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Two-loop renormalization group equations for soft supersymmetry-breaking scalar interactions:
Supergraph method
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We obtain the one- and two-loop renormalization group equations for soft SUSY-breaking scalar in-

teractions in a general, semisimple SUSY gauge model, by using the supergraph method. We find that
the method simplifies the calculation significantly because of the nonrenormalization theorem and also
because of the property that the relevant divergences are derived by simple algebra from those in the ex-

act SUSY case. A disagreement with the existing result is found in P'2'(m 2) and its cause is briefly dis-

cussed.

PACS number(s): 11.30.Pb, 11.10.Hi

I. INTRODUCTION

The gauge theory with softly broken supersymmetry
(SUSY) has been widely studied as one of the plausible
extensions of the standard model. The model contains
many new couplings, the soft SUSY-breaking interac-
tions, which are arbitrary in the low-energy efFective
theory. When the model is embedded in some unified
theories, such as the grand unified models and the super-
gravity models, the soft SUSY-breaking couplings are ex-
pressed in terms of a few parameters at the very high
unification scale. To obtain experimental predictions, we
should extrapolate the values of these couplings to the
weak scale by using the renormalization group equations.

The one-loop renormalization group equations for soft
SUSY-breaking interactions have been given in [1] for
general cases. However, the two-loop contributions to
the equations have not been known for a long time, al-
though they can in principle be derived from the general
P functions in Refs. [2,3]. Very recently, the two-loop P
functions for the gaugino masses [4,5] and the scale in-
teractions [6] were obtained. In this paper, we present an
alternative method for calculating the P functions, the
supergraph method, in case of soft SUSY-breaking scalar
interactions.

The supergraph method [7,8], which is a very powerful
tool for studying exact SUSY models, is also applicable to
softly broken SUSY models by using the "spurion" exter-
nal field [9,10]. This method has many nice features:
manifest SUSY and divergence cancellation, reduction of
number of graphs and Lorentz indices, and the nonrenor-
malization theorem [11]. In most previous works
[1,4—6], however, the renormalization group equations
for soft SUSY-breaking interactions have been calculated
in the component field method in the Wess-Zumino
gauge. Although Ref. [12] has given a supergraph calcu-
lation of the one-loop scalar interactions, unfortunately,
their specific method works only for very simple models.

We find that by using the supergraph method, the cal-
culation of the P functions for the soft SUSY-breaking
scalar interactions becomes much simpler than that in
the component field method, due to the nonrenormaliza-

tion theorem. If the gauge group has no U(1) factor, we
only need the divergent parts of two- and one-point
effective vertex functions of chiral supermultiplets with
the spurion insertions. Moreover, these vertex functions
can be obtained by simple algebra from those in the exact
SUSY case, at least to the two-loop order.

The paper is organized as follows. In Sec. II, we re-
view the superfield expression of the gauge model with
softly broken SUSY. A problem for the renormalization
of soft SUSY-breaking terms is discussed. In Sec. III, we
show that the renormalization of soft SUSY-breaking
scalar interactions can be obtained from the divergent
parts of two-point functions of chiral supermultiplets in
the exact SUSY case, if the gauge group has no U(1) fac-
tor. In Sec. IV, we check that our method gives the
correct one-loop P functions for soft SUSY-breaking sca-
lar interactions. In Sec. V, we calculate the two-loop P
functions for these scalar interactions and compare them
with the results in Ref. [6] which are obtained by the
component field method. A discrepancy is found in the P
function for the scalar masses, and its possible cause is
discussed. Finally, Sec. VI gives our conclusions.

II. SOFTLY BROKEN SUSY MODEL
IN THE SUPERFIELD FORMALISM

In this section, we review the superfield expression of
the Lagrangian for general gauge model with softly bro-
ken SUSY. We then discuss a problem in the renormal-
ization of soft SUSY-breaking terms in the supergraph
method and show that it is solved by a suitable
redefinition of superfields.

We first write down the Lagrangian of the general
gauge model with softly broken SUSY in the superfield
formalism by using the spurion external field g =8 . Our
notation and conventions for the superfield formalism are
given in the Appendix. We consider a model with a semi-
simple gauge group G = ll„G„,where G„'s are simple
subgroups. In this paper, we assume that there is no U(1)
factor in G, which is crucial for later discussion. The
model contains chiral supermultiplets 4,- in the represen-
tations R;" for the subgroup G„and vector supermulti-
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+SUSY++soft++GF++FP ~

~here the SUSY par& is

=f d 84'(e g )J4 +—' d 8W" W"
i j 4 0

+—' 2 8'~W "~

+ fd'8( 'A"—"Ct 4 Cs +—'M "Cs tIs +I.'4 )

+H.c. ,

(2.1)

plets V . Here we use the following abbreviations: the
index 3 represents the subgroups G~ and their genera-
tors T", and i represents the irreducible gauge multiplets
and their components.

