ne at gq
the following quantities: a, a P, and Pd(a )/dt In fact, we.
have

a = DM(4 —3p),

a P = »m v 3M(4 —3y) (g —xtx) /+2ru(P) +3,9~91

4 (a ) = 3y 3C/2 .

Thus we see that as xt -+ gx (which we set xtx = 0), o P
depends on whether g2w + 3 vanishes and, in that case, also
depends on how it approaches zero. We further see that the
vanishing of a is de6ned by D being zero.

hence fp & 0 and setting one of C, D, or fp to zero
implies the simultaneous vanishing of the others»»ess
p = 4/3. However, if this is done, it restricts the solutions
to be matter (rather than P) dominated at early times.
For instance, the solutions which arise in the BD case
are of the form P oc xl, as(2 ~) oc xl, which lead to Nar
iai's [19]power-law solutions upon integration of the time
transformation (9). To retain the regime of scalar-field
domination it is necessary to keep one of the integration
constants nonvanishing and to express the other two in
terms of the first. In what follows we shall use fp [which
can be absorbed into f (xl) if desired] to parametrize the
solutions. The nonvanishing of the integration constants
alters the expression yielding a(xl) and affects the situ-
ations where f(xl) —(3p —4)rp /4 is sxnall compared to

p ~

The BD case provides a point of reference from which
to infer the asymptotic behavior of other models where
ur(P) is not constant. It arises when both f(ri) and g(xl)
are quadratic polynomials in g since

1 1

~n) =~.u-~. )
~'" (31)

In these solutions (x 2 are the roots of gxxD (xl) defined by
Eqs. (20) and (27) and 0 = (2 —p)Mp+ 1.

We see that these solutions (28)—(31) exhibit two
branches which differ in the sign of P'. Futhermore,
assuming without loss of generality that (x & $2, they
have a curvature singularity at (x, where a = 0 and
p -+ oo. When approaching this singularity (from f & (x)
the solutions asymptote towards the vacuum solutions of
O'Hanlon and Tupper [21]. Similarly, when Lc becomes
much larger than Q —(2, the solutions approach the
power-law behavior of the solutions derived by Nariai [19)
under the assumption gas ~ 0 when a -+ 0 (note that
this condition axnounts to requiring that b, —:(x —(2 m 0,
or equivalently that D -+ 0). This asymptotic behavior
reveals an important feature of the solutions. At early
times they are dominated by the scalar field (vacuum)
energy while at late times matter dominates.

In addition, it is important to notice that the Fried-
mann constraint equation imposes a relation between the
integration constants ap, Pp, and pp.

8z Ppap Pp
3(2—&)

2ur+ 3 (32)

where Pp is the coefficient of the (xl —xlx) term in g(()
given by Eq. (20). Because the proportionality constant
in this expression is positive, the sign of Pp is defined by
the sign of Pp. Since

Pp ——(3/urp) (0 —1 —2urp/3),

the sign of Pp changes when

1 —Q(2(up + 3)/3
~ = ~.(~p) = 2+

(dp

which is always bounded by p, (~p +oo) 2. If we re-
quire p & 0, this sets a lower bound of (dp & —6/5. Thus,
for p & p„ the solutions have a singularity (a = 0) in the
future for the fast branch [that with a minus square root
in the exponent of the ((—(x) factor], where P approaches
zero. Gravitation becomes effectively repulsive, but this

and for p = 4/3,

-'. (&+ ' „) 1(yy 1

a = ap —
q

'+'"s
2

'+'"s

(30)
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only occurs when p & 4/3, because only for these values
of p is the sign of the right-hand side of the scalar-field
equation (12) reversed. A similar result holds for the so-
lutions of the more general scalar-tensor theories. From
Eq. (25), we see that Po & 0 when p ) 4/3.

I et us now consider a number of cases of interest which
illustrate the behavior of the solutions of general scalar-
tensor theories for the p & 4/3. The dust and p = —p
models stand out as cases of particular relevance and we
shall then consider them separately.

We shall consider a number of representative ~(P) the-
ories created by choices of the generating function g(ri).
This choice is sufBcient to produce an exact solution of
the Beld equations.

A. Case g(g) = hg ln ri

We consider first perfect Quid solutions with 3p & 4
generated by the choice

IV. PERFECT FLUID FRIEDMANN UNIVERSES

All known exact cosmological solutions to scalar-tensor
gravity theories require the energy-momentum tensor to
be trace-free [14] or the equation of state to be p = p. It
is of considerable interest to study solutions with other
equations of state. The post-recombination history of
the universe is well approximated by a p = 0 state and
pressure-&ee cosmological solutions of scalar-tensor the-
ories other than Brans-Dicke would enable entire cosmo-
logical histories to be constructed. Strong limits could
be imposed on deviations &om general relativity by con-
sidering phenomena such as baryogenesis, primordial nu-

cleosynthesis, galaxy formation, and the present-day ex-
pansion dynamics in conjunction with weak-field tests of
gravitation theories. It is also of great interest to examine
the class of u(P) theories which can create inflationary
expansion (a ) 0). So far this has only been examined in
Brans-Dicke models by means of exact solutions [10] or
through approximate analyses in a class of u(P) theories
by Barrow and Maeda [11].

g(g) = hei 1ng, h ) O, const.

