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Open and closed universes, initial singularities, and inflation
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The existence of initial singularities in expanding universes is proved without assuming the time-
like convergence condition. The assumptions made in the proof are ones likely to hold both in open
universes and in many closed ones. (It is further argued that at least some of the expanding closed
universes that do not obey a key assumption of the theorem will have initial singularities on other
grounds. ) The result is significant for two reasons: (a) previous closed-universe singularity theo-
rems have assumed the timelike convergence condition, and (b) the timelike convergence condition
is known to be violated in inBationary spacetimes. An immediate consequence of this theorem is
that a recent result on initial singularities in open, future-eternal, in6ating spacetimes may now be
extended to include many closed universes. Also, as a fringe bene6t, the time reverse of the theorem
may be applied to gravitational collapse.

PACS number(s): 98.80.Cq, 04.20.Dw

I. INTRODUCTION

The singularity theorems of classical general relativity
[1,2] may be divided into two categories: those that use
the timeline convergence condition (R sV Vs ) 0, for all
timelike vectors V ) and those that do not. The theorems
that use this condition do so in order to make congru-
ences of timelike geodesics focus. Those that do not, use
instead the null convergence condition (R sN Ns & 0,
for all null vectors N ) in order to make congruences of
null geodesics focus. In both cases the consequences of
this focusing are then shown to be incompatible with the
other assumptions of the theorem. Theorems in the sec-
ond category include Penrose's pioneering 1965 theorem
on singularities in gravitational collapse [3], Hawking's
application of the time reverse of that theorem to cosmol-

ogy [4], and a recent theorem on singularities in inflating
spacetimes [5,6].

The timelike convergence condition implies, by conti-
nuity, the null convergence condition, but the reverse im-

plication does not hold: there are spacetimes (de Sitter
spacetime is an example) that violate the timelike conver-

gence condition but honor the null convergence condition.
The violation of the timelike convergence condition in de
Sitter spacetime means that the condition is violated in
the inflating regions of known inflationary spacetimes. In
fact, it has been argued [6] that a violation of this con-
dition is necessary in order that a region be considered
"inflating. " For these reasons it is important to prove
singularity theorems without assuming the timelike con-
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vergence condition, especially if the theorems are meant
to apply to cosmology. Such theorems exist (as men-
tioned above) but they have certain weaknesses. Theo-
rems that are directly based on Penrose's 1965 theorem,
for instance, make very strong additional assumptions
about the global structure of spacetime. More signifi-

cantly, cosmological singularity theorems that do not as-
sume the timelike convergence condition have all (so far)
been applicable only to open universes. Typical closed-
universe singularity theorems, on the other hand, assume
the timelike convergence condition [7—9], as do both the
multipurpose 1970 theorem of Hawking and Penrose [10]
and Galloway's theorems extending closed-universe sin-

gularity results [11). Violations of the timelike conver-

gence condition thus provide a basis for several appar-
ently nonsingular closed cosmologies [12].

In this paper, a singularity theorem is proved without
assuming the timelike convergence condition; the theo-
rem applies to open universes and to many closed ones.
It is further argued that some of the closed universes to
which the theorem does not apply possess initial singu-
larities for other reasons. The theorem provides (among
other things) the extension to closed universes of a recent
result that demonstrates the necessity of initial singulari-
ties in open, future-eternal, inflationary cosmologies [5,6].

The paper is organized as follows. Section II dis-
cusses notation and terminology, and it gives some back-
ground results. Section III analyzes the strategy used
in some open-universe singularity theorems. Section IV
discusses the recent singularity theorem that deals with
open, future-eternal, inflationary spacetimes and it shows
that this theorem, too, 6ts the pattern laid out in Sec.
III. This analysis of open-universe theorems is impor-
tant because it suggests how one might proceed in closed
universes. Section V then discusses a feature of some
closed universes that might prevent open-universe argu-
ments kom going through. It points out that this feature
does not always occur, and it argues that some of the
closed universes in which it does will have other prop-
erties that force them, too, to have initial singularities.
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Part of the discussion here revolves around an interest-
ing singularity-&ee spacetime due to Bardeen. Section
VI states and proves the main theorem of this paper and
Sec. VII makes some comments on the significance of
this theorem. The paper ends with three appendices.
Appendix A brieHy discusses how the standard conver-
gence conditions follow kom conditions on the energy-
momentum tensor; it also discusses how these conditions
may be weakened from point conditions to integral ones.
Appendix B discusses certain features of Godel s uni-
verse that make it a formidable obstacle when trying to
prove simple singularity theorems. Appendix C discusses
whether the singularity predicted by cosmological singu-
larity theorems is indeed "cosmological, " i.e., whether the
theorems allow us to infer that the Universe as a whole
had a single beginning.

E (p)
& (p) -E (p) /0

FIG. 1. An example of the causal complications that can
arise in an unrestricted spacetime. Light rays travel along
45' lines in this diagram, and the taro thick horizontal lines
are identiSed. This allovrs the point q to send a signal to
the point p along the dashed line, as shorn, even though q
lies outside what is usually considered the past light cone of p.
The boundary of the past of p, I (p), then consists of the past
light cone of p, E (p), plus a further piece Su.ch a spacetime
is not "causally simple. "

II. NOTATION AND BACKGROUND RESULTS

Much of the discussion in this paper is based on the
Penrose-Hawking-Geroch "global techniques" in general
relativity. Everything that is needed is introduced and
defined below. For further details, and for the proofs of
all the assertions that are made in this section, see, for
example, Hawking and Ellis [1].

