
PHYSICAL REVIEW D VOLUME 50, NUMBER 5 1 SEPTEMBER 1994

Predictive fermion mass matrix Ansatse in nonsupersymmetric
SO(1Q) grand uni6cation

N. G. Deshpande and E. Keith
Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97/03 M0-3

(Received 15 February 1994)

We investigate the status of predictive fermion mass Ansatze in nonsupersymmetric SO(10) grand
unificatio which make use of the grand unification scale conditions m, = ms/3, m„= 3m„and

~
V,s ~=—gm, /m& in nonsupersymmetric SO(10) grand unification. The gauge symmetry below an

intermediate symmetry-breaking scale MI is assumed to be that of the standard model with either
one Higgs doublet or two Higgs doublets. We find in both cases that a maximum of five standard
model parameters may be predicted within lo experimental ranges. We find that the standard model
scenario predicts the low energy

~

V,s
~

to be in a range which includes its experimental midvalue
0.044 and which for a large top mass can extend to lower values than the range resulting in the
supersymxnetric case. In the two Higgs standard model case, we identify the regions of parameter
space for which unification of the bottom quark and 7 lepton Yukawa couplings is possible at grand
unification scale. In fact, we find that unification of the top, bottom, and v Yukawa couplings is
possible with the running b-quark mass within the 1' preferred range mq ——4.25 +0.1 GeV provided
'Rs (Mz ) is near the low end of its allowed range. In this case, one may make six predictions which
include

~
V,s

~

within its 90%%uo confidence limits. However unless the running mass ms ) 4.4 Gev,
third generation Yukawa coupling unification requires the top mass to be greater than 180 GeV. We
compare these nonsupersymmetric cases to the case of the minimal supersymmetric standard model
embedded in the SO(10) grand unified group. We also give an example of a possible mechanism, based
on induced vacuum expectation values and a broken U(1) symmetry for generating the observed
hierarchy of masses and a mass matrix texture.

PACS number(s): 12.15.Ff, 12.10.Dm

I. INTRODUCTION

Recently, much attention has been given to the suc-
cesses of predictive Ansatze [1—4] for the fermion sector
of the standard model (SM). Although originally fermion
sector Ansatze [5—9] were proposed for and used in the
nonsupersymmmetric SM [7, 8] and SU(5) and SO(10)
[10]grand unified models, recent attention has focused on
the case of the minimal supersymmetric standard model
(MSSM) contained in supersymmetric SO(10). One rea-
son for using an Ansatz in the context of a grand uni-
fied theory is that in these theories the masses of the
down quarks and the charged leptons are necessarily re-
lated. This gives the possibility of increased predictive
ability which, for example, may be realized in the Georgi-
Jarlskog (GJ) mechanism [6] which has at the grand uni-
fication scale m, = mg/3, m„= 3m„and m = ms.
Also, there is the possibility of relating the up quark mass
matrix to the down quark mass matrix [11]. This hap-
pens when the up and down quarks receive their masses
from the saxne Yukawa couplings or higher dimensional
operators in the context of the grand unified theory. It
has also been shown [1, 4] that by applying an Ansatz
with

~
V,s ~= gm, /mt at the grand unification scale,

and requiring the zero terms in the mass matrices to be
protected by some syxnmetries above the grand unifica-
tion scale,

~
V,s

~

is predicted to be within or close to
the upper end of the 1o. experixnental range without re-
quiring mt to be too large. SO(10) [or a group such as

Es containing SO(10)] is the chosen group because then,
unlike SU(5), the mass matrices can be automatically
symxnetric, neutrinos may be given sxnall masses with
mixing to solve the solar neutrino problem, and there
are useful relations between the mass matrices [1]. In
the Dimopolous-Hall-Raby (DHR) formulation [1], the
MSSM with gauge coupling unification is chosen because
by requiring unification of gauge couplings and the su-
persymmetry (SUSY) efFective scale parameter Mz to be
in the proximity of 1 TeV, as is needed for SUSY to solve
the fine-tuning problem, one can predict as, (Mz) to be
within its experimentally determined range &om the ex-
perimentally well deterxnined parameters a and sin8~
[12].

Although the fermion mass Ansatze in SUSY SO(10)
have so far worked quite well, there is, as of yet, no ev-
idence for SUSY and one may wish to coxnpare the pre-
dictions and predictive ability of Anaatze with SUSY to
those without SUSY. This is useful not only because we
do not know whether SUSY exists, but also because many
paraxneters of the fermion mass and the quark mixing
sector have not yet been determined with great preci-
son; so we cannot yet be confident of the success of the
predictions of any particular scheme. The first compre-
hensive discussion of the predictions in the fermion sector
of an Ansatz was done in Ref. [1] for the case of MSSM
contained in SUSY SO(10). Only recently have the low
energy data (LED) been precise enough to give a reason-
able test of the predictions of an Anaatz. In this paper, we
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will look at fermion mass Ansutze in non-SUSY SO(10)
grand unification in terms of current LED.

As in Ref. [1], we take the Ansutz at unification scale
and assume that some, as yet, unspecified symmetries
enforce the zero terms in the fermion mass matrices at
that scale. One expects that such symmetries originate in
a theory that is realized at scales equal to or greater than
the grand uni6cation scale and that these symmetries
are broken at the grand uni6cation scale, which allows
the zero terms in the fermion mass matrices to develop
6nite values from renormalization group efFects. We will

suggest an example of such a scenario in Sec. VI of this
paper. Without the intention of examining all possible
textures of fermion mass matrices, we will assume an up
quark mass matrix based on the Fritzsch Ansutz [5] and
down and charged lepton mass matrices based on the
Georgi-Jarlskog Ansutz [6]. Ansutze of this general form
have been used extensively in the literature.

Although SUSY SO(10) can break to the MSSM in
only one step, non-SUSY SO(10) in general needs at
least two steps to break to the SM. Typically, in two-step
breaking of SO(10) to the SM with Higgs particles taking
masses according to the survival hypothesis as given by
the principal of minimal fine-tuning [13], the intermedi-
ate scale MI 10 —10 GeV and the uni6cation scale
M~ 10 s GeV [14]. The allowed single intermediate
scale gauge symmetries are the four groups (2L, 2R4c),
(2 2LR4cP), (2L, 2~1~ L, 3,), and (2L, 2~1~ L, 3, P),
where P refers to D parity not having been broken and
where, for example, (2L,) refers to SU(2)L, . [Only in

SUSY SO(10) is SU(5)U(1) as an intermediate sym-

metry group possible. ] Another possibility, pointed out
recently, is that if threshold effects are not minimized [15]
according to the survival hypothesis, but to the contrary
superheavy Higgs particles not contributing to proton de-

cay are allowed to vary below a SM coupling uni6cation
scale by a factor that can be as high as 10, then it is
possible for M~/Mi & 30 [16]. Like the SUSY case, this
scheme makes one low energy prediction in the gauge sec-
tor from two inputs. It predicts o.s, (Mz) in the range of
0.119—0.125. In our paper, we will look at cases where

SO(10) breaks at a scale Mp via the vacuum expecta-
tion value (VEV) which is contained in a 210 [17] repre-
sentation Higgs Beld to the gauge symmetry (2L, 2~ 4c)
and next at a scale MI 10 or 10 GeV to the SM.
Further, we will assume that the VEV which breaks the
gauge symmetry (21, 2~4c) to the SM is contained in an

SU(2)R triplet of a 126 representation Higgs Beld. This
gives the right-handed neutrinos Majorana masses. As

usual, we use the VEV of a complex 10 representation
Higgs field for the electroweak symmetry breaking. Even
though the scheme of Ref. [16] requires high values of
o3 (MQ), we will consider as, (Mz ) = 0.118 + 0.007 for
both Ml 10 and MI 10 GeV.