1

P(ri) = Po ln" rl, Pp const (35)

a l 1(q) = g(ri) P '(g) = a l 1 —g ln
0

ao const (36)

4 —3p 2hlng+ h+ 2 —~2
247+3 =

3(2 —p)', h

Inrun+

1 —~s,

The t(ri) relation is

(37)

t= a3( g) 2(d + 3
3 7f )

hence

If we substitute this into the system of equations (21)—
(23) then we obtain the following form for the cosmolog-
ical solution:

2h(1 7/)~+( )( — ) + (h+2 ~~) (1 g)( )( — )
t= A

(hing —~ + 1) ' dn

where A is given by

7 —1

s(~ g) g4 —3p (hl'=
3(2 —~) &&~)

(40)

1 2(~-1) yh+2 —2p
t=2Ah~ q 2- (lnri) ~«*- ~ (41)

The solutions (35)—(40) admit further mathematical
simplifications if p = 1, p = 0, or h = 1. If we consider
the general behavior of Eqs. (35)—(40) as g -+ oo, so that

oo according to Eq. (35), then since h & 0, we
obtain a late-time asymptote for scalar-tensor theories
with power-law variation of &u(P). We have

A(2 —p)t oc hg2
'y

a(t) ~ t'~" (lnt) ~

P(t) oc (ln t) 'i",
p= p0a p0 const

(43)

(44)

(45)

(46)

There is a logarithmic approach to the Friedmann models
of GR with the same equations of state. The deviations
from GR are relatively mild for the form of u(P) produced
by the choice (34) and this can be seen explicitly by con-
sidering the time variation that is created in the Newto-

nian gravitational coupling G~(t) oc P ~ oc (lnt) ~ as
t + oo. The deviations produced by theories defined by
Eq. (37) permit agreement with the solar system tests of

2(u(P) + 3
4h (4 —3p)
3 (2 —~)' (&o)

(42)

Thus we have to leading order as g ~ oo, for 0 & p & 4/3,
Although Po = 1, ere shall keep reference to Ps in our results

to make explicit their dimensional consistency.
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GR since the correction terms they add to the GR pre-
dictions are all of order od'(P) od

s P " and tend to
zero as (lnt) ( + 1~ as t m oo. Hence these theories

—(X+2h)/h

can produce acceptable weak-Geld consequences.
It is clear from Eqs. (39)—(46) that, for general p ( 4/3,

a simple special case occurs when h = 1. Also, it is
necessary to choose h so as to ensure the positivity of
a(t) at early times. This is guaranteed if (h —1)/h is an
even integer, for example.

3(2—7)"' '(&) = ' &' " (&" + ") +"-" (»)

2~(P) + 3 = 4 —3~ [(1+n)rP + a" —(3p —4)/2]'
3(2 —p)2 g" + a" —(3p —4)/4

(58)
For large q, we have

B. Case g(q) = Erg

Another interesting choice of generating function is
given by

and

P(g) const,

a(rl) g +",
(59)

(60)

g(r1) = Eg", E & 0, n & 2 const . (47) 241+3 (X
(+/+p)"

1+ (&/&o)"
(61)

The restriction n ) 2 has been imposed in order to re-
cover solutions which do not approach Brans-Dicke the-
ory at late times. In this case we obtain the general
solutions

In the same limit, we obtain

t(xg+&, (62)

4(n) =do exp «2
2—n

a'('-~1(g) = a,"' ' —rp exp
Pp E(n —2)

(48)

(49)

which means that, beside P being constant, we also re-
cover a(t) oc t2~~s'rl and hence approach GR in the late
time limit for this choice of g(g).

V. INFLATIONARY MODELS

When g —+ oo, we obtain

t (x: g'('-» .

Hence, at late times, we have

2(2 —rs)(Q —»
P(t) oc exp Ct—
a(t) oc t&~,

(4 —3~)
(2 —n) ln(P/Pp)

, C const (52)

(54)

2~(g) + 3 = (4 —3p) [nEg —(3p —4) /2]
3(2- ~)' (50)

We consider exact solutions for k = 0 Friedmann mod-
els when p = 0. This corresponds to a matter source
which is created by a potential-dominated scalar Geld.
It is the standard matter source generating a wide vari-
ety of in8ationary models. We recall that in Brans-Dicke
models the p = 0 source produced an example of power-
law infiation [10] in contrast to the exponential, de Sit-
ter behavior obtained in general relativity with the same
matter source.