Spacetime is represented by a manifold M with a
Lorentz metric g s of signature (—,+, +, +) defined on
it. It is assumed that the metric permits a continuous
global distinction between past and future (i.e., it is time
orientable). It will not be necessary to assume a field
equation in any of the arguments given below. Conver-
gence conditions are imposed at certain points, and the
conclusions of this paper will be valid in any theory of
gravity (such as Einstein's) in which these conditions (or,
as discussed in Appendix A, some suitable integral ver-
sion) are reasonable impositions on the curvature.

A curve in spacetime is called causal if it is everywhere
timelike or null (i.e., lightlike). Let p be a point in space-
time. The causal and chronological pasts of p, denoted,
respectively, by J (p) and I (p), are defined as:

J (p) = (q: there is a future-directed causal curve

from q to p}

I (p) = (q: there is a future-directed timelike curve

from q to p} .

The past light cone of p may then be defined [13) as
E (p) = J (p) —I (p). It may be shown [1] that the
boundaries of the two kinds of pasts of p are the same;
i.e., J (p) = I (p). Furthermore, it may be shown that
E (p) C I (p). In general, however, E (p) g I (p);
i.e., the past light cone of p (as it has been defined here)
is a subset of the boundary of the past p, but is not
necessarily the full boundary of this past. This is illus-
trated in Fig. 1. The sets E (p) and I (p) [and thus also
J (p)] are achroma/; i.e., no two points on any of them

can be connected by a timelike curve. These definitions
of pasts and of past light cones may all be extended in a
straightforward way &om single points to arbitrary sets.

Spacetimes in which the type of behavior shown in
Fig. 1 does not occur, i.e., in which E (p) = I (p) for all
points p, are called past causally simple. The definition
may also be tightened by further requiring that I (p) g 6
(this rules out certain causality violations), as was done
in a previous theorem [5,6]. I will not use this tighter
definition in the xnain theorem (theorem 6) since I will

be making a separate causality ass»mption.
There are various kinds of causality conditions that,

may be imposed, depending on which of a hierarchy of
causality violations are to be ruled out [1]. The most
useful of the conditions is the stable causality condition.
Roughly speaking, the condition says that spacetime does
not contain closed timelike curves even when the metric
is slightly perturbed (i.e., the spacetime neither violates
causality nor is on the verge of doing so). A spacetime
is stably causal if and only if it admits a time function

[1]:i.e., it admits a function t whose gradient is timelike.
We may assume that the gradient is future pointing; the
function t must then strictly increase along every future-
directed timelike curve.

Another concept that we will need is that of global

hyperbolicity. Very roughly, a spacetime JH is globally
hyperbolic if there is a spacelike hypersurface 8 such
that the entire future and past development of M can
be predicted &om data on 8. If a surface exists with
this property, it is called a global Cauchy surface for M.
The existence of such a surface places very stringent con-
straints on the global structure of M [1].

At several points in this paper I compare closed uni-
verses with open ones; it is useful, therefore, to define
precisely what is meant by these terms. Intuitively, a
closed»~averse is one which "closes on itself spatially. "
This may be made precise by saying that a closed uni-

verse is one that contains a closed (i.e., compact, with-
out boundary) spacelike hypersurface. An open universe

may then be defined as one that contains no such sur-
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face. These de6nitions mean that an open universe is
"open everywhere, " but that a closed universe is just
"closed somewhere. " The de6nitions of open and closed
universes may also be given a little difFerently by using
an achrona/ hypersurface instead of a spacelike one. In
spacetimes without causality violations the two defini-
tions are closely related. This second definition of an
open universe was the one used in the recent result on
singularities in future-eternal, infiating spacetimes [5,6].

We also need some results kom the theory of geodesic
focusing. Consider a congruence of causal (i.e., null or
timelike) geodesics. (A congruence is a set of curves in an
open region of spacetime, one through each point of the
region. ) Let u be an alone parameter along the geodesics
and let U be the tangent to the geodesics with respect to
this parameter. The expansion of the geodesics may be
de6ned as 8 = D U, where D is the covariant deriva-
tive. Then the propagation equation for 8 may be written
in this form [1]:

d8 1 a b—& ——8 —RgUU 2

where a = 2 for null geodesics and a = 3 for time-
like geodesics. This inequality leads to a key result on
geodesic focusing:

Lemma f. Let M be a spacetime in which R g¹N
0 for all null vectors N (i.e., the null convergence condi-
tion holds). Consider a congruence of null geodesics with
affine parameter n If p is.a member of this congruence,
such that (i) the expansion 8 of the congruence is nega-
tive on p at some point n = no, and (ii) p is complete
in the direction of increasing n (i.e., p is defined for all
n & ns), then 8 M —oo along p a finite afFine parameter
distance &om no.

Proof. The proof is standard and is only sketched here;
details may be found in Hawking and Ellis [1]. From
formula (1) and the null convergence condition it follows
that

82d8 1

dn 2

The result is a consequence of this inequality.

