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Large scale inhomogeneities fram the +CD phase transition
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We examine the Brat-order cosmological +CD phase transition for a large class of parameter
values, previously considered unlikely. We 6nd that the hadron bubbles can nucleate at very large
distance scales, they can grow as detonations as weQ as de8agrations, and that the phase transition
may be completed without reheating to the critical temperature. For a subset of the parameter
values studied, the inhomogeneities generated at the /CD phase transition might have a noticeable
efFect on nucleosynthesis.

PACS number(s): 98.80.Cq, 12.38.Aw

I. INTRODUCTION

Much of the interest in the cosmological first-order
/CD phase transition has been due to the possibility
of affecting the big-bang nucleosynthesis [1]. This would
require creating significant inhomogeneities in the baryon
number density, with a characteristic distance scale of the
order of 10 3t~. The typical distance I„between bub-
bles nucleated in the phase transition is related to the
bubble surface tension, t„(x0. ~ . The excitement has
diminished as lattice calculations have yielded rather low
estimates of cr, indicating much smaller distance scales.

The purpose of this paper is to point out that a low o
does not necessarily imply short distances. The reason is
that in addition to o, the distance scale depends on the
latent heat I. As the phase transition appears to be at
most only weakly first order, surface tension and latent
heat should both be small compared to energy scales at
the transition. Using the bag equation of state and classi-
cal nucleation theory, we find that even for small o, there
is a large parameter space where the phase transition is
preceded by considerable supercooling, and the distances
between critical bubbles are large. Interestingly, we also
find that with a more realistic equation of state than
that of the bag model, the distances get even larger. It
will be very enlightening to redo our calculations, when
the whole equation of state of the /CD matter can be
extracted Rom lattice calculations.

In view of nucleosynthesis, not only the distances be-
tween critical bubbles but also the later stages of the
phase transition are important. Since we do not know
the microscopic physics operating at the phase transition
&ont, we cannot give a definite solution to the problem.
However, we can analyze what processes are allowed by
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II. NUCLEATION

We review the classical thermal nucleation of thin-wall
bubbles with the bag equation of state

4 I
pq = GqT ——

)4 jPh = +hT )

where L = 4(as —aa)T4 is the latent heat. We use the
notation T:—T/T„where T, is the critical temperature
of the phase transition. The radius of a critical bubble
at temperature T ( 1 is

Ph Pq

8u 1
T4' (2)

hydrodynamics. We find that the hadron bubbles could
grow as detonations and that there is not necessarily
a stage of slow growth in thermodynamical equilibrium
during the phase transition. This leads to a rather un-
conventional picture of the phase transition. We also
find that if this picture is correct, then it is nnbkely that
the /CD phase transition has a noticeable effect on nu-

cleosynthesis, in spite of the large distance scales. On
the other hand, it is also possible that the hadron bub-
bles grow as deSagrations, the distance scales are equally
large as above, and the /CD phase transition may have a
noticeable efFect on nucleosynthesis. Clearly, for conclu-
sive results, a better knowledge of the parameter values
must be acquired.

The plan of the paper is the following. In Sec. II we
review classical nucleation theory and calculate the nu-
cleation temperature and the distances between critical
bubbles in the /CD phase transition, using the bag equa-
tion of state. In Sec. III we discuss the efFects of a more
realistic equation of state. Section IV contains a hydro-
dynamical analysis of the possible growth mechanisms of
the hadron bubbles, and in Sec. V we discuss the effect
of the /CD phase transition on nucleosynthesis. The
conclusions are in Sec. VI.