A. Case g(g) = hvP 1ng

Again, we consider the form of g(g) defined by Eq. (34).
The exact form of the solution is

Thus we see that the solutions approach the GR so-
lutions. This could be expected since the coupling ~
asymptotes to infinity at late times since P -+ Pp. This
behavior naturally guarantees that these theories survive
the scrutiny of weak-6eld solar system tests. In fact,
(u'(p)/(us - ln (p/pp)/p m 0 as t -+ oo.

2(d+3 =

P(r1) = Pp ln ~"r1,
h —1

as(r1) = asphgp (lnrl) "

2h (P/Po) + h+ 2

3 h(P/Pp) +1

(63)

(64)

(65)

C. Case g(g) = vP (vP + a")

If we choose

g(g) = g (rP + a"), a const

then we obtain the solutions

1

&(n) =do
I

If we set

then

u = hing+ 1,

h ~ f 2u (a —1) " du
3

1 1—h
+hu & (u —1) &h du.

(66)

(67)
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There are simple integrable cases whenever z& is a
non-negative integer. For example, when 6 = 1 we have

t = 2(lug+1)' '+ (lnq+1)' '2 p

3

the power-law inflationary models of general relativity for
these equations of state, but when h g 1 they give rise to
a logarithmically moderated form of power-law inflation.

B. Case g(g) = E vP

P(rj) = Pp ing,
2

a (g)=—
(69)

(70)
For this choice of the generating function we derive a

solution

1+2h
t oc (in') '" (71)

So t e (—oo, +oo) for rI e (0, +oo).
Rather than list the complicated catalogue of exact

solutions that can be generated by the allowed choices
of h, it is more instructive to derive the general form of
the solutions for all h as g —+ oo. These display some
new varieties of inflation that can arise in scalar-tensor
theories. We have

9' "
4(g) = A exp

6 6 E na (g) = ap —q" exp

1 (nEq"-'+ 2)'"(")"=3 (Z„-- +1)

(78)

(79)

(80)

Hence

1 h —1
a oc g3 (ln ri) ~r (72)

So, when g m oo, we obtain

t (x in@.

Hence the late-time behavior of the solutions is

with

h —1 Qh
~ (x t (~ +') exp At~h+', A const

P(t) oc t&r+~

(73)

(74)

P(t) oc exp

a(t) oc exp

1
exp [

—Ct]

C
t

n —2

(82)

(83)

4h I'pb
2(u(P) + 3

E~p)
(75)

This shows that the exponential inflationary behavior is
rapidly attained since P(t), and hence G, approaches its
asymptotic constant value very quickly.

a(t) oc t exp At~ A)0 (76)

is inflationary as t + oo. Inflation occurs if ii ) 0 and
we find that, as t ~ oo,

A2 t'+~ ') 0
9 (77)

So inflation will always occur (and continue indefinitely
unless other physics intervenes or p changes with time),
but the acceleration increases with time (ultimately pro-
ducing a scalar curvature singularity to the future) if
2a + P —2 ) 0, that is, in our model, if h ) 7.

From Eq. (44) we see that when h = 1 the inflationary
models which arise when 0 ( p ( 2/3 are the same as

These solutions display new varieties of inflationary
universe When h. = 1, we have a(t) oc exp At2~s . This
is the particular example of the "intermediate inflation"
proposed in [22,23]. It is especially interesting that this
form of the scale factor, which arises when h = 1, is pre-
cisely that which generates the exact Zel'dovich-Harrison
spectrum for the density and gravitational wave Buctu-
ations produced during inflation to first order in pertur-
bation theory [24].

To establish the nature of inflation in models with h g
1 we need to examine the general conditions under which
a scale factor evolving as

VI. THE DUST CASE

A. Case g(g) = hgs 1ng

Inserting this generating function into the general so-
lution (35)—(40) derived above, we obtain

y(g) = 4o ln" rI,
h-1

a (g) = g ln " g,
0

(84)

(s5)

and

4 I2h(g/P )"+ h + 1/2]
3 [h(4/4. )"+ 1/4]

(s6)

From Eq. (84) we see that P increases with g and from
Eq. (86) it follows that 2u(P) + 3 asymptotically ap-

The importance of the dust models arises &om the fact
that they provide a very good description of the present
thermodynamic state of matter. The only known exact
cosmological solutions are for zero-curvature Brans-Dicke
models. In what follows we give a number of solutions
which cover a wide range of realistic models.
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proaches a power dependence on P, with 2~ + 3 oc P".
A special case where simplifications arise is when h =