III. OPEN-UNIVERSE SINGULAMTY
THEOREMS

Penrose s 1965 theorem on singularities in gravita-
tional collapse [3] is the mother of all singularity theorems
in relativity. The theorem is based on the existence of
a future trapped surface:-a compact (without boundary)
spacelike two-surface such that both systems of future-
directed null geodesics that emanate orthogonally kom
it (the "inward" system of light rays and the "outward"
system) are converging (i.e., have negative expansion 8).
A marginally trapped surface is defined similarly, but the
exp~a~ion 8 is just required to be nonpositive here. Al-
though the concept of a trapped surface was originally
invented in order to characterize a local collapsed sys-
tem, it was soon realized by Hawking [4] that it could
&uitfully be put to use in cosmology as weB. Hawk-

ing pointed out that large enough two-surfaces on con-
stant time slices (in terms of the usual time coordinate)
of open Robertson —Walker spacetimes are past-trapped,
allowing Penrose's arg»ment to be applied here as well

(in time-reversed form). de Sitter-like spacetimes also
contain trapped surfaces [14,15]; this fact was exploited
by Farhi and Guth [15] in arguing that it is impossible
to create in8ationary»niverses "in a laboratory. "

Closely related to the concept of a trapped surface
is the idea of a reconvening hyht cone: a point p is
said to have a reconverging past light cone if the ex-
pansion 8 of the past-directed null geodesics in the light
cone becomes negative along every such geodesic [i.e., the
null geodesics start to converge along every past-directed
geodesic in E (p)]. The concept was used in the 1970
theorem proved by Hawking and Penrose [10]. It was
further argued there (also see Hawking and Ellis [1]) that
observations of the microwave background radiation al-
low us to infer how much this radiation must have been
scattered, and that this in turn implies that there is suf-
ficient matter along every line of sight &om us to make
our own past light cone reconverge.

The signi6cance of trapped surfaces and reconverging
light cones comes &om this standard result:

Lemma 8. Let M be a spacetime in which R sN Ns )
0 for all null vectors N (i.e. , the null convergence condi-
tion holds). Suppose that M contains either a point with
a reconverging past light cone, or a past-trapped surface,
both represented here by L. If W is null-complete to the
past, then E (rY) is compact.

Proof. The result is standard, and so the proof is only
sketched here. Since 8 becomes (or already is) nega-
tive along each of the null geodesics that initially lies
in E (Z), it follows from lemma 1 (and the assumption
of past null-completeness) that 8 -+ —oo within a finite
alone parameter distance on each geodesic. The diver-
gence of 8 to —oo is a signal that the geodesics have
focused. It is a standard result in global general relativ-
ity that points on such null geodesics beyond the focal
point enter the interior of the past light cone [i.e., enter
I (Z)] and no longer lie in E (rl') [1]. Thus each null
geodesic that starts off in E (Z) leaves it within a fi-

nite afBne parameter distance. Since L is compact, this
implies that E (Z) is compact as well. Cl

The existence of such a compact set does not by itself
lead to a singularity. To get a singularity &om here, we
need two additional ingredients. First, it appears that
some sort of causality assumption is needed. Otherwise,
it is possible for E (Z) to be empty (and thus trivially
compact) or, if it is not empty, for it to be part of a com-

plicated enough boundary, I (rV), to make further anal-
ysis dificult. An interesting example along these lines
is given by Godel's universe [16]. Appendix B analyzes
some features of this universe: the analysis shows that
the spacetime obeys the strict nuH convergence condi-
tion and it contains both reconverging light cones and
marginally trapped surfaces [17,18]. Yet it is nonsingular
[1]. This escape from a singularity occurs because there
are bad causality violations in the spacetime [17,19].

Once causality violations are excluded [20], two dif-
ferent approaches have been taken in the past to ob-
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tain a singularity. One approach, taken, for instance,
in the Hawking-Penrose theorem [10], uses the strong
energy condition. This approach will not be discussed
here. The other approach, which typically uses a stronger
causality ass»mption, delivers a singularity immediately
by ruling out the possibility of a compact topology for
E (Z). For example, theorems based on Penrose's 1965
theorem impose a very simple causal structure on space-
time by requiring that it possess a global Cauchy surface
8. Such a spacetime is necessarily causally simple; i.e.,
E (Z) = I (Z), and thus E (Z) has no edge [1]. The
existence of such a compact, achronal, edgeless hyper-
surface is then ruled out by further requiring that 8 be
noncompact (this means that the Universe is open).

Thus, the structure of a singularity theorem of this
type is as follows:

(a) It is postulated that there is a point or a set, both
represented here by Z, with properties that lead, if the
spacetime is past null complete, to E (rY) being compact
The set E (Z) is also nonempty, either by fiat, or be-
cause of the absence of causality violations (i.e., of closed
timelike curves). The absence of causality violations may,
in turn, follow &om some other postulate (such as an as-
su~ption that M contains a global Cauchy surface).

(b) The hypersurface E (Z) is edgeless. This follows
&om causal simplicity —the assumption may be made di-
rectly or it may follow &om some other assumption (such
as an ass»mption that M contains a global Cauchy sur-
face).

(c) The existence of the compact, achronal, edgeless
hypersurface E (Z) is either asserted to be inconsistent
with the structure of an open universe, or is shown to be
inconsistent with some other open-universe assumption
(such as an assumption that M contains a noncompact
global Cauchy surface).

The conclusion drawn &om this argument is that a
spacetime cannot be null complete to the past under the
conditions of the theorem, i.e., it contains an initial sin-
gularity.