Since the hydrodynamics of bubble growth in this
context has sometimes been analyzed using a plane-
symmetric geometry (i.e. , 1+1 dimensions), we stress
that in this paper we use spherical geometry everywhere.
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where 0' is the bubble surface tension. The free energy
expended to nucleate a critical bubble is

scales.
Approximating

W(r ) = c—rr

The nucleation rate is

16m cr3

(» a —p,)'
and extending the integral to —oo, Eq. (8) becomes

S'(ty) = S~v CT, e (10)
p(t) = CT, e

where

(4) The typical distance l„=n ~ between centers of neigh-
boring bubbles is obtained &om their number density:

S(t) = W(",)/T =
L &c T (1 —T4)~

(5) n= dt'p t' 1 —F t'

and C is a prefactor roughly of order unity.
There are thus two essential parameters L and u. The

latent heat L gives the difFerence of aq and a&. Other-
wise the values of a& and ag affect the nucleation only
slightly through the expansion rate of the Universe. We
are interested in the case of a small I Ther. efore, a~
and ap, cannot be taken to have their ideal gas values,
51.25m /90 and 17.25m 2/90, which correspond to a large
latent heat L = 14.9T4, but must lie closer to each other
somewhere between these values. In reality they are func-
tions of temperature as(T), ag(T), but, until Sec. III, we
take them to be constant.

With constant as and small L, the expansion (cooling)
time scale is approximated by

tT = const = t T, . (6)

The Universe reaches the critical temperature at t = t .
The Universe then supercools to T ( T, and the nucle-
ation rate begins to increase rapidly. A nucleated bubble
grows by detonation or de8agration, preventing further
nucleation inside the volume (4n /3) vs(t —t') s, where t'
is the nucleation time. In the case of detonation the rele-
vant velocity v is that of the phase boundary (detonation
front), v = vs q. In the case of deflagration, it is that of
the shock driven ahead of the phase boundary, v = v,h.
In both cases, c, ( v & 1, where c, = I/~3 is the speed
of sound. The expansion rate of the Universe can be ig-
nored during this short period of rapid bubble growth.
The fraction of space affected is then [2]

The above approximations require

and

From Eqs. (5) and (6) we obtain

A
S(tf) =-

Tyy

and

A Ty(8 —9y)S'ty =-—
t, 2ys

and

256m cr

3 LBT,

y= 1 —Ty.

ATS"(ty) = — (63' + 34T~ —1),t2 4y4

where

(12)

(14)

(15)

(16)

(18)
t

F(t) = 1 —exp — dt'p(t') —v (t —t')
tc 3 (7)

The nucleation time tf and temperature Ty are solved
from Eq. (10). Taking the logarithm and using Eq. (14)
it becomes

E(ty)—:1 —1/e. (8)

This grows rapidly &om E 0 to F 1 at the phase
transition time ty, which we define by A A

TgS(ty) Ty S& —41n )S'(ty)t,
~

(i9)

Bubble nucleation then ceases.
Let us note that for very slow de8agrations, vQ fl + 0.1,

the shock preceding the de8agration &ont is extremely
weak. Between the shock and the de8agration &ont, the
temperature increases continuously [3]. However, even
the temperature at the de8agration &ont, Tq, may have
been raised so little above the nucleation temperature
Ty that the nucleation of new bubbles is not appreciably
suppressed. Thus the velocity v should be the de8agra-
tion velocity vp fl, instead of the shock velocity v,h. As
mill be seen below, this leads to much shorter distance

where S~ = 1nsxv CT t 41nT, t 170. This gives
an equation for y:

A1/2
y= - X/2'

(1 —y) ~ S~ —41n~A(1 —y) ~ (8 —9y)/(2y )~

(20)

which can be solved iteratively. The phase transition
temperature is then
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and the typical bubble distance 10 I I .3") I Ik
e+

~0

3v 2y 3

A (1 —y)'/4(8 —ey)
(22)

where t~ ——2t, is the Hubble distance at t = t, . We plot
these quantities in Fig. 1. They depend on the parame-
ters o and I only through the combination (17).