1. We obtain

4/3. Repeating the derivations of Sec. III, using this
result, we obtain

$(rI) = Pp lng,
2

a'(g)

(87) D + f(n)
'

(88) where f(g) is now defined by

(97)

Defining u = h ln ri + 1/4, we derive

2 2u+ h (u —1/4)t = — exp
i I

du.
3 u ( h

(89)

2(u+ 3 2M
f(g) —= C+ i/2(u+ 3dg dg.

o yo 3 o

(98)

Now we consider the asymptotic behavior of these so-
lutions at large g. We immediately have u h ln g, which
implies

If we further define

g(n) = f(n)+D (99)

tace. (9o)
the solutions take forms similar to those given by
Eqs. (21) and (22) with p = 4/3, with

Since a oc g2rs (lng)~~ ilrs", we obtain the asymptotic
behavior

dpi
in/ —

/

=
gAr o g(n)

' (100)

and also

R (h —X)

a(t) oc ts (lnt)

P(t) ~In~ t,

4h (yl
2(u(P) + 3 oc —

~

—
~

&&or

(91)

(92)

(93)

and

2(d+3 = 3yo f'2

(f+ 4M~o+D)

(1o1)

(1o2)

Note that this result for the late-time behavior is consis-
tent with the results derived for general p. It corresponds
to a mild deviation &om GR behavior. 4MD

yo = Soap 3fp —1
(1o3)

From the Friedmann equation (14) we obtain the con-
straints

B. Case g(g) = E rP

With this generating function the solutions are

4(g) =go exp
I E 2(E2 —n r

E ( ~2—n
as(i1) = —rl" exp ~—

p ( E2 —n)

(94)

(95)

upon the integration constants yp, Pp, ap, D, and fp
Consistency between Eqs. (100) and (101) and the defi-

nition of y further require that yo
——ao2 ——Ppr .

In order to understand how the present method of in-
tegration compares with that arising &om the conformal
invariance of the radiation models [14],note that our time
variable g relates to conformal time g [defined as usual
by dt = a(rl) dg] as

At late times we have a oc ri'&'-» oc t'~, P oc
Q(R —vs) (2 —y)

exp —Ct ~, where C is a constant, and

2m+ 3
7l—

3
gO

Hence substitution of g by ri in (97) yields

(104)

(4 —3p)2(d+3 oc

(2 —n)lni P i

(96) dp drI dpi

g(6) 4 as
(105)

VII. THE RADIATION MODELS

Exact solutions for radiation models (3p = 4) of all
curvatures can more easily be found by exploiting the
conformal invariance of scalar-tensor theories [14]. How-
ever, it is instructive to see how the method considered
in this paper applies to radiation models.

From Eq. (12) we see that y = yp ——const when 7 =

which is precisely one of the equations in Ref. [14]. When
restricted, the k = 0 models, the other fundamental equa-
tion of that work [14], establishes that

d2 = 2M.
dg2

= (106)

This yields the g behavior of the generating function.
However, the use of this latter result in the present case
is restricted to the situations where the relation i1 = rI(g)
can be explicitly solved.
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A. Case g(rl) = hrl inrl

This choice of the generating function g(rl) yields

and

4 = 4 o ln' rl,
2= 2 h —1

a = aohgln & g,

3yph (inrl + 1)'
2m+3 =

4M ging+'&

(107)

(108)

(109)

B. Case g(rl) = E rl"

With this choice for g(rl) we obtain the solutions

( rl' "
P=Poexp[

l
nfl,gE1 —n )

(E)
a =ao

l
lng lrl exPl

o) (En —1 )

(110)

and

We now consider some specific choices of the generating
functions g(rl) which transpose to the radiation models
the particular solutions investigated above.

VIII. DISCUSSION

In this paper we have shown how to derive exact cos-
mological solutions for the Friedmann A: = 0 models with
a perfect Quid characterized by the equation of state
p = (p —1)p, where p is a constant and 0 & p & 2, in
general scalar-tensor gravity theories. By an appropriate
choice of variables we have shown that the solutions can
be defined in terms of a generating function g(rl), which
amounts to the specification of the u(P) dependence of
the theories. We have provided a number of specific ex-
amples of dust solutions and inQationary universe theo-
ries for theories with power-law u(P) dependence. The
p = —p inQationary models provide examples of a new
form of inQation in which the scale factor evolves in pro-
portion to t exp(IIot ), 0 & m & 1. The derivation
of p = 0 scalar-tensor cosmological models will allow
complete histories to be constructed in such theories and
these will be studied elsewhere. The availability of new
exact solutions allows cosmological tests of gravitation
theories to be combined with weak-Geld and laboratory
limits on allowed deviations from general relativity to
constrain the permitted depertures of u and cu'~
from zero.
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