Below the scale MI, we consider two possibilities: one
that the efFective theory is the conventional one-Higgs-
doublet SM and the second possibility that the efFective

theory is the two-Higgs-doublet standard model (2HSM).
The reason we are interested in the 2HSM is that both the
unification of the Yukawa couplings of the bottom quark
and v lepton and u~fication of all three third-generation

II. RGE'8 AND LED

Here, we remind the reader of how Yukawa couplings
evolve in the SM gauge syinmetry (ly 21, 3,) in the one-

loop approximation [19], which we will use. Let U, D,
and E be the 3 x 3 Yukawa matrices in generation space
for the up and down quarks, and the charged leptons,
respectively. In the SM, we have the Yukawa couplings

~Y —ql, Uy&R + qr, DydR + tLEyeR + H c ~ (1)

In the MSSM and in the 2HSM we have

Zy = qLUP„uz + qI Dagda + lr, Eppes + H.c. , (2)

w"ere (I& I) = ~ and (I4'& I) = ~q with

+
I

z& ]2 = e = 174 GeV and K„/eg = tanP.
The one-loop RGE's for these couplings are

16+2 = Tr(3UUt + 3uDDt + uEEt)2dU
dt

+ (bUUt + c—DD ) —) c"g U,
2

16 = Tr(3 UU + 3DDt + EEt)2dD
Ck

+—(bDDt + cUUt) —) cI g; D, (4)

16 = Tr(3 UUt + 3DDt + EE )
2dE

dt

+—bEEt —) c g; (5)

with t = in@,

SM Yukawa couplings are possible in the 2HSM, while as
we will see in the SM case the uni6cation of the Yukawa
couplings of the bottom quark and w lepton is not feasi-
ble.

The rest of this paper is organized in the following
manner. In the next section, we will discuss the renor-
malization group equations (RGE's) of the fermion sector
parameters and the gauge couplings. After that, we re-
view the basic results of implementing the GJ Ansahz in
the MSSM. We do this so that we may later compare the
results for the two cases without SUSY to the case with
SUSY. In Sec. IV, we will discuss the case of a fermion
mass Ansahz when between the scales of mq and Ml the
efFective theory is the SM. In Sec. V, we discuss the case
of a fermion mass Ansatz when instead of the SM the
efFective theory below MI is the 2HSM. Next, we give an
example of a possible explanation of fermion generation
mass hierarchy and Bavor symmetries by use of induced
VEV's [18] in superheavy Higgs Belds and a broken U(1)s
symmetry. In the final section, we summarize the paper.
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and

SM: (a, b, c) = (1, 1, —1);

2HSM: (a, b, c) =
1

0, 1, — 1;
( 1)

MSSM: (a, b, c) =
1

0, 2, —I;3)

(6)

(7)

SM, 2HSM: c(") =
1

—,—,8 1,c!"'=
1

-', —,8 I,20'4 ) '
E4 4 (9)

MSSM: c,-"

(9 9
q4'4' ) '

/13 16) (g) ( 7 161
15' '3) ' ' g15' 3)

(10)

(41 —19
SM: (bg)bz)bs) = 1» 71 )g10' 6

/21
2HSM: (by, b,3b)s=

I
—,3, —71;

|'33
MSSM: (b] bshe b3) —

1

—,1, —3
I

.
) (14)

The two-loop coefficients b;~ can be extracted Rom
Ref. [20]. We use gauge couplings normalized so as to
become equal at the scale MU. We use the following
gauge sector inputs [21]:

a '(Mz) =127.9,
(x3 (Mz) = 0.118+ 0.007,

z(MZ) = 0 2326,
Mz ——91.187 6 0.007 GeV,

with

3 1 —x
1Y( Z)

(M )
—1(M )=

(15)

(16)

(17)

and we have used the experimental midvalues for n(MZ)
and x = sin 8~M(MS). where MS denotes the modified
minimal subtraction scheme.

As in Ref. [1], we numerically integrate aq, az, and
a3 &om Mz up to a scale p,~ which is in the vicinity
of where we expect to find the top mass mq. Between
p = Mz and p = pz, we use the two-loop SM gauge evo-

()
1

30
&5' ' )

In computing the evolution of the gauge couplings, we
will use a two-loop analysis but we will ignore the small
efFects of the Yukawa couplings on their running. The
two-loop equations, which we numerically integrate, are
of the form

Ba,. (p) 1 I' b;;= ——
I
b'+ —"~,(p) I

~

c)p 2vr ( 4m )
The one-loop coefficients b; are

( ) ( )g —(3+ & b)It —(3a+ & c)Ib, —aI

mb(mb) mb(pI)rlbA&e (3o+ z c)Iq (3—+ z b)Ig—
(19)

(m ) m (pI)~ A~e 3aIg 3Ig (1+g
—b)I~- —

m, (m, ) = m, (yI)r),A„e
m;(m;) = m;(pI)rl„A, e ' I' (for i

m;(1 GeV) = m;(yI)r), Age ' ' (for i

m„(1GeV) = m; (pI )ri„A„e

I &-~(m~) I

=
I &-~(pI) I

e""+' "
(for cxP = ub, cb, tb, ts),

V p(ma) I
=

I
V p(pI) I (forotheroP),

1( ) J( )
3cIg+scIg

(20)

(21)
(22)

= p, , e),
(23)

= s, d),
(24)

(25)

(26)

(27)

(28)

where the efFect of third-generation Yukawa couplings on
the Yukawa evolution is given as [ll]

"'
I

&'(P)11'd(l „)4m )
and the efFect of gauge couplings on Yukawa evolution is
given as [24]

1Il pl
A = exp ) c; )g; (p, )d(ln p) . (30)16vr2

lution with one-loop threshold corrections for mq ——pq to
find aqua, o.2L„and o;3 at the scale p = pg. From p = pg
down to a particular fermion's running mass for mg, m„
or charged leptons or down to 1 GeV for the less massive
quarks, we calculate the running of its mass according to
three-loop /CD [22] and one-loop /ED effects. Cabibbo-
Kobayashi-Maskawa (CKM) parameters are evaluated at
the scale pz. Of course, we always use the efFective theory
where all fermions more massive than the scale of interest
have been integrated out. These efFects are represented
by m; = m;(pq)r);. In this paper, we take pq ——180 GeV
and use mg ——4.25 GeV and m, = 1.27GeV in calculat-
ing rib and r)„respectively. We find o.z (p&) = 58.51,
c 2 (p&): 30 15 o'3 (pp) 9,30+e'ebs and

+0.07
gg —1.53—0.06 ~

+0.27c=209 0yg)
+0.53

gs —peg = 2.36 0.29 &

+0.52
g 2o38 0 30

~ g~ ~ g~ —1I015 o

We are interested in the low energy fermion masses,
the CKM quark mass mixing matrix elements V p, and
the Jarlskog CP violation parameter J. In the approxi-
mation that we use the one-loop Yukawa RGE's, ignore
terms O(A3) or smaller where A; is the Yukawa coupling
of fermion i, assume only small mixing between genera-
tions of quarks, and set gq ——1, the exact solutions for the
LED in terms of the same parmeters at an intermediate
scale pI are [23, 24]
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In the one-loop approximation for the gauge RGE's, A
becomes

A~ )) Ag,

AA„

i/I + A'K„
(31)

1e'= 1+4 Kr

where Pi —Pt(~l) and

(32)

6+ 3bK„=
16m2

1n pI
exp ', ) c!'g,'(p')

8zr2

x d(ln p') d(ln p, ) .