The approximations (12) and (13) fail near os/LzT, =
~h

0.25 when the supercooling 1 —Ty and the distance scale
l„arebecoming very large. The nucleation rate, accord-
ing to Eq. (5), is beginning to grow more slowly and has
a maximum at T = T,/~3. This would indeed lead to
extremely deep supercooling and very large distances. Of
course, our equation of state (1), tuned to be valid near
T„is then no longer applicable.

The critical radius

rc (»)
Pa —Jq

must also not be too small ( T, ) for the above thin-
wall nucleation to apply. Prom Fig. 2 we see that for
small o, the critical radius is reasonably large, and almost
independent of L.

The values of L and o' indicated by pure glue lattice
Monte Carlo simulations are of the order L = 2T, , 0 =
0.02T, [4—6]. However, the uncertainty in these values
is very large and, in particular, there is no lower limit.
Thus, based on present knowledge, either one could be
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FIG. 2. Contours of the critical radius r, and the bubble
separation l„onthe (L, o) parameter plane. The solid line
corresponds to o' /L T, = 0.25. This figure is for the bag
equation of state. As discussed in the text, use of a more
realistic equation of state could increase the distances L„by
an order of magnitude or more.

arbitrarily small. Prom Fig. 2 we see that, e.g. , length
scales of t„/vt~ = 10 s—10 2 are possible. This is a
distance scale large enough to acct nucleosynthesis. The
corresponding critical radii r, are large enough so that
the thin-wall calculation should be valid.
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III. THE EFFECT OF THE EQUATION
OF STATE
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FIG. 1. The supercooling 1 —Ty and the bubble distance
scale I„.The distance scale is given as I„/vtii, where t~ is
the Hubble distance ("horizon") and v is the detonation or
shock velocity, 1/~3 ( v ( 1. The dependence on the surface
tension u and the latent heat L is through the combination
o /L T, We also sho. w the nucleation action S(ty). The
other thin lines show the two quantities S"(ty)/S'(ty) (short-

dashed line) and [(S'(tr)~(ty —t, )j (dotted line), whose
smallness we have assumed. Our approximations are seen to
break down at cr /L T, Q 0.25.

Lattice Monte Carlo simulations imply that the energy
density must have a very strong variation within a narrow
temperature interval (& 10 MeV) in /CD with physical
quark masses [7]. Combined with the smallness of the
latent heat this means that the realistic equation of state
must differ even qualitatively from that of the bag model.
This is illustrated in Fig. 3. As has been discussed above,
the parameter values of the naive bag model can be cor-
rected to reproduce a desired latent heat. However, this
corrected bag model ("bag model of text") cannot mimic
at all the strong variation in the energy density. In this
section we will analyze how the large derivative of the
energy density curve, i.e., the large heat capacity, a6'ects
the nucleation.

In the case of the nucleation calculation we may assume
that the Universe is, at least locally, in the quark phase
and very near thermal equilibrium. Bmthermore, we can
ignore the tiny quark and lepton chemical potentials. We
denote the cosmic scale factor of the Robertson —Walker
metric by R, the energy density~ by e, and the entropy

In this section, all quantities are measured in the super-
cooling quark phase.
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FIG. 3. Schematic representation of the energy density
versus T for three difFerent equations of state. Thinner parts
of the curves denote the metastable branches. For clarity the
magnitude of L has been exaggerated in the figure.

density by s. From the equation d(eRa) = —pd(Ra) it
follows that

dR
R

de

3(e+ p)

c(T) dT
3a(T) T ' (24)

R2 8qre(T)
R2 3M2 (25)

where Mp~ denotes the Planck mass. The vanishingly
small curvature term was omitted. Eliminating dR/R
&om Eqs. (24) and (25) gives the cooling rate of the Uni-
verse:

3s(T) 8vre(T) T
dt.

c(T) 3 Mpi
(26)

If the energy density curve e(T) is very steep, the first
factor is much smaller than»~sty. The Universe expands
and the energy density decreases, but this causes only
very slow cooling. In other words, the total energy den-
sity determines by Eq. (25) the expansion rate of the
Universe, and this in turn deterinines by Eq. (24) the
value of the derivative e(t); but then dT/dt = e(t)/c(T)
is very small for large heat capacity.