IV. INFLATION

A recent result [5,6] shows that open universes that
eternally inBate to the future must contain initial sin-
gularities. A universe is said to eternally inflate to the
future if the process of in8ation, once started, never com-
pletely ends. Theoretical work as well as computer cal-
culations [21—23] support the picture that infiation is in-
deed future-eternal: there is an infIationary background
in which new post-inflationary regions (i.e., regions where
inflation has ended) are continually formed, but these re-
gions never fill the entire»~averse. The in8ationary ex-
pansion is driven by the potential energy of a scalar field
&p, while the field slowly "rolls down" its potential V(y).
VFhen y reaches the minim»m of the potential this vac-
uum energy thermalizes, and in6ation is followed in this
region by the usual radiation-dominated expansion. The
evolution of the field y is influenced by quant»m Buctu-
ations, and as a result thermalization occurs at different
times in different parts of the Universe.

A cosmological model in wbich new "islands of ther-

malization" [24] are continually formed leads to this ques-
tion: can such a model be extended in a nonsingular
way into the infinite past? Ass»~ing that some reason-
able and rather general conditions are met, the recently
proved result shows that in open universes the answer to
this is "no:" such models must necessarily contain ini-
tial singularities. This is significant, because it forces us
in inBationary cosmologies, as in the standard big-bang
ones, to face the question of what, if anything, came be-
fore [25].

Here is the precise statement of the result:
Theorem S. A spacetime Al cannot be null-

geodesically complete to the past if it satisfies the fol-
lowing conditions: (A) It is past causally simple, with
E (z) g 8, Vz C Al; (8) it is open (i.e., JH contains no
compact, achronal hypersurfaces without edge); (C) it
obeys the null convergence condition; (D) it has at least
one point p such that for some point q to the future of
p the vob~me of the difference of the pasts of q and p is
finite.

Assumptions (A)—(C) are conventional as far as work
on singularity theorems goes. But ass»mption (D) is new
and is infiation specific. It has been discussed in detail
elsewhere [6,24], but here is a rough, short explanation:
If in8ation is to be future eternal, then for a point p in
the inBating region there must be a nonzero probability
for there to be a point q a given geodesic distance to
the future of p such that q also belongs to the inBating
region. Now, it may be shown that if a point r lies in
a thermalized region, then all points in I+(r) also lie in
that thermalized region [5). Furthermore, it seems plau-
sible that there is a zero probability for no thermalized
regions to form in an infinite spacetime volume. Then
ass»mption (D) follows.

Proof. The full proof of this result is available else-
where [5,6), but here is a sketch: If M is null-complete
to the past, then E (p) must be compact. This is
so, because the volume of a small wedge of the region
I (q) —I (p) around a geodesic p that lies in E (p)
throughout may be expressed as

b, A(v)dv,
0

where b, is a constant, A is the cross-sectional area of
E (p) around 7, and v is an affine parameter along the
geodesic (chosen to increase in the past direction). From
assumption (D) this vob~me must be finite. This can
happen only if A decreases somewhere. But

d = 8A.
dv

This means that 8 must become negative somewhere.
From assumption (C) and the arg»ment of lemma 2 it
follows that p must enter I (p), and so leave E (p),
within a finite afline parameter distance. Thus E (p)
is compact. But ass»mption (A) implies that E (p) has
no edge. These two statements taken together contradict
ass»mption (B).0

Therefore, this arg»ment, too, follows the general
open-universe pattern laid out at the end of the previ-
ous section.
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V. CLOSED UNIVERSES

The open-universe pattern shows that the crucial con-
tradiction in open-universe singularity theorems arises
&om the existence of a compact, edgeless past light cone.
The reason why closed universes prove awkward for such
theorexns is that it is possible for light cones in at least
some closed universes to "wrap around" the whole uni-
verse and thus be compact without causing any prob-
lems. This is illustrated in Fig. 2. (As a point of interest
to theorem 3, the past-volume di8erence is finite in such
a spacetime. ) Such behavior occurs, for instance, in the
Einstein universe [1].

This behavior also occurs in an interesting spacetime
due to Bardeen [26]. Though this spacetime was origi-
nally constructed in the context of gravitational collapse,
the lessons that it teaches are equally relevant to the ex-
istence of initial singularities. Bardeen's example uses
the Reissner-Nordstrom spacetime as inspiration. The
Reissner —Nordstrom metric represents the spacetime ex-
terior to a spherically symmetric object of mass m and
electric charge e. The global properties of the space-
time depend on the relative magnitudes of e and m; we
will be interested here in the case when e2 & m2. The
fully extended spacetime consists of infinitely many re-
gions, in each of which the standard spherical coordinates
(t, r, 8, P) may be used. The metric in each region is

1
ds = f(r)dt —+ dr +r d8 +r sin Hdg, (2)

&(r)

where

&(r) =1— e2+-
r2 '

This spacetime obeys the null convergence condition.
Furthermore, there are trapped surfaces in the region

PIG. 2. A closed universe in which the past light cone of
any point p is compact (and the volume of the difFerence of
the pasts of any two points is ffnite). The past-directed null
geodesics &om p start off'initially in E (p); but, once they re-
cross at q ("at the back") they enter I (p) (because there are
timelike curves between p and points on these null geodesics
past q), and they thus leave E (p).

& r & r+ (where r~ = m+ gm2 —e2), and a physical
singularity at r = 0. But, as Bardeen pointed out [26],
the function f may be replaced in (2) by a new function
g, chosen to remove the singularity, while still retaining
the trapped surfaces and preserving the null convergence
condition. One such function displayed by Bardeen is

2mr2
g(r) =1—.. . r &0.r2 + e2)3/2

When e & &&m, once again there are values r~ of r such
that the region r & r ( r+ contains trapped surfaces.
The spacetime obeys the null convergence condition, yet
it contains no physical singularities. A similar exam-
ple (i.e., possessing trapped surfaces and obeying the
null convergence condition, yet nonsingular) may be con-
structed by directly modifying the Reissner-Nordstrom
metric [27]. This is done by choosing a value ro & r
and by replacing the Reissner —Nordstrom function f by
a function g that agrees with f for r ) ro but not for
r & ro. One such function is

(0 & r & ro) .