In the SM or in the 2HSM or MSSM when tan P is small,
it is a very good approximation to ignore terms O(As2) in
the Yukawa coupling evolution equations, in which case
[24]

where A is the top quark Yukawa coupling at the scale
MI for the non-SUSY cases and at MU for the MSSM
case. In the limit of a large A, one finds Ai A„/v K„.
Therefore in the MSSM when sinP 1 and Ai » Ab,

(A„/v'K„) e is the infrared quasifixed point of the top
quark. For the MSSM case, one 6nds that the axed point
is 194GeV. This gives an upper bound for the running
mass mi for any tan P.

However, when an intermediate breaking scale MI ex-
ists, A has an upper bound from the following equation
which is valid when the intermediate gauge symmetry is
&21, 2R4c):

A, Ag

1+1, Kf

In Table I, we give the values for the A 's and the K„'s
for the SM and the 2HSM. We show two diff'erent cases for
the situation where the effective theory below the scale
Ml is the SM. In the SM case (a) Ml = 10io's4 GeV, and
in the SM case (b) Ml = 10 GeV. In the case where
the efFective theory between pt and Ml is the 2HSM, we
use MI ——10 ' GeV. Note that the A~'s and the K„'s
in the SM case (a) and the 2HSM case have very similar
values. For the sake of comparison, we also show the A 's

and K„ for the case when the effective theory above the
scale pq

——180 GeV is the MSSM. In this case, the upper
bound of integration in the A 's and K„ is the gauge
coupling uni6cation scale MU. The strong coupling con-
stant as, (Mz) = 0.121 is determined by requiring gauge
coupling unifj. cation to be achieved with o. and sin 0~ as
inputs.

In Table I, we also show the ratio A~/A, in the difFerent
cases because the ratio of the masses of the down quarks
to the masses of the charged leptons is proportional to
A~/A, . Note that this ratio is highest in the MSSM
scenario. In the SM case (b) this ratio is higher than in
the other two non-SUSY cases because the SU(4)c gauge
symmetry is broken at Ml, which for SM case (b) is larger
than for the other two non-SUSY scenarios considered.

We can use the A„'s and K„'s of Table I to 6nd the
infrared quasifixed point of the top quark [25]. When

ln pl
Af = exp ) c(~)g, (p)d(lnp), (36)

1n p, t

and defined the analogue of K„as
ln prexp, ) c!"g,'(p')

ln p,

x d(ln p, ') d(ln p,), (37)

with

(y) (9 9 451
&4'4' 4

(3S)

and AgU ls the top quark Yukawa coupling at MU. Equa-
tion (35) is the solution to the intermediate scale equation

2dln Ag 2 (f) 216m = 6A~ — c,. g; (39)

For the SM case (a), we find the fixed point to be 223 +

where we have de6ned the effect of the intermediate scale
gauge couplings g2L„g2~, and g4~ on the Yukawa cou-
pling evolution of all fermions as

TABLE I. In this table, we show the gauge contribution factors A, defined in Eq. (30), the quantity K„, defined in Eq.
(33), and the ratio Ra = ~g. In the first three cases listed, we assume that the SO(10) grand unified group breaks to the gauge

C C

group (2z, 2z 4&j at the scale MU, and then the gauge symmetry (2z, 2z 4z) is broken to either the SM or the 2HSM at the
scale Mi. In the SM case (a), the SM case (b), and the 2HSM case, we have assumed Ml = 10 ' GeV, Mi = 10' GeV, and
Ml ——10 GeV, respectively. For the purpose of comparison, we also give the results for the MSSM with the assumptions of
gauge coupling unification (for which we ignore threshold efFects) and m& Mz = 180 GeV used to determine n3 (Ms) = 0.121.

Scenario

SM case (a)
SM case (b)

2HSM
MSSM

A

2.27 + 0.05
2.69 + 0.06
2.32 + 0.05

3.45

Ag

2.23 + 0.05
2.62 + 0.06
2.28 + 0.05

3.36

1.19
1.26
1.20
1.50

2.51 + 0.05
3.98 6 0.08
2.66 + 0.05

9.55

Rg ——~A
Ae

1.87 + 0.05
2.08 + 0.04
1.90 + 0.04

2.24
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3 GeV. For the SM ease (b), we find zA„/gK„= 235 +
4GeV. For the 2HSM case, we find the upper bound
of the top running xnass to be 225+ 3GeV. As is well
known, without SUSY the 6xed point of the top quark
is clearly higher than that allowed for by examination of
electroweak data [26].

We now should consider the relations between mb and
m in the three cases. They are

mb AbU gg

m A g
AbU gg

AbU gg

g
AbU gg

g

A 3 3 3—
& cd —

& bIg+ &
bI

A,

(SM)A.
'
e ' '+ (2HSM)

A,
'

Ag
8 ' '+ (MSSM)

A,
'

(4o)

(41)

(42)

(43)

where the subscript U on a parameter denotes its value
at unification scale. The SU(3), gauge contribution by
itself would make mb undesirably large for the case of
bottom-v Yukawa coupling uni6cation with the require-
ment m = 1.784 GeV. Inclusion of the top quark's con-
tribution makes the situation worse in the SM, but im-
proves it in the 2HSM and MSSM.

In the SM case, the ratio ms/m increases with top
quark mass. This ratio also increases with the SU(4)c-
breaking scale MI. According to Ref. [27] in which the
MI scale relation mb ——m is discussed for non-SUSY
models, either the running mass mb must be greater than
4.35GeV or the top pole xnass must be lighter than 80
GeV for MI to be consistent with SO(10) grand unifica-
tion. Using a two-loop gauge analysis with the recent 1o
lower bound on os, (Mg) of 0.111 and the recent lower
bound on the top pole mass of 130 GeV, we find even
tighter constraints. Prom the previously given RGE's,
one may 6nd the following expression for the top quark
running mass:

(T't 6
mt= 1 — — "K

&b&
(44)

with v = m /rI A, and b = ms/gsAg. For example, if
we assuxne the high value 4.8 GeV for mb and the low
values of loio's GeV for MI and 0.111 for o;s, (Mz), we
calculate gb ——1.41, q = 1.015, A„= 2.27, Ag ——2.23,
A, = 1.19, and K„= 2.52 for the choice of pq ——130
GeV. This predicts a top pole mass of about 110 GeV. In
fact, even if we ignored the effect of the top quark on this
ratio, still the running mass of the bottom quark would
be predicted to be m gi,Ag/rl A, = 4.6 GeV, which is
fairly large.

To get a bottom quark mass within a desirable range,
we are forced into using two Yukawa couplings to give
mass to the bottom and v ferxnions in the one-Higgs-
doublet case. One coupling must be to a 10 represen-
tation Higgs field and the other to a 126 representation
Higgs field. (Remember that, unlike a coupling to a 10,
couplings to 126's contribute to lepton Dirac masses rel-
ative to quark xnasses with a factor of the Clebsch coefB-
cient of —3.) We assume the entire bidoublet of the 126

representation Higgs field to have a mass of the order
of MU and to contribute to the fermion masses through
a VEV induced kom the VEV of the 10 representation
Higgs field [18].

On the other hand, in the 2HSM and the MSSM when
we input m = 1.784 and require the unification scale
condition mq = m, the ratio ms/m decreases with
increasing mq as can be seen &om the exponents in
Eqs. (42) and (43). Bottom-v Yukawa coupling unifi-
cation has proved successful in the MSSM. We will see
later that this is also possible in the 2HSM, although the
fit is not as attractive. This is because the ability of
the top quark Yukawa coupling to keep the ratio ms/m
&om becoming too large is less in the 2HSM than in the
MSSM.