Since the Universe cools slowly, it has time to nucleate
even at a large action, and therefore the true nucleation

which can also be written as the equation d(sRa) = 0 for
entropy conservation. Here c(T) is the density of heat ca-
pacity (specific heat) of the quark phase in constant vol-
o~e. It satisfies the relations c(T)=de/dT =T(da/dT) =
T(dep/d T), where p is the pressure. Equation (24) tells
how the relation between expansion and cooling depends
on the equation of state. Notice that in the case of the
bag equation of state the factor c/3a equals unity, and
the simple relation T oc 1/R is valid.

The expansion rate of the Universe is determined &om
the Friedmann equation

temperature is slightly higher than that of the bag model.
To see this, notice 6rst that compared with the time spent
in the supercooled state, the period of time during which
essentially all the nucleation takes place is short, and
the cooling rate (26) is practically constant during this
period. We define the parameter b:

c(Tt)
3s(Tg)

' (27)

l„oc (28)

where the small correction coming &om the change in
Ty was left out. This result tells that a steep drop in the
energy density e(T) increases significantly the typical dis-
tance between bubbles. This happens because when the
cooling rate is lower it takes more time for the nucleation
action S(T) to decrease by a certain amount.

To get an order of magnitude estimate for b, we assume
that the energy density changes &om its asymptotic value
in the quark phase to its asymptotic value in the hadron
phase within 10 MeV. This is an upper limit indicated by
lattice calculations [7]. Then we get b 8. Thus the dis-
tance scales would be an order of magnitude larger than
those shown in Fig. 2. If the true temperature interval
for the rapid change in energy density were smaller, say
1 MeV, then distance scales would be correspondingly
larger, b 75.

Finally, we note that the validity conditions of the nu-
cleation calculation, Eqs. (12) and (13), do not depend in
practice on b nn&ess the speci6c heat of the quark phase,
c(T), changes rapidly within the temperature interval
TC Tf

IV. DETONATIONS AND DEFLAGRATIONS

A bubble of h phase surrounded by supercooled q phase
has two modes of growth available, detonations and de-
flagrations [8—10]. In a defiagration bubble the fluid in-
side the bubble is at rest, but the growing bubble is sur-
rounded by a shock wave moving out ahead of the phase
transition (defiagration) &ont. In a detonation bubble
the phase transition (detonation) &ont advances into the
Quid, which is at rest, but is followed by a rarefaction

where Ty is the temperature at the nucleation time ty.
In Fig. 3, h is roughly the ratio of slopes of the real-
istic equation of state, and the bag equation of state.
The nucleation temperature is determined &om Eq. (10).
However, now the pressure difference ps(T) —pq(T) is
unknown, and thus is also the nucleation action S(T).
Still, we can find out what is the efFect of b: due to the
change in the logarithm in Eq. (19) the value of the con-
stant S& 170 effectively increases by 41nh. As long as
this increase is small compared with 170 the amount of
supercooling, defined as 1 —Ty/T„decreases only little.

Although a large value of b barely changes Ty, it has
another signi6cant efFect. Physically the most impor-
tant quantity related to nucleation is the average distance
between nucleation centers immediately after the phase
transition, l„,defined between Eqs. (10) and (ll). Its
dependence on h is seen from Eq. (11) to be
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wave where the Quid Qows outwards following the deto-
nation &ont. Relativistic detonation bubbles have been
discussed in Ref. [11], and relativistic deflagration bub-
bles in Ref. [3].