The Lagrangian is written as [13,9]

An appropriate trace for group generators is understood
in all the Lagrangians in this paper. X„«contains the
scalar masses m, the gaugino masses I~, and the scalar
interactions A, B,C. The factor e g in (2.3) is necessary
to make Xs«t invariant under the supergauge transforma-
tion. If G has no U(1) factor, the Fayet-Iliopoulos term

Jd 8V is not generated. The explicit forms of the

gauge-fixing term XGF and Faddeev-Popov ghost term
X.FP are given in Sec. III.

%e encounter one problem in the renormalization of
(2.3). The Lagrangian (2.3) does not contain all possible
divergent terms involving g, q. In fact, loop correction
produces the following types of divergences [9,12], in ad-
dition to those in (2.3):

W A D 2[e
—2gVD e 2gv] A f d 8[rl@Cs, rl@, re)Cs, 2)r)D W ] . {2.4}

gV=g V"T

and the soft SUSY-breaking part is'

= —f d 8g —A' "4 4 4 +—B'4 4.+C'4

mg+ W~~W" +H.c.
2 a

f d48~~@ i(m2)J'(e2gv)k@ (2.3)

The last term in (2.4) can appear only if 6 has a U(1} fac-
tor.

In the component field formalism, these terms can be
expressed as linear combinations of the usual terms in
(2.3) by eliminating auxiliary components. But in the
superfield formalism, this procedure means the substitu-
tion of the equation of motion into (2.4) and is not easy to
justify. So, to obtain manifestly finite efFective action in
the superfield formalism, we should include the first three
terms of (2.4) to the original Lagrangian:

+SUSY++soft++GF++FP &

= —f d28g —g 'Jkcs Cs.cs +— .'J4.4 +0 'tIi, + W"'W," +H. c.

(2.5)

+ —qq4' m; e g 4„+4' q~,"+q~,*' e g,"4 +gg p', 4;+p*„4' + gpss+;+gp2;C''

r)(aJ4'+ p2;
—) . (2.6)

Then the relations between the coupling constants in

ft and those in X,',«are

gijk g ijk+gljk i +gilk j+gijl

B'J=k "+M Ja''+M "a]+1,'J'p'

C'= C' '+L Ja' +M'tJ' +P'~' —P'

(m2)J=(m )J. +if,*. "if' .

In (2.9},we have used the identity

(2.7)

(2.8)

(29)

(2.10)

The usual definitions of A, B,C are our A' /A, '", B' /M",
C'/I. ', respectively.

Here we have introduced new couplings x, p, and p2„
whose dimensions are 1, 3, and 2, respectively.

Fortunately, the Lagrangian (2.5) can be transformed
into the conventional form (2.3) by the following 8
dependent field redefinition:

fd'8gqe= f d'8ge . (2.11)

p, f d48rlr)D W"= f d 8(D'rl)(D'r))V (2.12)

in the Lagrangian (2.5). By the field redefinition
V„=V„' —r17)p3", we can absorb (2.12) into m as

Q(m )J-=2g (T )J.p

Obviously, other coupling constants in (2.5) are not
affected by the redefinition (2.6).

The renormalization of the interactions (2.3} can now
be done as follows. First, we renormalize the Lagrangian
(2.5) under two conditions: that all the couplings in (2.5)

are independent of each other and that the renormalized
~, p, and p2 are set to O. Then the bare couplings
( +,k, , m, &,pt, p2, . . . ) in (2.5) are expressed in terms
of the renormalized couplings ( A, S,C, m, . . . } in (2.3).
Second, we obtain the bare couplings ( A, B,C, m 2, . . . } in

(2.3) by using the relations (2.7)—(2.10).
If the gauge group has a U(1) factor, we further need

an additional term
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The appearance of the p3 term complicates the following
discussions, and we will discuss its consequences else-
where.