Since we are interested in matrices of the GJ form
which have the condition! V,s!= gm, /mt at the scale
M~, we also consider the equations

! &b I
—1 (—& b+3c)Iq+ &cIg3

(45)
(=-)

e ' ' (SM) (46)

e '+ ' (2HSM) (47)
e '+ ' (MSSM) . (48)

We see that, in all cases, the heavier the top quark is,
the lower this ratio is. The first paper we know of that
provides a renormalization group analysis of the relation

! V,s!= gm, /mq is Ref. [28] which discusses the relation
for the case of non-SUSY SO(10) with an intermediate
breaking scale Mi. We shall also discuss this relation in
the context of non-SUSY SO(10) in Secs. IV and V.

III. BRIEF REVIEW
OF MSSM CASE (DHR ANSATZ)

In this section, we will look at the Ansatz of Di-
mopolous, Hall, and Raby (DHR) [1] for the purpose
of xnaking the program we will use for the non-SUSY
cases clear and also so that we may later compare results
between the SUSY and non-SUSY cases. For a more
complete analysis, see Refs. [1—3]. In the original DHR
Ansatz, the the grand uni6cation scale fermion Yukawa
coupling matrices take the form

~0 C 0~ ~0 F 0)
U= C 0 B, D= F E 0

(0 B A) (0 0 D)
(49)

(0 I' 0~
E= F —3E 0

(0 0 D)
where A, B, C, D, E, and F are complex parameters,
with

(»)
(Note that the up quark mass matrix is of the Fritzsch
form and that the down quark and charged lepton xnass
matrices implement the Gcorgi-3arlskog mechanism. )
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We recall that M~ = UesinP, MD = D~cosP, and
Ma = ErccosP. After rotating away all but one un-
avoidable phase P in the Yukawa coupling matrices by
redefinition of the phases of the fermion fields [1], these
matrices may be given the form

(0 C 0~ ( 0
U= C 0 B, 0 = Ie

(0 B A) ~ 0

(0 F 0)
E = I' —3E 0

&0 O D)

Fe'& O )E 0
0 D)

(51)

where A, B, C, D, E, and I" are now real. This Ansatz
uses the eight inputs A, B, C, D, E, F, P, and tan P to
describe the SM fermion sector, which contains 13 inde-
pendent parameters. Hence, these eight parameters may
be fixed in terms of the eight best measured SM fermion
sector parameters to yield five SM fermion sector predic-
tions and tan P of the MSSM. The following inputs are
used [29]:

cosP =
ii'-I* —(" )

—"'
~en V g
rn, Vg

(64)

mc/ik b
mi(m, ) =

1

QK„m, /g. (7)' p)"

(65)

(66)

and, for the unification scale top quark Yukawa coupling,

and where we have defined Ba = Ag/A, .
C

The fifth predicted SM parameter is mz. An input
value for

~
V,b

~
gives two possible pairs of predictions for

m& and the MSSM parameter tanP. Only for the case
that tanP is small can an accurate analytical approxi-
mation be given for mi and tan P. Otherwise, one must
numerically integrate the RGE's. When tan P is assumed
to be small, the following predictions can be made &om
the M~ scale conditions ~V,s~ = gm, /mq and mq ——m„
with the RGE's given in the last section:

ms(ms) = 4.25 + 0.1 GeV,
m (m ) = 1.784GeV,
m, (m, ) = 1.27 + 0.05 GeV,

m„(m„) = 105.658 MeV,

0.2 &
m„(l GeV)

& 0.7,
mg(1 GeV)

m, (m, ) = 0.511MeV,

~
V., )

=0.044 +0.014,

~
V„,

~

= 0.221 + 0.003 .

(52)

(53)
(54)

(55)

(56)

(57)

(58)

(59)

(67)

where we have again used the definitions

= mT

g A,
'

mg

ggAg
'

(68)

and mq is the running mass. As is well known, the MS
scheme running mass is related to the physical pole mass
by the relation

mg/m,
-2

1 —~
9 one

-2 ) (60)

The above masses are running masses in the MS scheme
and their quoted uncertainties are at the 10 level. For the
CKM matrix parameters (V,s) and )V„,~, we have quoted
the uncertainties at the 90%%uo confidence level. The 1cr
ljmjt on ~Vs~ js ~Vs[ = P.Q44 + P QQ9

By finding the biunitary transformations that trans-
form the mass matrices at the grand unification scale to
diagonal matrices with real positive entries, making use
of Eq. (50), and using the results of the RGE analy-
sis of the previous section one may find the predictions
[1] for the five SM parameters and tan P in terms of the
previously given inputs. Four of these are the following:

m," =m,
~

1+ 4as(mi)
37!'

+ O(as(m~))
~

. (7o)

gg ——1.56,
g, = 2.19,
g, = 2.54,
g„= 2.55.

(71)
(72)

(73)

(74)

For the outputs m, /mg and m„acceptable ranges are

Now, we need to know what ranges of values are ac-
ceptable for the output parameters. For the purpose
of comparing later with the non-SUSY cases, we will

give the results for the previously mentioned example of
Ms ——180 GeV and as, (Mz) = 0.121. For this value of
a3 (Mz), we find as (p&) = 0.110 and the following i7 s:

V„g

V,g mc fuge

J =
ii

f'v, qi
" sing,

(61)

(62)

15 &
m, (l GeV)

& 25,
mg(1 GeV)

m, (lGeV) =175 +55MeV.

(75)

(76)

In Ref. [29], larger values of m, /mg correspond to smaller
values of m„/mg. Determined solely by the ratio m, /m„,
the prediction for m, /m~ is

with
= 24.71,

mg
(77)
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"' = 0.09+0.04.
cb

(7S)

For our example, the prediction is
~

V„q/V 6

0.059 ' ' ' . The possible range for V„g V,g

is shown in Fig. 1(a). For this typical example, we can
see that

~
V„g/V, s ~

varies from the lower end of accept-

which is at the upper end of its acceptable range. (Of
course, this ratio does not depend on whether the case
considered is supersymmetric. ) The prediction for m, is
206 GeV.

The 1' experimental limits on the CKM parameter

I V-./V-6 I
~e

ability 0.05 up to about 0.0665.
For the CP-violating parameter J, we 6nd J x 10

2.9 0&'z
~

when m„/mg = 0.6 and m, = 1.27GeV

In Fig. 1(b) for the case of m„/mg = 0.6 and m,
1.27GeV, we plot 1 as a function of

~
V~s

~

for values of

~
V,s

~

less than 0.053 and greater than 0.044, which is the
allowed range of

~
V,s ~

within its 10 experimental limits.
The plot shows that under these conditions J x 105 can
range from 2.2 to 3.3. In Fig. 2, we also plot cosg as
a function of

) V„s/V, s
~

over its predicted range. This
plot is of course also applicable to the non-SUSY cases
to be discussed. The range of cosg shown is from 0.14
to 0.30. The significance of cos 4 for experiment is given
in Ref. [30].