Consider Quid Sow through the phase transition front
in the rest &arne of the &ont. The inQow is subsonic
for a deQagration, v; ( c„but supersonic for a det-
onation, v;„)c,. These processes are further divided
into weak and strong depending on the outQow veloc-
ity. For weak processes the nature of the Qow velocity
does not change, i.e., v „q& c, for weak deQagrations,
and v „q) c, for weak detonations. For strong pro-
cesses it changes, i.e., v „t& c, for strong deQagrations,
and v „q& c, for strong detonations. The case where
v „q——c, is called a Jouguet process.

In the rest &arne of the unaffected. Quid, all detona-
tions and strong defiagrations move faster than sound,
whereas weak defiagrations are subsonic. Because of re-
strictions on the Quid Qow pattern &om the bubble geom-
etry, strong detonations are not possible for phase tran-
sition bubbles [ll]. (This is true also for one-dimensional
"bubbles. "

)
In classical combustion theory for chemical burning

the internal structure of the combustion &ont rules out
strong defiagrations and weak detonations [8, 9]. In par-
ticular, the internal structure of a detonation front con-
sists of a shock heating up the medium to initiate com-
bustion, immediately followed by a deQagration. For a
weak detonation, this defiagration would be a strong one.
Thus the impossibility of strong defiagrations implies the
impossibility of weak detonations.

The internal structure of a phase transition front is dif-
ferent &om a combustion &ont. Heating by a shock does
not facilitate the phase transition, and the structure of
a detonation &ont is not shock plus deQagration. There-
fore weak detonations are not ruled out [12]. Thus slowly
growing bubbles (v & c,) will be weak defiagrations and
fast ones (v & c,) will probably be weak detonations [13].
Strong defiagrations might also be possible in some cases.

We denote by Tg and Tq the temperatures of the two
phases at the phase transition front. For a detonation
bubble, Tq will be the phase transition temperature de-
rived in Sec. II, Tq ——Tf but Tg & Ty, and we can even
have Tg & T,. The rarefaction wave cools the h phase,
so the final temperature will be below Tg (and T,). For
a deflagration bubble, Tj, will be the final temperature
of the h phase, whereas Tq is not the initial temperature
Ty, but Tq & Ty (and could exceed T,), as the q phase
has been heated by the shock wave.

The detonation and de6agration solutions are obtained
from the hydrodynamical conditions of energy and mo-
mentum conservation. These processes must also satisfy
the condition of non-negative entropy production [8—10].
These constraints do not 6x the process»~iquely for
a given initial temperature Ty. Instead, we have a
one-dimensional fame&y of allowed solutions for each Ty,
with different temperatures (Ts, Tq) and difFerent bubble
growth velocities vQefl or vg t. This family may contain
both deQagrations and detonations. Vfeak deQagrations
are allowed for any Ty & T, but detonations and strong
deQagrations require a minimum amount of supercooling,

see Fig. 4.
Below we give exact results for the bag equation of

state (1). If the energy densities are scaled by the bag
constant B = I /4 = (aq —ag)T, , and the temperatures
by T„these results can be given in terms of a single
parameter

4aqT4
(29)

We identify a process by a point on the (e~/B, eq/B)
plane, where eg and eq are the energy densities of the
two phases at the phase transition &ont. There are a
number of special points in this plane (Fig. 4).

Point C corresponds to Tg ——Tq = T . This is the limit
of weak deQagrations as Ty m T,. It is at the vg, g -+ 0
limit (the diagonal line through C). Point D is the (weak)
detonation, which requires the least supercooling. This
point is at the vs, t ~ 1 limit (the diagonal line through
D). The velocities change steeply near these diagonals.
Points J and G are the Jouguet detonations and deQagra-
tions, respectively, requiring the least supercooling. The
coordinates (eg/B, eq/B) of these points are

4r —S~
(30)

3r r+ 2)
gr —1 r —1)