Sec. II. The equations (3.3)—(3.6), which are similar to
the renormalization of the superpotential,

gijk(bare)j4
—» j(ijk+ i gi jk'Ti + i gij k'TJ

2 l 2 J
III. EVALUATION OF DIVERGENT PARTS

etc. (3.10)
In this section, we consider the calculation of the

divergent supergraphs which are relevant to the renor-
malization of soft SUSY-breaking scalar interactions.
We show that to the two-loop order the relevant diver-

gences involving a spurion g are derived by simple alge-
bra from those in the exact SUSY case. We follow the
method given in Ref. [8].

By the nonrenormalization theorem [11,8] and discus-
sions in the last section, it is sufBcient for our study to
calculate the divergent parts of vertex functions (44 )
and (4 ) with and without rj insertions.

The divergent parts of the vertex functions

fd 84'T,""'J 4 and fd 8J'"'4; in the softly broken

SUSY model are expanded in g as

T ""=(T+T"'rj+T'"rI+T' 'rjrj}J (3.1)

and
g(g)i J(1)i—+g(2)i— (3.2)

respectively. TJ in (3.1) is the two-point function in the
exact SUSY case. By power counting, the factors Dg
and D g do not appear in these divergent parts. The re-
normalization of the coupling constants in the Lagrang-
ian (2.3) are then expressed as

g ijk(bare )j4
—» g ijk+ 1 g i'J'k7 i + 1 g iJ'kTJ + 1 g iJ'k Tk

2 2 J 2

gij'kT(, 1)j
J

—gijk T(, )k)+0 ( I/e2)

B'J(bare}=B' + 'B' T' + 'B'J—TJ M' J—T"'—
2 l 2 J l

—M'J T''"J iL'~"J""+0( I/e )—j' k

Ci(bare }ye Ci+ 1 C—t'Ti L, i 7(1)i 'MVJ(1)»
l l J

+J' '+0(1/e )

(rn }J(bare}=(m ),J+ ,'(m )J.T,'+ ,'(m—)JTJ-
)J+0(1/p )

(3.3)

(3.4)

(3.5)

(3.6)

K (bare)= —T;"'J+0(1/e )

p', (bare) = —J' '+0 ( I /e ),
p2(bare) = —J"'+0(1/e ),

(3.7)

(3.8)

(3.9)

in the renormalization condition (K,p),p2)(renorm) =0 in
I

where p is the renormalization scale and loop integra-
tions are done in D =4—2e dimension. The above rela-
tions are obtained from relations (2.7}—(2.10) by noting

fd48(D 2VA)(D 2VA)

with the associated Faddeev-Popov ghost term

Xpp =f d 8(b +b )Xsy [ (c +c ) +coth(Xsy )(c —c ) ]

(3.13)

(3.12)

where

XgvX=—[gV,X], xcothx =1+x /3 —x /45+
(3.14)

Here c and b are the Faddeev-Popov ghost and antighost,
respectively, which are Grassmann-odd chiral superfields
in the adjoint gauge representations. With the insertions
of the gaugino mass term in (2.3), the propagator for vec-
tor supermultiplet is [10]

are remarkable consequences of the supergraph method.
We first consider the calculation of the two-point func-

tion T("). This function is obtained by inserting up to
two g operators in (2.3}to propagators and vertices in the
one particle irreducible 91PI) supergraphs that contribute
to the renormalization of the fd 844 operator.

We can commutate all g's and D operators at any step
in our calculation since the commutator [D,rj] =DE does
not contribute to the final results (3.1), apart from the
subdivergences for vector self-interactions (see the last
paragraph of this section}. So the 11 insertions to vertices
becomes almost trivial: the 8 algebra and momentum in-
tegration are completely the same as those without the g
insertions. The insertions can be done after all 8 integra-
tions in the supergraph have been reduced to a single in-
tegration f1 8.

The m gg operator insertions to chiral supermultiplet
propagators can be treated in the same manner if we use
the following propagator with a m gg insertion,

(4;(8, )(T) (8 ))= 5 (8,—8 )[5;+(m };rjrj]+(Drj),
p

(3.1 1)

instead of the exact and more involved one [10],since the
relevant part of (3.11) is proportional to the exact SUSY
propagator. Note that we need not specify whether
rj =8) or 82 in (3.11).

The gaugino mass insertions to vector supermultiplet
propagators can also be done in the same manner after
the following special care has been taken. In the exact
SUSY case, we usually use the supersymmetric gauge-
fixing term [14,8]

( v "(8,) v'(8, ) ) =— D~D 2D
(I+m„rj+m„'g+2~rn„~ re) 5 (8,—82)5"

~ ~ D2D 2+D 2D2
5 (81—82)5" +(Dg) .