0.064
0.062
0.06

(y„J'y,b~
0.05s
0.056.
0.054
0.052

0.45 0.5 0.55 0.6 0.65 0.7

m flld

1O' J
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FIG. 1. In this Sgure, we show the following results for the MSSM example discussed in Sec. III. (a) The prediction for

~
V„q/V, q~ vs input values of m„/mq. The short-dashed line, solid line, and the long-dashed line represent the c; 'es where m, is
1.22 GeV, 1.27 GeV, and 1.32 GeV, respectively. (b) The prediction for the CP violation parameter J vs inpu values of (V,b~

The short-dashed line, solid line, and the long-dashed line represent the cases where m is 1.22 GeV, 1.27GeV, and 1.32 GeV,
respectively. (c) The prediction for the running mass mz as a function of tan p for mz ) 125 GeV and tan p ( 60. The short-
dashed line, solid line, and the long-dashed line represent the cases where m& is 4.35 GeV, 4.25 GeV, and 4.1~ ~e, .espectively.
(d) The CKM matrix parameter ~Vq~ as a function of tanP. The short-dashed line, the solid line, and the long-dashed line
represent the same values of m& as in (c) and also the values 1.32 GeV, 1.27GeV, and 1.22 GeV for m„respectively. (e): The
M~ scale top and bottom Yukawa couplings as a function of tan P. The short-dashed line, the solid line, and the long-dashed
line represent the same values of mq as in (c).
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0.28
0.26
0.24

cosy
0.2

0.18
0.16
0.14-

0.05 0.055 0.06

Iv„Jv„~
0.065

FIG. 2. The cosine of the complex phase that appears in
the DHR Ansatze as a function of the input ~V„q/V, q~

Next, we look at the predictions made for mi and tan P.
In Refs. [2, 3], it was determined that each value of mq
has two values of tanP associated with it. Since each
value of tan P has only one value of mq and one value of

~
V,s

~

associated with it, in Fig. 1(c) we plot mq vs tan P
and in Fig. 1(d) we plot ~V,s~ vs tanP. Here, we plot
the region described by tanP ( 60 and mq & 125 GeV.
As in Refs. [2, 3], for each value of tanP we numerically
integrate the RGE's from the scale pq ——180GeV for
different values of mq until we find one that gives AsU

and A U to be within 0.170 of each other at the grand
unification scale MU. From recent direct top searches,
m~~

' & 131GeV [31]. According to the analysis of the
most recent electroweak data [26], m~i' ' & 180 GeV. The
figure shows that the top mass is within these bounds
only for some values of small tan P and for large tan P
60.

As in Ref. [3), we also plot in Fig. 1(e) the grand unifi-
cation scale couplings A. and D as a function of tan P. At
about tanP = 58, we can see that D = A for the exam-
ple ms = 4.35 GeV. (For both of the other two examples
graphed, D = A for some tan P a little greater than 60.)
In Refs. [2, 3] it was shown that one may use the unifica-
tion scale condition D = A to decrease by 1 the number
of inputs in the Ansatz and hence increase its number
of predictions to five SM parameters and tanP. With
D = A at MU,

~
V,s ~ [2, 3] can now also be predicted.

Finally, we review work done on the neutrino sector
and the possibility of there being an Ansatz to predict
the neutrino masses and the leptonic mixing angles. In
Ref. [32], DHR propose the following Ansatze for the
neutrino Dirac mass matrix and Majorana mass matrix,
respectively:

where V is the superheavy singlet VEV and K = 1 or
—1/3. The low mass neutrino mass matrix is then of the
form

mg/

m g/

mv

mv

(B&
3rc2 I A)

4 me/~
K )

mtl Qc

B—2K—,''

(82)

(83)

(84)

g
me mg/

ep- +
mp mg/

2 m, B
8,

3 mp
(86)

in which B/A = ~V,s(Mp) ~.

For our example with e = 1 and assuming tan P to be
small, we find

= 278,
mv

" =3680,
mg

sin 8„=0.0191,
sin 8,„=0.0177,
sin 8, = 1.03 x 10

(88)

(89)

(9o)

(91)

where we have used ~V,s~
= 0.05, m„/m~ = 0.43, and

m, = 1.23GeV. We used m„/m~ = 0.43 and m,
1.23oeV to get sin 8e& as low as possible. The value

of sin H,„and the mass ratios found in this example
are to be compared with the small mixing-angle nonadi-
abatic solution window [b,mz (0.3—1.2) x 10 s eV and
sin 8,„(0.4—1.5) xlo z] which is in agreement with
all experimental data [33]. The value of m„. is 1eV.
The K = —1/3 scenario can only provide neutrino masses
and inixing that lie well between the small and large an-

gle 90'Fp confidence limit Mikheyev-Smirnov-Wolfenstein
(MSW) solution windows [32].

M&@AM N

Then, just as in the quark sector, from bilinear transfor-
mations M@' ~ = V,~MEV,+t and M„' I' = V„~M„„V„+~
that diagonalize the lepton mass matrices one finds the
leptonic CKM matrix V' = V„V, ~. DHR then find the
following neutrino mass ratios and mixing angles:

(' 0
mr= I

—3C
E o

—3C 0
0 3~B r sinP—
3rB —3A )—

(0 C 0~
MNN = C 0 0 V,

&0 o A)

(79)

(8o)

IV. A1VSATZ IN THE SM
As discussed in Sec. II, the unification of mg and m

at an intermediate symmetry-breaking scale Ml is not
possible in the SM cases. Wanting both to have an ac-
ceptable value of mg and use mass matrices as similar as
possible to the GJ form, we will use the following Anaotz
at MU.-

~O C 0~ /0 I' 0 ~ (0 I" 0
U- C 0 B, D- I' E 0, E- F —3E 0

(0 B A) (0 0 D+dJ (0 0 D —3d)
(92)
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where A, B, C, D, d, E, and F are complex parameters, with IAI » ]BI » ICI and ID + dl ID 3dl » IEI » IF
Below the grand unification scale, the zero entries in the mass matrices will develop small finite values. However,

we have found the values that these entries develop when one takes the energy scale &om the grand unification scale
down to the intermediate breaking scale are negligible . So, it is a good approximation to take the A ns atz at the

intermediate breaking scale. (Most importantly, IVsI/g does not evolve between Mo and Mr. ) Ager rotating

away all but one unavoidable phase P in the mass matrices by redefinition of the phases of the fermion fields [1], we

take the A nsatz at the intermediate breaking scale to be

0 C 0 ~ ( 0 F"4'
U C 0 B,D Fe '~ E 0,E F —3E

D+d I)

0
0

D-3d])
(93)

Although this Ansatz lacks bottom-r Yukawa coupling
unification, it uses the same number, 3, of parameters to
describe the third-generation masses as does the MSSM
or 2HSM cases with bottom-v Yukawa coupling u~~fi-

cation because they require the additional parameter
tan P = ~„/~g. D and d may always be chosen to satisfy
experimentally determined values of mg and m, but do
not make predictions. Besides the two parameters D and
d our A nsatz has six other parmeters, and other than mg
and m the SM has eleven fermion sector parameters So
we can make five predictions &om the six of these eleven
fermion sector parameters that are best determined. We
use m„m„, m„m„/mq, I

V,s I, and
I V„, I

as inputs.
In the last section, we quoted acceptable values for these
parameters .

Now we look at the predictions for mq, m„m, /mg,
V s/V b I, and the CP violation parameter J (or cos P).

Note that these are the same SM quantities as predicted
for the DHR model without top-b ot tom Yukawa coupling
unification. (The DHR model predicts these five SM pa-
rameters and also the SUSY parameter tan P = tc„/leg. )
We will look at predictions for two cases. For case
(a) we use MI = 10is's4 GeV, and for case (b) we use
Ml ——10 GeV.

First, &om Eqs. (19), (22), (26), and (32),

I

to be lower than the range of predicted value in the SM
case (b). In case (a) we find

m, = 160+23 MeV,

and in case (b) we find

m, = 177+25 MeV. (96)

V„g

V,g

+p pp4, ~" 1.27 GeV
0 053 p pp3) 0 6 mc

(97)

and in the SM case (b) we find

V p +p pp5,
" 1.27 GeV

Og055 p'pp3)
V,g

) (98)

The uncertainties that we give are due to the uncertainty
in as(Mz). The value in our MSSM example was m,
191 GeV, which is contained in the upper part of the
range of values for the SM case (a).

Also, the prediction for
I
&"'

I
is proportional to R d .