340

g 280

260

240

220

200 220 240 260 280 300 320 340

FIG. 4. Detonations and delagrations: This plot shows

how the difFerent processes lie in the (sq, sq)-plane. The
entropy condition restricts the allowed processes belovr the
ES = 0 curve. Point C corresponds to T~ = Tg ——T . For
a given Ty there is a one-dimensional fa~~&y of solutions, de-

noted by the dashed line. The detonation branch of this fam-

ily is a horizontal line, the de8agration branch a steep curve.
For any Ty & T it always passes to the left of point C, indi-

cating that weak de6agrations are allowed. If it passes to the
left of G, strong de8agrations are allured. If the detonation
branch passes below D (J), then weak (Jouguet) detonations
are allowed. This figure is for r = 1.01.
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J = (sg + tg, sg —tg),

G = (SG + tGi sG tG)~

where
2r

sg = (1+cos2P),r —1

(32)

(33)

(34)

1.0

0.98

0.96

0.94

and

2r
Cg ——2 cos pr —1

sg = (1+2sin P+ 2+3cosPsinP),r —1

2r
tg = — (cos P + +3 sin P),r —1

(35)

(36)
0.9

0.88

0.86

1.0 1.2 1.3 1.4

1 r + 1
p —= —arctan

3 r —1

Converting the energy densities to temperatures by

T = T, —T = T, (39)

we have the following results. The maximum tempera-
ture for which the weak detonations are allowed is

Ty =Tq(D) =r ~ T. (40)

At the detonation front we then have Tq
——r T„Tg——

r ~ T . The maximum temperature for which Jouguet
detonations are allowed is

- X/4r + 1 2 2 r —1
Ty = Tq(J)= +—cos2p ——~2 cos p T,.

3r 3 3 r

(41)

We always have Tq(J) & Tq(D) & T,.
For de8agration bubbles Tq P Ty. To relate these two

temperatures we have numerically integrated the How

equations for the region between the shock and the de8a-
gration fronts [3]. We denote the maximum temperature
at which strong de8agrations are allowed by Tf (G). The
temperatures Tq(D), Tq(J), and Ty(G) are plotted as a
function of r in Fig. 5.

If the Universe supercools very much, the phase tran-
sition is not able to reheat it back to T . The limiting
supercooling temperature T„is obtained from

eq(T-) = ea(T.).
For the bag equation of state (1), this gives

(42)

(4 —r l (I r —I r

3r y (r 3r )
(43)

If Tf & T„,the phase transition reheats the Universe to
T before completing. The rapid detonation or deBagra-
tion stage is followed by a slower stage, where both phases
coexist in thermal equilibri»m at T, and the phase tran-
sition proceeds only as the Universe expands [14]. If
Tf & T„,the detonation or deBagration takes the tran-
sition to completion. If r & 4, i.e., B & ep, (T,), then
reheating to T is possible from arbitrarily low tempera-

FIG. 5. Some special temperatures for the bag equation of
state as a function of r. Tq(D) is the maximum temperature
for which (weak) detonations are allowed. Tq(J) is the maxi-
mum temperature for which Jouguet detonations are allowed.

Tf (G) is the maximum temperature for which Jouguet de8a-
grations are allowed. For T & Ty(G), strong de8agrations are
allowed. T is the lowest temperature for which the latent
heat is sufBcient to reheat the universe back to T,.

tures.
Comparing Eq. (40) with Eq. (43) we note that T„is

always below Tq(D), although for small r, these are close
to each other. Thus in those cases where the Universe
has supercooled so much that it will not reheat back to
T„weak detonations are always allowed. The similar
statement for Jouguet detonations becomes true for r &
1.644.

In Sec. II we related Ty to 0 and L. The parameter
r depends on aq in addition to L. By making some as-
sumption about aq, we can convert 0 and L to Tf and
r, and classify points in the (L, o) parameter space ac-
cording to which processes are allowed. This is done in
Fig. 6.