If ro ——4e2/Sm and if the parameters e and m are chosen
such that e & m2 ( z&e, then the new metric will have
all the desired properties.

Now, the only condition of Penrose's theorem not
obeyed by Bardeen's spacetime and its ilk (or, for that
matter, by the Reissner —Nordstrom spacetime) is the
global Cauchy surface condition. The lesson that is con-
ventionally drawn from this is that the Cauchy surface
assumption cannot be dropped lightly, if we still want to
prove the existence of a singularity. If the assumption
is dropped, it is usually argued, then another strong as-
sumption must replace it, and that assumption is taken
to be the timelike convergence condition [1].

But it is possible to draw a different lesson &om
Bardeen's example. This lesson is most clearly drawn
if we compare the global structure of the Reissner-
Nordstrom spacetime [1] with that of Bardeen's [26]. In
the first case the topology of the spacelike sections is
S2 x R throughout. In the second it switches between
S x B and S3. This is illustrated in Fig. 3. As the figure
reveals, the escape &om a singularity occurs in Bardeen's
spacetime not because it fails to be globally hyperbolic,
but because in the crucial region where trapped surfaces
occur, it is possible for light rays to wrap around the
n~iverse. In fact, the trapped surface 7 and its future
light cone E+(7 ) bath lie in a globally hyperbolic region
of the spacetime (more precisely, in the future Cauchy
development of the surface 8). A singularity is avoided
purely because 8 is compact.

The wrapping of light cones around the universe (such
as occurs in Bardeen's spacetime or in the spacetime of
Fig. 2) ought not, however, to be generic behavior, at
least for the past cones of single points: the cosmological
scale ought to be much larger than the scale pn which
light cones refocus [24] (or the scale on which light rays
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FIG. 3. The global structure of portions of (a) the Reissner-Nordstrom spacetime, and (b) Bardeen s spacetime. A point
in the interior of both spacetimes represents a two-sphere. The boundaries of the diagram are drawn according to these
conventions: single lines and hollow circles represent regions at in6nity, double lines represent singularities, and dashed lines
represent the origins (r = 0) of the coordinate systems. So, none of the boundaries in (a) are a part of the spacetime, whereas
in (b) the r = 0 lines are. In both cases the r = 0 lines represent the origins of different coordinate patches. If one imagines a
series of horizontal lines across each diagram, representing spacelike hypersurfaces, the topology of these surfaces will be S x R
throughout in (a), but in (b) the surfaces switch from S x R to S in the region between the r =. 0 lines. (For instance, the
surface S shown in (b) is a three-sphere. ) There are trapped surfaces, 7, represented above by solid dots, in the shaded regions
of both spacetimes. The dotted lines emanating from the trapped surfaces represent the two systems of future-directed null

rays from 7: the "ingoing" and the "outgoing. " Each system approaches (and in Bardeen's spacetime, reaches) a focal point
at r = 0. Thus, in Bardeen's spacetime [i.e. , in (b)], the future light cone of 7 "wraps around the universe. " This light cone
has topology S .

&om "small" trapped surfaces, such as are ones likely
to occur in gravitational collapse, focus). To state it
another way, the behavior of light cones ought to depend
only on (relatively) local efFects, not on the behavior of
the Universe as a whole.

There is an exception to this statement, one that is,
unfortunately, of interest to this paper: an expanding
closed universe might well have been small enough in
the past for light rays to wrap around it easily. Since
our chief interest is the existence of initial singularities,
this scenario cannot lightly be dismissed. But, a slight
adaptation of a theorem due to Hawking [8] may be used
to show that in some cases an initial singularity will exist
here as well.

Theorem g. A spacetime M containing a compact,
edgeless, spacelike hypersurface 8 cannot be timelike-
geodesically complete to the past if there is a non-
negative number K such that (A) R sT Ts & —sK2 for
all unit timelike vectors T and (B) the past-directed
timelike geodesics that emanate orthogonally &om 8
have initial expansion Ho ( —K at 8 (the past direction
is the direction of increasing affine parameter).

Proof Only the case. when K g 0 is considered (The.
K = 0 case is standard: see the comments immediately
following the proof. ) Suppose that M is timelike com-
plete to the past. Let 7 be the proper time along the
past-directed timelike geodesics &om 8. Choose ~ to in-
crease in the past direction aad to have the value 0 at
8. Let T be the tangent to these geodesics with respect
to r (i.e., T is the four-velocity of the geodesics). From
formula (1) and assumption (A) we get

—&-(K —8).d8
dv. 3

This, along with assumption (B), means that

8 ( Kcoth[sK(r —r)],

where r = (3/ —K)arc octh( H/oK) ) 0 (because Ho
—K ( 0). Thus 8 ~ —oo within a proper time r" to the
past of 8.