So, once again, we expect the range of predicted values
for

I

&"'
I

in the SM case (a) to be lower than the range of
predicted values in the SM case (b). In the SM case (a)
we find

mt
mc gc

w

Iv., l + ",„-, I'=„)
(94)

We show running mass mq vs
I V,s I

for the SM scenario
in Fig. 3(a) for case (a) and in Fig. 4(a) for case (b). In
case (a) we see that

I
V,~ I

can be as low as 0.039, and in
case (b) I V,s I

can be as low as 0.038 for running mass
mq less than 200 GeV. For

I
V,g I

within its 1cr limits, in
case (a) mg can be as low as about 140 GeV and in case
(b) md can be as low as 145 GeV.

Now we look at the other four predictions. These four
predictions all take the same form as in the original DHR
Anaotz and are given by Eq. (60), Eq. (61), Eq. (62),
and Eq. (63). Of course, the prediction for m, /mg is the
same as before m, /mg = 24.71 because it only depends
on the ratio m, /m~. The other three predictions are
proportional to the ratio of the gauge contribution for
the down quark masses to the gauge contribution for the
charged lepton masses Rd = Aq/A, .

C

Since the prediction for m, is proportional to Ra, the
C

range of predicted values of m, in the SM case (a) has

V,g I &

(0.05 )
(99)

for the SM case (a) and

J x 10' = (2.7 + 0.2)
g 0.05 )

(100)

for the SM case (b). This is to be compared with J x
2

10 2 9 p p5 in the MSSM case. The prediction for

The uncertainties given here are due to the uncertainty

in as (Mz). The value in our MSSM example was

0 059 p 6
', which is contained in the upper part

of the ran. ge of values for the SM case (a). We show the
range of good values for

I V„s/V, s I
in Fig. 3(b) for the

SM case (a) and in Fig. 4(b) for the SM case (b).
Being proportional to Ra, one expects the Cp vio-

C

lation parameter J to have a lower range of predicted
values in the SM case (a) than in the SM case (b). When
m„/mq = 0.6 and m, = 1.27 GeV, we find
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case (a) is ploted in Fig. 3(c), and the prediction for case
(b) is plotted in Fig. 4(c). The predicted values for cos P
can again be found &om Fig. 2 for the predicted ranges
of (V„s/V, s(.

To complete this section, we will consider neutrino

mass matrices of the form given in Eq. (79) and Eq.
(80). However, as a good approximation we will take
the matrices at MI instead of MU. Following the same
analysis as discussed in the last section, we 6' the fol-

lowing for case (a) when ~V,s~
= 0.05, m„/mq = 0.51,

m, = 1.27GeV, and as, (Mz) = 0.118:

200

190

180.

170

160

1SO (s}

0.04 0.044

Ivobl

0.048 0.052

= 109,

fD gj

sin t5I„

sin 8~@

sin 6I,

= 0.0483,
= 0.0176,
= 2.64 x 10
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FIG. 3. In this 6gure we show the following predictions for
the SM case (a) with MI = 10 ' GeV discussed in Sec IV. .
(a) The prediction for the running mass m~ vs ~V q~. The
short-dashed line represents the case where m = 1.22GeV
and o.s, (Mz) = 0.125. The solid line represents the case
where m, = 1.27GeV and os (Mz) = 0.118. The long-
dashed line represents the case where m, = 1.32GeV and
ns (Mz) = 0.111. (b) The prediction for lV g/V~~l vs in-

put values of m„/mq The short-dashe. d line, the solid line,
and the long-dashed line represent the same values of m, and
ns (Mz) as in (a). (c) The prediction for the CP violation
parameter J vs input values of lV, gl. The short-dashed line,
the solid line, and the long-dashed line represent the same
values of m, and o.s, (Mz) as in (a)

2.5
10 J

1.5
4, 04 0.044 0.048 0.052

Ivcbl

FIG. 4. In this figure we show some predictions for the
SM case (b) with Mr = 10 GeV discussed in Section IV.
(a), (b), and (c) are described by the captions for Figs. 3(a),
3(b), and 3(c), respectively.
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and we find the following for case (b) when ~V,g~
= 0.05,

m„/mg = 0.46, m = 1.27GeV, and chs, (Mz) = 0.118:

= 106,
mv„
mv " =37SO,
mg/

sin 8„=0.0493,
sin 8,„=0.0176,
sin 8, =2.69 x 10

(106)

(107)

(108)

(109)

(110)

Because ~V,b~ becomes larger at higher energies in the
SM whereas it becomes smaller at higher energies in the
MSSM, the values for sin H,„are virtually the same in
the MSSM and SM cases whereas the ratio m„ /m„„ is
more than twice as big in the MSSM example than in the
SM cases. The value of m„ is 2 eV.

V. ANSATZ IN THE 2HSM

For the 2HSM case, we first use use an Anaatz of the
form given in Eq. (49) at the grand unification scale.
Although the zero entries in the Yukawa matrices will
develop relatively small values between M~ and MI,

fVs~/g does not evolve over that range and so as a

good approximation one can effectively take the Ansatz
at MI in the form of Eq. (51). Like the DHR Ansatz, this
Anactz has eight parameters. So it is possible to predict
five SM ferrnion sector parameters and the 2HSM param-
eter tan P in terms of the eight best measured SM fermion
sector parameters. Of course, we choose the same five
input parameters as in Sec. III. The expressions for the
four output parameters m„m, /mg, ( V„s/V, s ~, and the
CP violation parameter J (or cosP) again are given by
Eq. (60), Eq. (61), Eq. (62), and Eq. (63). Since in the
2HSM Rd = Ag/A, has values within a few percent of its

C

values in the SM case (a), these four 2HSM case predic-
tions will only be slightly different than the predictions
of these 4 parameters that were given for the SM case
(a). Those predictions are already given in Table II and
Fig. 3. However, we do need to discuss the predictions
for mt and tanP.

If we are to require Aq~
——A«but not A&U

——A«, then

and for the intermediate breaking scale top quark Yukawa
coupling,

d = K„'/~l —
)

—l, (113)

where we have again used 7 = m /7I A, and b

ms/71sAg, and mt is the toP quark running mass. In
order to investigate the situation for when tanP is not
small we must numerically integrate the Yukawa RGE's
to find for each value of tan P a value of mt for which As,
agrees with A, to within 0.1%.

We have found two separate ranges of tanP that give
values for the running mass mq between 125GeV and

we must have two Higgs bidoublets instead of one in the
intermediate scale efFective theory. (Hence for this case
the model needs two complex 10's instead of the minimal
one complex 10.) One Higgs doublet from each of these
bidoublets is then assumed to contain a VEV and appear
in the 2HSM efFective theory below MI. (One Higgs dou-
blet is ttt„and the other is Pg. ) For the more interesting
case of Az

——Ap
——A«, the model only needs one Higgs

bidoublet appearing at intermediate scales, and hence
the model only needs the minimal one complex 10 Higgs
field. The A 's and the K„'s which we give in Table I for
the 2HSM case and use in this section were calculated
for the assumption of only one Higgs bidoublet having
a mass less than MU. The MI we use is calculated ac-
cording to the survival hypothesis and mrs (Mz) = 0.018.
The values of the A 's and the K„'s that are calculated
for the two-Higgs-bidoublet case are similar to the corre-
sponding values given for the single-Higgs-bidoublet case,
and one would expect these differences to be smaller than
the uncertainties in the A 's and the K„'s due to possi-
ble threshold corrections which we ignore for the sake of
simplicity.

When the assumption of tan P being small is made, mt
and tan P may be predicted to a very good approximation
by the equations

mc/7lc b
mt(mt) =

1

, (112)

TABLE II. This table lists three of the Sve SM predictions made by SM case (a) (MI = 10 ' GeV) and SM case (b)
(MI = 10 GeV) and those same three parameters as predicted by the DHR Aghsatz with Ms = 180 GeV and (gMgs)=s0.121.
M7 is the scale at which the intermediate gauge symmetry {21.2R 4&) breaks to the SM.