As a concrete example, let us inspect the case 0 =
0.01. Now it is seen from Fig. 6 that if L = 1, only weak
detonations are allowed and the Universe reheats to the
critical temperature. If L = 0.1, weak detonations are
possible as well, and the Universe does not reheat back
to T . If L = 0.01 even Jouguet processes and strong
de8agrations are allowed.

To s»mmarize the results of this section, for a given
phase transition temperature Tf & T„there is a one-
dimensional family of allowed bubble growth processes.
This family will always include weak de6agrations. It
may also include weak detonations [if Ty & Tq(D)],
Jouguet detonations [if Ty & Tq(J)], Jouguet de8a-
grations [if Ty & Tf(G)], and strong de8agrations [if
Ty & Ty(G)]. Which of these allowed processes actually
occurs, depends on the dissipative mechanisms internal
to the front which determine the propagation speed of
the transition [8, 9, 13]. Even though external conditions
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FIG. 6. Regions on the (L, o) parameter space, where dif-
ferent processes are allowed. This figure is for a bag model
with as = 34.25m /90+ L/8T, , ah = 34.25m /90 —I,/8T,
The solid lines divide the graph in three regions depending
on what kind of detonation bubbles are allowed by hydrody-
namic considerations. Weak de8agrations are always allowed.
Strong de8agrations are allowed above the long-dashed line.
The universe reheats to T, if we are below the short-dashed
line. Thus detonations m'e always allowed in those cases where
the universe does not reheat to T, .

may allow detonations, the actual process could still be
a slowly propagating weak deffagration.

V. BARYON NUMBER

Much of the interest in the /CD phase transition in
cosmology stems &om the possibility of leaving behind
strong inhomogeneities in the baryon number, and maybe
thus affecting big-bang nucleosynthesis. The baryon
number in the q phase is carried by massless quarks, but
in the h phase it is carried by nucleons, with m &) T,.
The baryon number does not penetrate the phase bound-
ary easily, and accumulates as a layer on the q side of the
phase boundary. As more baryon number accumulates
onto this layer, more will also leak through, but the net
efFect is that of dragging baryons towards the regions
which remained longest in the q phase [15—18].

Even assuming we know the hydrodynamic details of
the phase transition discussed above, it is diKcult to esti-
mate the shape and density contrast of the baryon num-
ber inhomogeneity. It depends on the rate of baryon
transport within each phase and baryon penetration of
the boundary, which are not known.

To have a significant effect on nucleosynthesis, a num-
ber of conditions need to be satisfied. (1) The distance
scale should be large, I„)1 m = 10 4tH. (2) The
high-density regions should contain most of the total
baryon number. (3) The density contrast R, i.e., the
ratio of baryon number density in the high-density re-
gion to that in the low-density region, must be large,

Rfinai + (~p/tin)nucleosynthesis
We have argued in Secs. II and III that condition (1)

could be satisfied. Because of the diKculty of getting
baryon number through the phase boundary, condition
(3) does not appear unreasonable. Condition (2) is per-
haps the most difficult [16].

During the phase transition, baryon number has been
collected onto a layer on the surface of the bubble, with
some thickness d. The baryon density in this layer is

R)~ypz times larger than elsewhere. To have most of
the baryon number in this layer, we must have roughly
Ri y„)l„/d. If the thickness of the layer is due to
microscopic diffusion of baryon number away &om the
boundary (in the q phase), d will be very small. It has
been argued that turbulent transport w'ill be much more
efFective than microscopic diffusion, and lead to a much
thicker layer, so that condition (2) might be satisfied [19].

In the usual picture of this phase transition, most of
the growth of the h regions will happen in the equilibrium
stage of the transition, very slowly. In the picture we
have presented here, which leads to large distance scales
l„even with a small surface tension 0, this stage does
not usually exist. The phase transition is completed by
detonation or deBagration.