Once the existence of these focal points is established,
the rest of the argument is identical to the oae given by
Hawking [1,8]. 0

In the original statement and proof of Hawking's re-
sult, K is zero (the focusing is then shown slightly difFer-

ently than is done here). This makes ass»option (A) the
standard timelike convergence condition, and assumption
(B) a statement that the»diverse is contracting in the
past direction (or, equivalently, expanding in the future
direction). The slightly difFerent formulation given here
is meant to apply to situations where the timelike con-
vergence condition might not hold. Many in8ationary
models, for example, assume the form R~~ ——3v g~g for
the Ricci tensor. This form satisfies assumption (A), with
K = 3v [28]. Thus Hawking's theorem adapted to such
situations says that there will be an initial singularity,
provided that the surface 8 is expanding su8iciently fast
in the future direction. This theorem will cover at least
some cases where past light cones wrap around the uni-
verse.

For the rest of this paper I will concentrate oa situ-
ations where light cones do not wrap around the uni-
verse. A light cone such as the one in Fig. 2 that wraps
around also swallows the Universe entirely [14]. One fea-
ture of this "swallowing" may be seen if we examine a
point close to the light cone, but to its future: it appears
impossible for any past-directed signal &om the point to
avoid intersecting the cone [29]. Actually, appearances
are a little deceptive here: these statements are not true,
as Fig. 4 shows, in causality-violating spacetimes of the
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timelike ~
null —+ ~ E (p)

(Minkowski, Schwarzchild, the open Robertson-Walker
cosmologies, etc.), as well as closed ones such as de Sit-
ter and some of the closed Robertson-Walker cosmologies
(here, the localization or not of light cones depends on
the time scale for the recollapse of the universe).

VI. THE SINGULARITY THEOREM

spacelike ~

FIG. 4. A two-dimensional Taub-NUT-like closed universe
due to Misner [1]. The causal behavior here is very difFerent
from that in Fig. 2. Local light cones are shown at several
points (only the past cones): the two straight lines represent
the two past-directed null vectors at each point, and the arc
between them the interior of the local cone. The (global)
psst light cone of p, E (p), consists of a single closed null
geodesic through p. [The other null geodesic from p enters
I (p) immediately, since past-directed timelike curves from p
csn wind around the cylinder and return arbitrarily close to p.]
The curve p to the future of p is a closed timelike curve, and
so it does not intersect the past of p. This means that even
though in s certain sense E (p) wraps around the universe,
points to the future of this set can avoid sending signals that
intersect it no matter how close they lie to E (p).

Taub-NUT (Newman-Unti- Tamburino) variety [1]. But,
if we exclude causality violations, we may take the state-
ments made above as characterizing the behavior that we
want to exclude. Therefore, I will assume in the theorem
that past light cones are localized in the following sense:

Definition. A past light cone in a stably causal space-
time is called localized if from every spacetime point p
not on the cone, there is at least one fully extended, past-
directed timelike curve that does not intersect the cone.

A "fully extended, past-directed" curve is often caOed
"past inextensible. " Localized past light cones are illus-
trated in Fig. 5. Spacetimes in which past light cones
are localized include all the standard open universes

If a past light cone in a stably causal spacetime is com-
pact and without edge, it is not "localized. " In fact, a
slightly more general result holds.

Lemma 5. Let M be a spacetime that obeys the stable
causality condition. Suppose that ~ contains a compact,
achronal hypersurface, 8, without edge. There are then
points p in I+8 such that every past-directed timelike
curve from p intersects 8.

Proof. Let t be a time function on M Var. y 8 forward
a small amount in the future t direction. For a suHicient}y
small variation this gives a compact spacetime region Af
with two compact components to its boundary: 8, and a
second component denoted by 8' (see Fig. 6). Though 8
is achronal by assumption, 8' does not have to be. Let
tq be the minimum value of t on 8', attained at some
point p. Every past-directed timelike curve from p must
enter A (because to is the minimum value of t on the
edgeless hypersurface 8'). Each such curve p must also
eventually leave JV': if it does not, it must accumulate
at some point in the compact set JV, and examination of
constant t surfaces in a small neighborhood of the accu-
mulation point shows that this cannot happen (because
t decreases along p). The curve must leave through 8
and not through some other point of 8' (again, because
t decreases along p). Thus, every past-directed timelike
curve &om p intersects 8. C3

The main result of this paper follows trivially &om the
preceding dj.scusslon.

Theorem O'. A stably causal spacetime cannot simul-
taneously satisfy the following two conditions: (A) It is
past causally simple; (B) it contains a compact, localized
past light cone.

Proof If E is the p.ast light cone given by assumption
(B), then assumption (A) implies that t has no edge
(being the full boundary of the past). Also, 8 is achronal.
Since E' is localized, this contradicts lemma 5.

This theorem (backed by lemma 2 and theorem 3)
shows that spacetimes cannot be past null complete in
a variety of circumstances:

FIG. 5. Two examples of spacetimes with localized past
light cones. The boundaries of both Sgures are boundaries at
inSnity. A typical past light cone is shown in each spacetime.
The dotted line &om each point p represents a past-directed
timelike curve that avoids intersecting the past light cone. FIG. 6. An iOustration of the strategy used in lemma 5.
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Corollary. A stably causal spacetime M cannot be
null-geodesically complete to the past if it satisfies the
following conditions: (A) It is past causally simple; (B)
all past light cones in M are localized; (C) it obeys the
null convergence condition; (D) it contains either (i) a
point with a reconverging past light cone, or (ii) a past-
trapped surface, or (iii) a point p such that for some point
q to the future of p the vol»me of the difference of the
pasts of q and p is finite.

This result offers (among other consequences) a modi-
fication of theorem 3 by replacing its assumption (B) by
the ass»mptions that the spacetime is stably causal and
that all past light cones in the spacetime are localized.
The modified theorem will not exclude closed universes,
as the original one had.

only restriction on causal structure. This issue mill be
discussed elsewhere.