Parameter

774, (1 GeV)

Prediction for
SM case (a)
160+ 3MeV

Prediction for
SM case (b)
177+~5 MeV

Prediction for
MSSM

206 MeV

~sh

J.10'
for ~ = 0.6

17Lg

and m, = 1.27 GeV

(p 053+0.0041 vrsst 1.27OeV
-O.OO3i O.s

(2 8 jp 2) (I hl)'

(p 055+0.0051 rrssg 1.27OeV
-O.OO3~ O.6

(2 7+ 0 2) (I .hl)

0 059 O-6 ~c

2 g (
lveh I

)
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200GeV. One region is for tanP ~ 1 and has A xnuch
greater than D .In the other region, tanP is greater
than about 55 and D is of the same order as or larger
than A. It is not surprising that we 6nd two separate
regions in tan P. One expects the mi vs tan P plot for the
2HSM case to have the same shape as the mi vs tanP
plot for the MSSM case in Fig. 1(c), but one also expects
as discussed in Sec. II that in both cases when A is much
larger than D and sin P = 1 the top mass required by the
MI scale condition ms = m will be close to eA„/i/E„'
While KA„/i/K„ is a little smaller than 200 GeV in the
MSSM case, it is larger than 200 GeV in the 2HSM case.
Hence, one would expect mq to be unacceptably large for
intermediate values of tan P for which sin P = 1 and A is
much larger than D.

For the case that ns(Mz) = 0.111and m, = 1.22 GeV,
we find that for a small span of tanP ( 1) &om about
0.6 to about 1.7 the running mass mq takes values &om
125 GeV to 200 GeV. Within this region,

~
V,s

~
could be

as low as about 0.053. When mg has the values 4.35 GeV,
4.25 GeV, and 4.15 GeV, the My scale coupling A = Aq,

has the values 1.4, 1.8, and 2.3, respectively. (Larger
input values for ms give smaller values for A.) However,
&om Eq. (35) we find that A = Ai, can have a maximum
value of 1.26. The effect of using larger values of ns(Mz)
is to require larger values of A than just given for the
cps(Mz) = 0.111 case (e.g. , when ms = 4.35 GeV and

crs(Mz) = 0.118, A must be 2.3). This lower region is
ruled out in the scheme we are using unless the running
mass ms is larger than about 4.4GeV and ns, (Mz) is
near its lower end of acceptability.

In Fig. 5(a) and Fig. 5(b), we show the running mass
mi vs tan P and

~
V,s ~

vs tan P respectively for the higher
region of tanP for the case that ns(Mz) = 0.111 and
m, = 1.22GeV. In the mi vs tanP plot, we plot mi
for values of MI scale Yukawa couplings A and D less
than 1.3. We see that for mt, ——4.35 GeV, mq can be as
low as 150GeV. In the j V,s

~

vs tanP plot, we can see
that

~
V,s

~
is never within the 10' limits of

~
V,b

~

but
can be within its 90% confidence limits. In Fig. 5(c),
we also show the nni6cation scale couplings A and D
as a function of tanP. We can see that for the case
with ms = 4.35GeV top-bottom-7 unification (D = A)
is possible for A —0.8.

In Figs. 6(a)—6(d), we show mr„mi&
~

V,r, ~&
and tan P

as a function of A when D = A for the case where

cK3(Mz) —0.111 and m, = 1.22 GeV. Using a value
of m~ as an input determines a value for A, but only val-

ues of mg more than 4.25 GeV predict values of mq less
than 200GeV. In fact, for mg & 4.4GeV the top run-
ning mass is predicted to be high, greater than 180 GeV.
Once again, the possible range for

~
V,s

~

lies outside of
its lo' limits but within its 90% confidence limits. The
value for tan P is predicted to be between 57.5 and 65 for
mq ( 200 GeV. The MI scale Yukawa coupling A takes
values from 0.73 to 1.00 for mg & 4.4 GeV.

Figures 6(a)—6(d) for the 2HSM case can be compared
with the situation in the MSSM. In Figs. 7(a)—7(d), we

show ms, mq,
~

V,b ~, and tanP as a function of A when
D = A for the case when as(Mz) = 0.121, Ms ——180
GeV, and m = 1.22GeV. We see that in the MSSM,

having mi, within the 90% limits given in Ref. [29], cor-
responds to lower values of mq than in the 2HSM case just
discussed. For example, mg ——4.4GeV corresponds to a
running mass mq ——174.5 GeV, which is a pole mass of
183 GeV. Although its values are found to be lower than
in the 2HSM, ~V,i,

~

comes out just above its lo. limits. As
in the 2HSM case, tanP 60.

Bottom T Yukawa coupling unification in the 2HSM
with as(Mz) = 0.118 requires high values of mg to keep
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FIG. 5. In this figure we show the following predictions for

the 2HSM case with MI = 10 GeV discussed in Sec. IV.
(a) The running mass mr, vs tan P with the dashed line aud the
solid line representing mg = 4.35GeV and mq ——4.25GeV,
respectively. We show m& between 125 GeV and 200GeV.
(b) The CKM parameter ~V, r,

~
as a function of tanP with

I, = 1.22GeV and the dashed and solid line representing
the same as in (a) (c): The Mr scale top aud bottom Yukawa

couplings A and D plotted as a function of tan P with the
dashed and solid lines representing the same as in (a).
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case of Sec. V vrith MI = 10 GeV, vie plot running mass
mq, running mass mq, ~V,q~, and tanP as a function of A in
(a}, (b), (c},and (d), respectively. In (c), we use m, = 1.22
GeV.

FIG. 7. For the case of A—:A&U
—

AgU ——A~U in the
MSSM with Ms = 180GeV, ns, (Mz) = 0.121, and threshold
corrections having been ignored for simplicity, ere plot running
mass ms, running mass mq, ~V,q~, and tanP as a function
of A in (a), (b), (c), and (d), respectively. In (c), we use
m = 1.22 GeV.
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TABLE III. Here we show how the three fermion SO(10) gauge group spinor Iields, three 126-dimensional representation
Higgs fields, the 45-dimensional Higgs field, and the 210-dimensional Higgs field of our example model of Sec. VI transform
under the model's softly broken three U(1) symmetries.

16'
1

2

1

16'
1

1
0

16s
1

0
0

10'
-2

10'
-2

10s
-2
0
0

126'
-2
4
-2

126'
-2
-2
0

126s
-2
0
0

45

1
2

210
0

0

both of the couplings A and D &om being too large. For
example, when mp ——4.4 GeV, D can only be as small as
2.03 when A = 1.02, mq ——200GeV, tanP = 74.9, and

~
V,b

~

is 0.055 for m, = 1.22GeV. A similar problem
results if we increase MI. %e 6nd that the uni6cation
of the bottom and 7. Yukawa couplings is only feasible
in the 2HSM when MI « MU and ns, (Mz) is low, near
0.111.

VI. U(l)s SYMMETRY AND INDUCED VEV's
TO GIVE MASS MATRICES

Recently the authors of Ref. [18] have shown that
if certain reasonable assumptions are made, then the neu-
trino mass ratios and leptonic mixing angles are com-
pletely determined by the 13 SM fermion sector param-
eters within the context of minimal SO(10) grand uni-
6cation. Their 13-parameter model is capable of gener-
ating all of the fermion masses and quark mixing angles
and predicting the neutrino spectrum without depending
upon any Havor symmetries. Crucial to their scheme is
the observation that the electroweak breaking VEV of the
10 representation Higgs 6eld will induce a small VEV in
the superheavy bidoublet of the 126 representation Higgs
6eld. Their model of course has little predictive ability
in the SM sector.