2p 16p
(3.15)



3540 YOUICHI YAMADA

Since the divergent vertex functions (3.1) and (3.2) are in-
dependent of the gauge fixing parameter g, we can choose
two special values for g in (3.15}: (=0 or
g = 1+m „rl+m „'rl+ 2

~
m „~ rIi). In both cases, the prop-

agator becomes (I+m„rI+m„'rl+2~m„~ i}g) times the
one in the exact SUSY case. So the insertion of the gau-
gino mass term can be done as simply as the other q in-
sertions.

Therefore, the relevant supergraphs for T'"' are ob-
tained from those for T in the exact SUSY case with only
dimensionless couplings, by the following rules A: (1) re-
place the 4 interaction vertex V~" by AJ"J"—A ~~'rl; (2) re-
place the 4V"4(n =1,2, . . . ) gauge interaction vertex
(T")k by (T")$(5~—(m )~qual}; (3) replace the factor 5lk

associated with an internal ( 4k 4 ') line by
5k+(m )kilrl; (4) multiply an internal ( V"V") line by
(I+m„rl+mzrl+2~mz ~ rlil}; and (5) multiply the vec-
tor self-coupling ( V")"(n =3,4, . . . ) by (1 m„r—I—m„'il). Moreover, by a graph-theoretical argument, we
can see that T "'J is obtained from the 6nal form of T~ by
the following rules B: (1) replace AJ' '

by AJ' "—A J"l"r}; (2)
replace gauge coupling g„by g„(1+m~rl+m„"2)
+2~m„~ rig); (3) insert [Sz +(m

/zilch)]

between con-
tracted indices p and p' in k and I,*, respectively:

~ —+A, q"A, ~ ~ +V "(m }J'){,'. „.rlrl; and (4) for
terms proportional to Sl, multiply by [1—(m )Jr)il].

Next we consider the tadpole function J'"' in (3.2). By
power counting and chirality conservation, the relevant
supergraphs should contain one and only one 4 or 4 q
vertex. Therefore, all the supergraphs for J'"' corre-
spond one by one to those for T'"' by replacing 4 4
vertex in the latter by 4 . As a consequence, J'"' is ob-
tained from the il-dependent part of T'"' by replacing
A.J'kI and AJ'kI factors in T'~' by M, I and Bkl, ~especti~ely.

To summarize, the divergent contributions to two-
point and tadpole 4 functions involving g insertions,
(3.1) and (3.2), are obtained from those of the two-point
functions in the exact SUSY model by simple algebra 8,
apart from subdivergences for vector self-interactions.

The renormalization group equation for the coupling
constant xk is obtained from the relation between bare
and renormalized coupling constants as

IU. ONE-LOOP RENORMALIZATION
GROUP EQUATIONS

In this section, we calculate the one-loop p functions
for soft SUSY-breaking scalar couplings, using the super-
graph method. Our results agree with the existing results
[1] which have been calculated in the component field
method, but the calculation is much simpler.

The one-loop contribution to the two-point function T~

in the exact SUSY case is [15]

TJ= —
A,
" ){,J"'—2g C (iP )5'

1 1 e «
(4 )2 2 ikl A A i i

l

(4. 1)

where we adopt the notation

c„(c,)z =z,"z," . (4.2)

Following rules B, the divergent vertex functions with g
are derived from (4.1) as follows:

T(1)j 1

(4~) e
——A, ,*ki A J"'—2g„C„(4;)m„5';, {4.3)

tions for A, B, C, and m ' are obtained by multiplying the
coefficients of e ' on the right-hand sides of (3.3)—(3.6)
by 2 for the one-loop contribution, or by 4 for the two-
loop contribution.

The rules A for the g insertion do not apply to the ver-
tices with only vector superfields, such as the gaugino
mass term in (2.3) and the p3 term in (2.12) since these
vertices contain D operators in the divergent parts.
There might appear problems in the calculation of T'"' if
these vector vertices appear in the supergraphs as sub-
divergences. For example, in the two-loop T'"', a one-
loop subdivergence of the two-point vector vertex ap-
pears. Nevertheless, we have checked that the rules A,
when applied to the one-loop VV propagator, give a
correct counterterm for the 1PI gaugino mass vertex,
which is zero [1,8]. So the rules B are valid at least to the
two-loop order. Further study on the vector vertex func-
tions will be reported elsewhere.

dxk a
p(Xk ) — +El'kxk = rlxl rk ak (X),

dlnp Bxl
(3.16)

T(2iJ g+ ( 2)l QJkl'+ g e g Jkl
i (4 )2 ikl l'

2 ikl

where

ak'"'(x)
xk(bare)lM " =xk+ g

n ——1

and

(3.17)

J(1)i 1

(4~) e

—2g„C„(4;)[2~m„~ 5J —(m )';]

B«
kl

]

(4 4)

1 forg, A, , A,
rk= ~ 0 forM, B, m, mz, (3.18)

J(2)i ( 2)l gikl'Me + g iklg e

(4 )2
m l' kl 2 kl

—1 forL, C .