It mould also be nice if the ass»mption on localized
null cones could be replaced by something likely to hold
in all closed universes. But the existence of nonsingular
closed spacetimes that obey the null convergence condi-
tion makes it far from obvious (at least to me) how to
proceed without such an assumption —although it is pos-
sible that some kind of genericity condition might help
here. In this connection, it is curious that closed-»~averse
singularity theorems have tended to need stronger con-
vergence conditions than open-universe theorems, despite
the fact that a closed»~lverse is pres»mably denser than
an open one and so ought to have a greater natural pro-
clivity for singularities.

VII. DISCUSSION ACKNOWLEDGMENTS

The result presented above has many of the strengths
of the other singularity theorems, and it also shares many
of their weaknesses. It is based on very modest assump-
tions, and it may thus be considered a strong result, but
the conclusions that it arrives at are also somewhat lim-
ited. The theorem demonstrates the existence of a past-
incomplete null geodesic, but it yields no information on
where in the past the singularity lies. Nor does it demon-
strate that the universe had a "single beginning" in the
sense that Robertson-Walker models might be said to
have one. The question of a single beginning is addressed
further in Appendix C.

Still, the theorem closes several gaps in our under-
standing of the conditions that are likely to lead to, or
to prevent, singularities. It shows, for instance, that
nonsingular cosmologies must either violate the null con-
vergence condition (in addition to the violations of the
timelike convergence condition that many are already
known to possess), or they must not have reconverging
past light cones, or if light cones do reconverge then they
must swallow the universe. (If there is a violation of the
null convergence condition, it must be severe enough to
also violate the integral conditions discussed in Appendix
A.) The theorem also places the initial singularity in the
past, where it rightfully belongs, unlike, for instance, the
Hawking-Penrose theorem [10] which is silent on the lo-
cation of the singularity.

Apart &om its cosmological applications, the theorem
may also be applied to gravitationally collapsing systems
in which future-trapped surfaces occur. A future singu-
larity is predicted here by the time reverse of the the-
orem, thus covering spacetimes like Reissner-Nordstrom
(which, oddly, had not hitherto met the conditions of any
singularity theorem [30]).

The theorem here is, of course, only as good as its
assumptions: the weaker we make the assumptions, the
stronger and more physically reliable the result. One
condition that can probably be somewhat weakened is
the causal simplicity assumption. This assumption was
made solely to prove the theorem in the most direct way
possible and with a minimum of mathematical fuss. But
it would be preferable to have stable causality as the

This paper arose out of discussions with Alex Vilenkin.
It is a pleasure to thank him for stimulating my interest
in the questions discussed here, for offering very many
helpful comments and suggestions, and for reading the
manuscript. I have also benefited &om discussions with
Rosanne Di Stefano, Alan Guth, and Tom Roman, and
I thank them as well. I thank the Institute of Cosmol-
ogy at Tufts University for its warm hospitality over the
period when this work was done, and the High Energy
Theory Group at Brookhaven National Laboratory for
its continued support.

APPENDIX A: CONVERGENCE CONDITIONS
AND ENERGY

Both of the standard convergence conditions, timelike
and null, follow, via Einstein's equation, &om certain
inequalities, known as energy conditions, on the matter
energy-momentum tensor [1]. Einstein's equation is

1
R g

——Rg g+Ag g
——8+T g,

2
(A1)

where R g is the Ricci tensor obtained &om g g, R is the
curvature scalar, A is the cosmological constant, and T g

is the matter energy-momentum tensor. The inequalities
that are useful for our purposes are the Strong energy
condition (which says that T ~V Vs —2T V Vs & 0 for
all timelike vectors V ) and the weak energy condition
(which says that T sV Vs & 0 for all timelike vectors V,
&om which it follows by continuity that T pN N & 0
for all null vectors N ). The timelike convergence condi-
tion follows &om the strong energy condition when the
cosmological constant is zero, and the null convergence
condition follows &om the weak energy condition, even if
there is a cosmological constant.

All these conditions are point conditions, and there has
been discussion [31—37] of scenarios in which the energy
conditions might be violated in a limited way (for ex-
ample, at some points but not at others). It is known
&om some of this work [28,31,32], that what is impor-
tant in order to ensure focusing is that R sU Us (where
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U is the tangent to a null or a timelike geodesic) obey
an integral inequality, not necessarily one that holds at
every point. Such integral (or, as they have come to be
called, averaged) convergence conditions will do just as
well for the purposes of this paper. For instance, a condi-
tion that (roughly speaking) requires that f R qN N dn
be repeatedly non-negative (along a geodesic with affine
parameter n) is known to be sufficient to give focusing
[28].

Despite the availability of these weaker conditions, the
central arguments of this paper are phrased in terms of
point conditions. This is done in order to keep the line
of the argument clean and uncluttered with extraneous
detail. It should be kept in mind, though, that any con-
vergence condition, point or integral, that is sufhcient to
guarantee that a congruence of initially converging, com-
plete geodesics actually comes to a focus is adequate for
our purposes.

tan —(P + cut —i/2t') = exp( —2r) tan —P,
2 2

In these coordinates, the metric is given by

ds = —
[
—dt + dr —sinh r(sinh r —1)dg~2

+2~2sinh rdPdt] + dz

The coordinate z plays no role in the behavior of the
spacetime, and it will be ignored from now on. It may
be checked that the closed curve given by

t = const, r = ln(1+ V2), P = P(p)

APPENDIX B: GODEL'S UNIVERSE

In the course of an investigation of the idealistic con-
ception of time (i.e., of whether or not "reality consists of
an infinity of layers of 'now' "), Godel discovered in 1949
a very interesting solution to Einstein's equation [16].
The solution has closed timelike curves. It is also simply
connected. It follows from this that Godel's universe con-
tains no edgeless spacelike hypersurfaces: "reality" here
does not contain even a single layer of "now. " Another
interesting feature of this universe, though less dramatic,
is that it has no singularities, despite (as we shall see be-
low) possessing reconverging light cones and marginally
trapped surfaces, and obeying the strict null convergence
condition [38]. This makes it a tantalizing obstacle when
trying to develop singularity theorems [39].