In this section we give an example of a scheme that
makes use of the idea of induced VEV's &om superheavy
fields, but at the same time limiting the structure of the
mass matrices by using softly broken global symmetries.
Specifically, we use U(1) symmetry to generate mass
matrices similar to Eq. (92) which account for the hier-
archy of masses and mixing angles. We shall have to go
beyond the minimal SO(10) model to accomplish this.

We consider the possibility that SO(10) gauge symme-
try is broken to the gauge symmetry (2L, 2~ 4c j by a 210
representation Higgs field. At the next stage, symmetry
is broken to (2L, 2R 1~ I, 3,) by 210 as well as a 45 rep-
resentation of Higgs field. Breaking to the SM is done by
a 126 representation, and then finally the electroweak
symmetry is broken by a complex 10 representation. In
our example, we 6nd that we need two superheavy 10
representations and two superheavy 126 6elds. The su-
perheavy 6elds have only very small induced VEV's. The
10 representation that does the electroweak symmetry
breaking we will denote by 103, and the 126 represen-
tation Higgs field that breaks the symmetry (2L, 2~4' j
to (2L, 2~ l~ I, 3,) we will denote by 126s. We show in
Table III all the 6elds that we employ and their transfor-
mation properties under three difFerent U(1) symmetries
U(1)x, U(1)y, and U(1)z. All bidoublets are superheavy

except that of the 103 6eld. The operators that give the
fermion masses are shown in Fig. 8. These operators
give the Yukawa matrices

(0 C
C E

(0 B
0

Crc

0
Cr~

( o

A+a)
Cr~ 0
ErE Brg
Br~ Ar~ + ar )

C&e 0
—3Erg

Bryan

Br~ Ar~ —3ar

(114)

where the r s are ratios of the "down" VEV's to the
"up" VEV's in the operators. These Yukawa matrices go
to those of our SM case in the limit of small r~ and rE
large compared to 3.

lt is pointed out in Ref. [9] that a fourfold sym-
metrized product of the 126-dimensional representation
is an SO(10) singlet. Hence terms in the Lagrangian
such as A(126;)4& will explicitly break a U(l) symmetry
to discrete symmetry if 126; has a U(l) charge. We can
use the term A(126i)4s to break U(1) quantum numbers

1263

10 3

210 210

163

1263
-Y

103

-Y
IO 2

210 210 210 210

62

210

10 I 1262

210
6

10 3

210 210 210
e

10 2 )&

103

FIG. 8. In this figure we show the operators discussed in
Sec. VI that give the Yukawa couplings of Eq. (114) from the
fields given in Table III.
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X, Y, and Ztoamod8, amod16, andamod8dis-
crete symmetry, respectively, and avoid massless Nambu-
Goldstone bosons.

We note that in this scheme one cannot determine
the neutrino sector without making further assumptions.
However, we still should check to see if the scheme is ca-
pable of generating low mass neutrinos and leptonic mix-
ing angles that are in a range to provide an explanation
for the observed solar neutrino deficit via neutrino oscilla-
tion. Our scheme provides a Majorana mass matrix with
three unknown couplings to the three 126 representation
Higgs fields and which is of the form

(P 0 0)
M~~ —— 0 n 0 V,

(0 0 1)
(115)

where V MR and a and P are in general complex and
inay be assumed to be small. We assume the (1,3, 10)
submultiplets, given in (2r, 2~ 4') notation, of the fields
126~ and 126~ have masses near the unification scale,
and that they acquire small VEV's. We do not explain
these small VEV's, but we note that they could result
&om a more complicated Higgs structure. The neutrino
Dirac mass matrix at M~ is approximately the same
as U~. We find that it is possible to get the neutrino
spectrum into the previously mentioned small-angle adi-
abatic solution window, b,m~ (0.3—1.2) x10 s eV~ and
sin 8,„(0.4—1.5)x10, when [~I && 1 and
provided we give phases to the SM singlet VEV's. For ex-
ample, if we assume the phases are zero and use a = 0.005
and P = n for when [V,s[ = 0.05 we get m„ /m„„- 500
and sin 8,„0.018. However, for example, if we give a
complex phase of P, 2P, and 0 to the third-, second-, and
first-generation diagonal entries in the Majorana mass
matrix, then for [V,s] = 0.05 we get m„ /m„- 750 and
sin 8,„0.01, which is an acceptable solution to the
solar neutrino problem.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have examined the predictive abil-
ity of fermion mass Ansatze in non-SUSY SO(10) grand
unification in contrast to SUSY SO(10) since there is still
no direct evidence for SUSY. We have considered the two
possibilities that between the scale of the top mass and
the scale MI the effective theory is the SM and that it
is the 2HSM. We have compared these cases to the case
where between the scale of the top mass and MU the
effective theory is the MSSM, where the maximal SM
parameter predictive ability is six parameters with [V,s[
a little large or five parameters all within 1o experimental
limits. We have not considered Ansatze such as given in
Ref. [llj where certain relations are assumed between all
of the entries of the up and down quark Yukawa matrices

with the result of the predictive ability being improved.
In the SM case, we find that condition mg ——m at

the unification scale MU is impossible to maintain with

m~ & 130GeV and m&
' ( 5GeV. Nevertheless, we

are able to predict five SM parameters to be within their
le experimental limits. Specifically, mq is in the range
of about 150—180 GeV for [V,s[ in the upper half of its
10. range. This is shown in Fig. 3(a) and Fig. 4(a) for
the case of MI 10 GeV and MI 10 GeV respec-
tively. The results for the MSSM are quite similar for the
ranges of mt and [V,s[ that are permissible. The values of
[V„b/V, s[, m„and J for the SM and the MSSM cases are
shown in Table II. As can be seen they are quite similar
and lie within the 10 experimental limits. These three
parameters are found to depend somewhat on the scale at
which the Pati-Salam group is broken. The predictions
for these three parameters increase when the intermedi-
ate scale MI is increased. In all cases [V„s/V,s] is seen
be on the lower end of its acceptable range. For the SM
case with MI 10 GeV, [V„s/V, s[ must be less than
about 0.062, while in the SM case with MI 10 GeV
it can be as high as about 0.066. As usual, the prediction
for m, /md only depends on m„/m, and is found to be
24.73, within experimental bounds.

As in the MSSM and unlike in the SM, in the 2HSM
both mb = m and with large tanP unification of the
top, bottom, and w Yukawa couplings at the gauge uni-
fication scale are possible. We find we can predict tanl9
and six SM parameters for the case where the top, bot-
tom, and v Yukawa couplings are unified at high energies.
This is found only to work when crs, (Mz) is near 0.111,
and so could be ruled out with better experimental de-
termination of as (Mz). The predictions for the four
parameters m, /mg, [V„s/V,s], m„and J are essentially
the same as for the SM. However, as shown in Fig. 6(a),
[V,s[ is predicted to be above its 10 limits. In fact, only
for mq above 180GeV is ]V,s[ within its 90% confidence
limits. Of course, by adding another parameter to the
Ansatz and decreasing its its number of predictions by
1 [V,b[ may be allowed to be in its lo range. However,
from comparison of Fig. 6(a) and Fig. 6(b) one can see
that for mq to be less than 180GeV, the running mass
mg must be greater than 4.4 GeV. On the other hand, if
we give up the unification of the top and bottom Yukawa
couplings but retain mg ——m above MI, then it is pos-
sible for the top pole mass to be below 180GeV. In this
case, [V,s[ lies above its 10 limits but within its 90% con-
fidence limits. The predictions for m, /mg, [V„s/V,s[, m„
and J are essentially unchanged.
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