It is easily seen that the renormalization group equa-

By substituting these results into (3.3)—(3.6), we immedi-
ately obtain the p functions for soft SUSY-breaking sca-
lar interactions:
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{4 }2p(1){gijk} 1(giln7„» g I'jk+gjln7„» gij'k+gklng» gijk')+2g2 [C (@ )+C (@ )+C (@ )](2m gijk gij

(4.7)+7 I'jkg» giln+gij'kg» gjln+gijk g'» g kin
i'ln j 'In k'ln

(4~)2p(1)(gi j)—1(gilnge gi'j+7(jlng» g/j')+4g2 C (@ )(2m j)tfij gij)+Mi'jg» giln+~ij'ge g jln+gijkg» g n

(4~ )2p(1) (Ci ) 1gilng» Ci +'L I'g» giln+~ikg» gln+2glkl'(m2)l~» + giklg»
i'In i 'ln kin m I kl kl ~

(4qr) p(1)[(m2}/]=([g». g/'»(m2)I, +g», gjk/(m2)j']+2g» {m )/gj '+g» gj~ 8g2C (@.)~m ~

5/.

For comparison, we also show the p function for A, 'j":

(4 )2p(1)(g/Jk) 1 (gilng» gi'jk+ gj/ng» g/j'k+ gklng» gijk') 2g 2 [C (@ }+C (@ )+C (@ ) ]gijk

(4.8)

(4.9)

(4.10}

(4.11)

The results (4.7)-(4.11) exactly agree with the existing re-
sults [1] if the gauge group has no U(1) factor. If the
gauge group contains a U(1) factor, the additional term

hP "[(m )j]=(4m} 2g„(T"}ITr(T"m ) (4.12)

appears. This is the p2 contribution (2.13).

V. TWO-LOOP RENORMALIZATION
GROUP EQUATIONS

In this section, we calculate the two-loop p functions
for soft SUSY-breaking scalar couplings, using the super-
graph method. We also discuss the difference between

I

I

our results and the recent results in [6] which are ob-
tained in the component field method.

We should first discuss the renormalization scheme. In
general, the two-loop renormalization group equations
depend on the renormalization scheme, except for those
of the gauge couplings. In this paper, we use the DR
scheme (dimensional reduction [16] with modified
minimal subtraction [17]) since it is most convenient in
the supergraph calculation and respects SUSY, at least to
the two-loop order [3,18].

The two-loop contribution to the two-point function T~

in the SUSY case is

TJ=
4 2 [4g„g//C„(4, . )CI/(C), . )5/+2g„C„(4),. )( T„(4} 3C„—( V) )5/'

2(4qr) e

+go( —Cg(C';)+2C~(4 I ))kikik —
2A, ,*~/A, "AqstA,

" ],
where we adopt the notation, in addition to (4.2},

C„(V)=C„(adj. }, T„(4,)5"~=TrR,"R~, T„(4}=g T„(4,} .

(5.1)

(5.2}

The result (5.1) agrees with that in Ref. [19].
The divergent contribution to T' ", T' ', J' ",and J' ' are derived from (5.1) by using rules B as

T;")j= [4gzg//C&(4;)CI/(4;)(mz+mji)5J/+4g&C&(sZ);)(T„(Ct} 3C&(V})m&5—I'
2(4m} e

+gg( —Cg(e;)+2cg(C/))()A, kiut"'mg —
A, ;/, I A "')

+ ((~. ~ "9~' u'q+~' ~"9.' ~ j"q)]T ikl qst ikl qst 7 (5.3)

and

T,' j= [4g„g//C„(4, )C//(4;)((2(m„( +2( m2)/+m„m//+m„'m/I)5J —(m }/)
2(4m} e

+2g&C&(4;)(Tz(4) —3C&(V))(6~m& ~ P, —(m )1).
+g {—C„(4;)+2C„(4/)){2t)(,'k )(.J»~m