The manifold on which Godel's metric is de6ned is
R . A set of coordinates (t', x, y, z) may be chosen such
that each coordinate has range (—oo, oo), with the metric
given by

ds = dt' + dx ———exp(2~2~x)dy
2

+dz2 —2 exp(~2(ux) dt'dy,

where u is a positive constant. The metric satisfies
Einstein s equation, with a cosmological constant [see
Eq. (Al)], if T b = pU U&, where U = (8/Ot'), and

—A = 4mp. If N is a null vector, we have
R gN N = 2ur2(U N )2 ) 0; i.e. , the strict null con-
vergence condition holds here.

The coordinates (t', x, y, z) are not the best ones
in which to investigate light cones. New coordinates
(t, r, P, z) may be defined [1], with —oo & t & oo, 0 &

r & oo, 0 & P & 2m, and —oo & z & oo, by the following
transformations:

exp(~2wx) = cosh2r + cosgsinh2r,

~y exp(~2&ux) = sin P sinh2r,

is a nongeodesic null curve [18] (where p is an arbitrary
parameter). But, in the region r & ln(1 + ~2), the sur-
faces of constant t and r are spacelike. (They are also
compact and edgeless, if we ignore z, or if we compactify
the z direction by identifying, for instance, z = 0 with
z = 1.) The tangents to the two systems of past-directed
null geodesics that emanate orthogonally &om these sur-
faces have these non-zero components:

sinh r —1

cosh r

(1 —sinh r)'~2
N~ ——6

coshr

and

cosh r

where ¹+ is tangent to the outgoing null geodesics and
N to the ingoing ones (both vectors point in the past
direction). The expansion of the two systems may be
computed to be

61' = V' N~ ——6 1 —2sinh r
sinhr gl —sinh r

Thus, the expansion of the outgoing null geodesics is
positive for small r, becomes zero at r = ro (where
sinh ro ——1/2), and negative thereafter; i.e. , the past
light cone of a point on the r = 0 axis reconverges for

ro. Meanwhile, the ingoing null geodesics start ofF

with negative expansion for small r. The expansion for
this system, too, becomes zero at r = ro. Therefore, at
any time t, the surface given by r = ro is a marginally
trapped surface. It is interesting to note that although
the outgoing null geodesics are converging (i.e., 8 & 0)
for r ) ro, r continues to increase for these geodesics.
And the "focus" that the geodesics come to, occurs on
the surface given by r = ln(1 + y 2).
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APPENDIX C: A SINGLE BEGINNING?

Singularity theorems in general relativity often confine
themselves to proving the existence of one incomplete
causal geodesic. In what sense, then, can a cosmological
singularity theorem be said to show that the universe as
a whole [23] had a single singular beginning?

Although it does not appear possible to conclusively
prove the necessity of a single beginning without resort-
ing to model-dependent calculations, there are pieces of
evidence that suggest that the existence of a single be-
ginning is a plausible consequence of the singularity the-
orems. For instance, theorem 3 (and its extension in Sec.
VI) shows that the past light cone of any point p sat-
isfying ass»mption (D) must be incomplete. Arguments
given elsewhere [6,24], show that almost all points in the
inflating region of an in6ationary spacetime will satisfy
assumption (D). It follows that each of these points must
have an initial singularity (i.e., a past-incomplete causal
geodesic) somewhere to the past. This does not prove
that all these singularities lie on one spacelike hypersur-
face, but it does make such a scenario possible.

Stronger evidence for this scenario may be obtained by
adding to theorem 4 the assumption that 8 is a global

Cauchy surface and requiring that K be nonzero (it is
not necessary then to ass»me that 8 is compact, making
the result applicable to both open and closed universes).
It follows by a standard arg»ment &om the altered as-
sumptions that no timelike geodesic that emanates or-
thogonally &om 8 can exist for a proper time greater
than r = —(3/K)arccoth(8 /K) to the past of 8,
where 8 is the largest value of the divergence of the
geodesics at 8 (i.e., it represents the least past-convergent
of these geodesics). For, suppose that there is a point r
on one of these geodesics a proper time v & v to the
past of 8. Since 8 is a global Cauchy surface there must
be a maximal timelike curve p between r and 8 [1]. This
curve must have length greater than r and it must
intersect 8 orthogonally [1]. But then e must diverge to
—oo on p, between 8 and r. This means that p cannot
be maximal [1].

The result shows that in models that (a) possess a
global Cauchy surface, and (b) are expanding sufficiently
fast, there is an upper bound on the lengths (i.e., proper
times) of timelike geodesics when they are followed into
the past &om the Cauchy surface. This is a further piece
of evidence (though again not conclusive [40]) that it
seems reasonable to infer &om singularity theorems that
the classical universe did indeed have a single beginning.
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