Especially, if the bubble growth process is a detona-
tion, the phase transition is completed rapidly. The det-
onation bubbles grow with vg, ~ ) c, . In those regions
where the detonation bubbles collide, the transition is
then already completed, and the turbulence caused by
the collision will operate only in the 6 phase. Where
there is any q phase left, the detonation &ont will move
on unaffected, and once they have covered the space be-
tween them, the transition is over. The baryon number
accumulating on the phase boundary cannot escape Rom
the supersonically moving front. Thus the layer should
get no thicker than a few fm. This appears to make con-
dition (2) impossible to satisfy.

If the bubble growth process is a deBagration, the
phase boundary will be slower and turbulent baryon
transport may be effective in making the layers thicker.
As mentioned in Sec. II, the distances between nucleated
bubbles do not depend on whether the bubbles grow as
deBagrations or detonations, unless the deBagrations are
exceedingly slow. Therefore, slowly growing de6agration
bubbles, with eKcient turbulent baryon transport, seem
to be able to affect nucleosynthesis.

If the hadron bubbles grow as deBagrations, but with
an exceedingly low velocity, there may be another mecha-
nism, in addition to turbulence, for enhancing the baryon
number. Neutrinos, which do not carry any baryon num-

ber, may carry a considerable part of the energy Bux.
The reason is that the hydrodynamical Bux top v, mea-
sured in the rest frame of the phase transition front,
vanishes as v -+ 0. This curve is given as the solu-
tion of the equation p~(T~) = ph(Tj, ). The solution does
not agree with the curve T~ = Th, , so the neutrino Bux
(g,„~/120)(T —T&), where g, denotes the efFective
number of active neutrino degrees of freedom, remains
nonzero. But as noted above, for these very slow de-
Bagrations the distance scales are also small. However,
according to Sec. III an extremely large heat capacity
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would increase the distance scale with several orders of
magnitude. There is also another escape: suppose that
the initial growth mechanism is a deBagration, which is
not very slow, so that distance scales are large, but that
then the Universe reheats to T, where a stage of very
slow growth near thermodynamical equilibri»m follows.
Here, neutrino transport may be efFective [20], in addition
to turbulence. If this stage lasts long enough, the baryon
n»mber remaining at the high-density regions could be
enhanced. From Figs. 2 and 6 one can see that this sce-
nario is possible in a very small but nonvanishing region
of the parameter space, near, e.g. , the point L 2T, ,

0.3T3.
Finally, let us note that so far we have only studied

which hydrodynamical processes are, in principle, possi-
ble, without being able to fix a definite growth velocity.
In Ref. [13] a model is presented, which tries to fix this
velocity, by introducing a phenomenological dissipative
constant I'. With a dimensional estimate I' 1 T,
and the parameters L 0.1T4, 0 0.1T3, the bubbles
grow as deBagrations, with a velocity vp, g

——0.1. The
neutrino Bux is vanishingly small, but turbulence might
be efFective.

VI. CONCLUSIONS

Parametrizing the /CD phase transition with the la-
tent heat L and the surface tension o, we have studied
bubble nucleation and growth. The efFects of a more
general parametrization have been estimated. We have
investigated the possibility that the inhomogeneities gen-
erated at the /CD phase transition significantly a6'ect
nucleosynthesis.

We 6nd that parameter values in the range of, e.g. ,
0' 0.01—0.1T3, L 0.01—0.1T4, lead to a transition
with large supercooling, relatively large critical bubbles,
and a distance between bubbles of l„10—10 t~.
These bubbles may grow as detonations as well as deBa-
grations, and the Universe does not reheat to T,. In spite
of the large distance scale of the inhomogeneity, we found
that for detonations the accumulation of baryon number
in the high-density regions is too inefFective to make a
noticeable efFect on nucleosynthesis likely. Even in the
new region of parameter space studied, only deBagra-
tions with efBcient turbulent baryon n»mber transport,
or maybe with large neutrino Bux, seem able to afFect
nucleosynthesis.
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