~

—A '
)(,j"'m —

A, *. A j m„'

+ g e Q jkl+p» (m2)k QJk'I+g» (m2)l gJkl')

1( g» g /std» gjkq+ g e ylsrg» g jkq+g» ~ /st~ e gjkq
2 ikl qst ikl' qst ikl qst

+ye )(/sty e gjkq+g» (m2)k glstg» gjk'q+g» { 2}lgl'sty» gjkq
ikl qst ikl m k' qst ikl m I' qst

+g» glstg» (m 2)q gj kq'+ 2g» gist(m 2)t'g» gjkq) ] (5.4)

J(1)i [2g2 C (@ )(Zik!M» m» pike e }+1 (Zikqp» )(/stM e +Z/kqZ» )(lstp» )]
}4p & A I kl A kl 2 qst kl qst kl (5.5)



3542 YOUICHI Y/dVlADA

g(2)i [2g2 C (Cs )(2giklM» ~m ~2 gikl8» m A iklM e m e
~

—1+@
2(4 )4 2 A A I kl A kl A kl A

+ A'"'8'+A, '" '( )"M'+A, '"'(m )'M" )k/ m m

t (gikqg» A isr8» + A ikqj» j Ist8 » +gikqA e A IstM» + AikqA e glstMe
2 qst k/ qst k/ qst kl qst kl

+ gik'q( 2)k ge glstM» +gikqge gl'st( 2)l M e
k' qst kl qst ~ I' kl

+gikq (m'2)q g» glstM» +2gikqg» (m 2)t' j„lstM e
) jq' qst kl qst t k/ (5.6)

By substituting these results into (3.3)—(3.6), we obtain the two-loop P functions for soft SUSY-breaking scalar in-
teractions in the DR scheme. The results are listed below:

(4qr) p' '(A'j")=4gAgs{CA(4, )Cs(4, )+CA(4 )Cs(4 )+CA(+k)Cs(trsk)}(A'j" 2(m—A+ms)A. 'I")

+2g A {CA (4; ) +CA ( 4j ) +C A(4 k))( T A(4 )
—3C„(V) )( A 'I" 4m —

A A,
'I"

)

+g A ( CA—(4, ) +2C A ( Csl ) )A, ""A.;.I„A ' I"+g „( CA—( Cs ) +2CA ( 4I ) )iV'"Aj'I„A 'I "

+g„(—CA(4 „)+2CA(4»))A."'"Ak
In

A'"

I (ginqge glstge A i jk+g'jnqge glstge A ij 'k+ gknqge glstg» A tjk')
T qst i 'n/ qst j 'nl qst k'nl

+2g (A, '"'mA —A'"'){CA(4, )
—2CA(4I)}A,;„It(,' "

+2g A ( A j"'m „—A I"')(CA ( 4 )
—2CA ( 4I ) )A j'„IA,

'I "

+2g„(A""'mA —
, A "')(CA(@k ) 2C —

(A@I ))tt k „Ik""

{ginqg» A Istic» + A inqge glstg» )gi'jk
qst i' n/ qst i'nl

( gjnqg» A Istge + A jnqg» glstg» )g j'kI
qst j 'nl qst j 'n/

(gknqge A 1st'» + A knqge glstg» y Ijk'
qst k'n/ qst k'n/

(4qr) p' '(8'j)=8gAgjICA(4;)CII(Ct; )(8'j—2(m„+ms)M'j)+4gACA(4;)(TA(Cs) —3C„(V))(8'j—4m„M")

+g„(—CA (4; )+2CA (4I ) )I,'"'A,
,*'k(8' +g„(—CA (4, )+2CA (4I ) )A, "'A, 'kI8'

——'(A, '"qA, A,"A,' 8' +iU" I,' A, "A,' 8' )qst i' n/ qst j 'n/

+2g„(A,'"'mA —A'"')(CA(4;) —2CA(4I))A, „IM'I

+2gA (t(j"'m „—A j"')(CA (4j ) —2CA (4I ) )AI'„IM'j

( ginqge A Istic» + A inqg» glstge )Mij'
qst i' n/ qst i' n/

(gjnqge A lstge + Ajnqg» glstge )Mij' 4 2 C (@ g» (Mnl 8nlgijk
qst j 'n/ qst j 'n/ 3 3 / kn/

(g» A qstge Mnl+ge gqstge 8nl)gijk
knq 1st knq /st (5.8)

(4qr) p' '(C')=2g C (4 )A, '"'A.' O' ——'A, '
I(,
'

A, "'A, ' C' —4g C (4 )(A,'"'m„—A'"')A. * I. '

(gikqge A Istic» + A ikqg» glstge )I i 42 C (@'ye (Mnl 8 nl)Mij
qst i'k/ qst i'k/ A A / jnl A

—(X' A"'X' M"I+X' X "X*8"')M'
jnq 1st jnq /st

+4 ' C (@ )(2g'"'M' ~m„~' —a'"'8*m —A '"'M'm '+ A'"'8;, +A'" '(m')" M',+A'"'(m')I Mkl ),

(gtkqg» A Ist8e + Aikqge glst8e +gikqA e AistM»
qst k/ qst k/ qst k/

+ AikqA e glstM» +gik'q( 2)k ge glstM» +gikqg» gl'st(m2)1 M»
qst k/ I k' qst k/ qst /' k/

+gikq (2)q ge g'lstM» +2gikqg» (m2)t'glstM» )q' qst kl qst' t k/
(5.9)
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(4qr) p' '((m )j)=8gAgjICA(its;)Cs(4;){2ImA I +2Im2II +mAmjt+mAmjt }Sf

+24g4 cA(4, )(T„{4)—3c„(v))Im„ I'5!

+(—g„CA(4';)+2g„CA(4'I))(A, 'kI. A'", (m ), +t{J'.kiA, '(m ); )

t (g» glstg» gi'kq(m 2}j+g» glstg» gjkq( m 2 y')
ikl qst i' j 'kl qst I

+2g„(—CA(4, )+2CA(@I))(2~k!~"'ImAI' —A kl~ 'mA ~k!A mA

+ A e Ajkl+g» (m2}k gjk'I+g» {m2}lgjkl')

A e A Istg» gjkq A e glstg» A jkq g» A !stA e gjkq
ikl qst ikl qst ikl qst

g» gist A e A jkq g» (m 2)k glstg» gjk'q g» ( 2)l gl'sty» gjkq
ikl qst ikl ~ k' qst ikl l' qst

g» glstg» ( 2)q gjkq' 2g» gist(m 2)t g» 'gikq
ikl qst q' ikl t qst'

For comparison, we show the p function for It, 'j":

(5.10)

(4') p' '(t{,'j")=4gAgjt(CA (4; )Cj!(4; )+CA (4j )Cjl(@j)+CA (4k )Cjt(@k ))tt 'j"

+2gA (CA (@I)+CA (4j )+CA (4k ) )( TA (tts) 3C„(V—) )A, 'j

+gA( CA—(4, )+CA(CtI ))A, '"A,*,„IA'j",+gA, ( —CA(Csj)+2CA(CI ))Aj" Aj nIA'j

+g2 { C (@ )+2C {C ) pknlp» plack' t (Zinqp» Zlstp» Zi'Jk+ZJnqp» Zlstp» Zif'k
A A k A I k'nl 2 qst i'nl qst j 'nl

+gknqg» glstg» gijk' } (5.1 1)

As in the last section, the contribution of p2 (2.13) is not included in p(m ).
Finally, we compare our results to the other calculation. Recently, the two-loop p functions for A, B, and m have

been obtained in Ref. [6] by using the component field method. They have used the following method: apply the gen-
eral formulas given in [2] to the softly broken SUSY model in the Wess-Zumino gauge and convert them to the DR
scheme by the one-loop finite transformation [5]. Our results agree with theirs for A and B, but do not for m The.
difFerence is

(4m) p' '((m )j)[6]—Eq. (5.10)=—2g„(T")j(TA)q(m )"A, *,AP'+8g„gjI(T");Tr{T "Cjt(ts„)m }

+8g„CA(4;)Tr(TA(4„)m )5j g8„C—
A( Ct)C A(V) ImA I5j . (5.12)

The first two terms are the contributions from p3 (2.13)
that we neglected in the present analysis and they cause
no problem. The remaining two terms show, however, a
serious discrepancy between our results and those of Ref.
[6]. The discrepancy can be clearly shown for the follow-
ing simple case: G is simple, A, =M =L=0,
A =B=C =mA =0, and (m )I=m; P;. The renormal-
ization group equation for m is then

0 [Eq. (5.10}],
ding, 8gA CA (4,. }g„TA ( I}tms„(Ref. [6]} .

(5.13)

We have found by a direct calculation in the DR scheme
that, for this simple case, the component field method
does reproduce our result. However, we have so far been
unable to trace the origin of the discrepancy, and the
definite conclusion is left to further studies.

VI. CONCLUSION

In this paper, we have obtained the renormalization
group equations for soft SUSY-breaking scalar couplings

I

to the two-loop order, by using the supergraph method.
We have shown that, because of the nonrenormalization
theorem, the renormalization group equations for these
couplings are obtained by evaluating one- and two-point
functions of chiral superfields involving the spurion field

2), if the gauge group has no U(1) factor. Under the same
condition, we have also shown that the one- and two-loop
relevant divergent terms involving g can be obtained by
simple algebra from those in the exact SUSY case. Our
results basically agree with the existing results which are
obtained by the component field method, but the calcula-
tion is much simpler once the SUSY two-point function
T/ in (3.1) has been given. A discrepancy in the two-loop

p function for the scalar mass term is found between our
results and those of Ref. [6] that are obtained by finite
transformation from the non-SUSY p functions of the
component field. Although we confirmed in a simple case
the validity of our result by an explicit calculation in the
component field method, we have not been able to trace
the origin of the discrepancy.

Our method of obtaining the p functions for the soft
SUSY-breaking terms from the exact SUSY results might
be extended to higher-loop orders, if the following prob-
lems are solved: the potential inconsistency [20] of the
DR scheme and the renormalization of the vector and
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ghost superfields in softly broken SUSY models.
If the gauge group has a U(1) factor, such as the stan-

dard model, we should add the p3 contribution (2.13) to
P(m ). The analysis including this contribution will be
reported elsewhere.

Note added in proof A.fter this paper was accepted for
publication we received a paper [21] which found a

different result for P' '(m ). Reference [21] points out
that for the proper renormalization in the DR scheme,
the mass terms m„ for the e scalars (the last Ze com-
ponents of the vector fields V„" ) and their counterterms
should be included into X„«. As a result, Eq. (5.10) is
modified as

(4m ) PD~R[(m )i]=(5.10)+(p3—contribution)

+852g&C„(4;)[ZTr[T„(4„)m ]—2C„(V)(m„+[T„(C)!—3C„(V)]m 4 I

—Zg„[C„(4;)+ZC„(4()]X,*I,I(V"'m„

We have checked that this result is obtained in the superfield formalism after inclusion of the e-scalar masses,

—2 —2Pl g
VIVA d48 — —aaD

(
—2gVD 2gV) ppD (

——2g D g
~v m~ 1

2 " ' 2 2 I a & & p P

Here g"' is the 2e-dimensional metric tensor. In the
superfield formalism the extra contribution to PD~R(m )

above comes from the additional terms to T' ' in (3.1),
which are produced by the m insertion to supergraphs
and by the subdivergence rishi(Do DV) which is absent in

naive calculation. We have found that the corresponding
additional terms to J' ' in (3.2) modifies P' '(C) of (5.9) as

(4m ) gg(C') =(5.9)—4g„C„(1)A,'"'Mkim„

Details of the discussion will be presented elsewhere. We
thank I. Jack, D.R.T. Jones, S.P. Martin, and M.T.
Vaughn for clarifying discussions on this problem.
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APPENDIX

Here we list our notation and conventions for the
superfield formalism.

The conventions for 2-component spinors are

E P=+1= E.p—, E P=(e P)',

& =e'Wp

~! =(1 ~ ) p!aa=~ap~ap~!
aa PP '

g„,=(+,—,—,—) .

The notation for superfields is

fd2882=1 f d488282=1

(A 1 )

4(8)=/+&28/+8 F,
V(8) = —Ho "HV„+8 Hy+8 Hg+! 828 2D',

(A3)

we can show that Eq. (2.1) gives the properly normalized
Lagrangian

D = i (cr"8) 8, —D. = —— +i (Hcr").8
gga a p' a gga a p '

ID,D ]=Zio",d„..

By using the following decompositions of the superfields
in the Wess-Zumino gauge,

,'(a„V„a.V„ig[V„,V—.—])'+i~—~ (a~——ig[ Vg]) -+,
' 'D+((8 Igv )4

+iso "(8 igV )g+—~F~ &2g(P yf+@'P—)+gP D'P+ F; —— P;@ +H c , (A4). .
BR (!)!!) 1 !3 W(P)

P P 2 ay, ay,

where

and

W(P) =
6! A, 'J"P;P,P„+,'M'JP;—P +L'P, , — (A5)
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