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Two-loop neutrino masses and the solar neutrino problem
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The addition of m singlet right-handed neutrinos to the standard model leads to radiatively
generated mass corrections for the SU(2)1. doublet neutrinos. For those neutrinos which are massless
at the tree level after this addition, this implies a small mass generated at the two-loop level via W+
exchange. We calculate these mass corrections exactly by obtaining an analytic form for the general
case of n doublets and m singlets. As a phenomenological application, we study the m = 1, n = 3
case in detail, for which there are two massive and two massless neutrinos at the tree level. After
calculating the loop-induced masses, the full mass spectrum is examined in the light of experimental
data from the four solar neutrino experiments and the GOBE satellite. Requiring compatibility with
these experiments enables us to constrain the parameter space and to obtain a handle on the scale
of new physics, as typified by the mass of the heavy singlet. We also obtain the interesting result
that the final mass eigenvalues, corrected for loop effects, may all be significantly different from the
seesaw value of the lighter of the two neutrinos which have tree level masses, thus demonstrating
the importance of the loop effects considered here.

PACS number(s): 96.60.Kx, 14.60.Pq, 14.60.St

I. INTRODUCTION

It is fair to say that the problem of understanding the
origin of fermion masses is one of the most perplexing
questions facing particle physics today. The standard
model [1] can reproduce the observed fermion masses via
electroweak symmetry breaking and the Higgs mecha-
nism, but provides no explanation for their values. VVhen
such an understanding is obtained, one of the issues that
it must clarify is the smallness of neutrino masses (if,
indeed, neutrinos are massive) relative to those of the
other fermions. An attractive explanation for this ob-
served feature of the fermion mass spectrum is the see-
saw mechanism [2]. It postulates the existence of right-
handed neutrinos with masses of the order of the next
energy threshold and uses this in combination with the
Higgs mechanism to generate light (Majorana) neutrino
masses via an effective dimension Ave operator.

Given our present ignorance of the origins of mass and
the lack of experimental pointers towards any particular
mechanism, it is important to keep an open mind on the
smallness of neutrino mass. In this paper, we explore,
via detailed calculation, the issue of radiatively generated
neutrino masses, since this is also a natural way in which
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masses small compared to those of other fermions may
be generated.

Any such eKort needs to invoke physics beyond the
standard model. In view of the extraordinary and demon-
strated robustness of the model to experimental tests
over the last 20 years, we have thought it reasonable to
make the simplest possible extension to the standard the-
ory and study its effect on neutrino masses via radiative
corrections, i.e. , the addition of m SU(2)L, IIU(1)y sin-
glet right-handed neutrinos. A priori, there is no connec-
tion between their number and that of the doublet neu-
trinos; hence, the simplest case corresponds to m = 1,
i.e., the addition of one right-handed singlet neutrino to
the standard model [3].

The gauge group structure of the weak sector remains
unchanged as a consequence of this extension, but Majo-
rana mass terms incorporating the scale of new physics
are now allowed. We do not speculate on their origin, but
only note that it would require invoking an additional
global symmetry (such as a conserved lepton number) to
set these to zero. The doublet neutrinos acquire radiative
(and, in some cases, tree-level) masses due to the pres-
ence of the singlets, as we discuss below. The radiative
masses arise (via mixing) due to a two-loop mechanism

[4,5] involving the exchange of W+ bosons. In Sec. II
and the Appendix, we calculate, exactly and in analytic
form, the two-loop masses acquired by the initially mass-
less doublet neutrinos. Our calculation is general and
valid for any number of doublet and singlet neutrinos,
but in order to obtain phenomenologically useful infor-

mation, we focus, in Sec. III, on the n = 3, m = 1 case,
for which we calculate the Inass spectrum fully. In this
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instance there are two massive and two massless neutri-
nos at the tree level. Prior to the incorporation of loop
effects, the lighter tree-level mass is simply due to the see-
saw effect generated by the heavy singlet. An interesting
result of our calculation is that once loop corrections to
the three doublet neutrinos are calculated and the full
(tree + loop) matrix diagonalized, the seesaw inass value
can be significantly modified. In other words, in the cor-
rected mass spectrum, none of the eigenvalues need to be
close to the seesaw value.

Even this simplest (m = 1) extension of the standard
model introduces four new parameters into the theory.
On the issue of neutrino masses, it is nonaccelerator ex-
periments that provide information on the cutting edge.
Hence we have chosen to examine the results for the
m = 1 case in the light of (a) the Mikheyev-Smirnov-
Wolfenstein (MSW) [6] solution to the solar neutrino
deficit seen by the Kamiokande [7], GALLEX [8], SAGE
[9], and Homestake [10] neutrino detectors and (b) the
implications for hot dark matter (neutrinos) &om the re-
cent Cosmic Background Explorer (COBE) observations
on the anisotropy of the microwave background [11].In-
voking this experimental information restricts the param-
eter space and consequently, in the context considered in
this paper, permits a handle on the range of the mass
scale characterizing physics beyond the standard model.
We show that doublet neutrino masses compatible with
both (a) and (b) above can result naturally from such
physics at the several hundred GeV scale. Masses com-
patible also with the atmospheric neutrino deficit [12]
cannot, however, be naturally realized in the scenario
considered here without making special assumptions.

II. RADIATIVE GENERATION OF NEUTRINO
MASSES

Zm = ) p;l;rl;R+ ) (v~r, )'M~pvpl, + H.c. (2.1)
a,P=1

Here M is a complex symmetrici (n+m) x (n+m) matrix
of the form

~f Onxra Dnxrn
(D+x„M x )

(2.2)

with D and M denoting the Dirac and the Majorana
mass terms, respectively. The first block is identically
zero in the absence of a nontrivial vacuum expectation
value for a SU(2) L,-triplet Higgs field. (This restriction is
imposed not only by our philosophy of minimal extension,
but more importantly, by miv/mz —the observed ratio
of the gauge boson masses. ) M can be diagonalized by
a biunitary transformation of the form

V MV = M = diag(m ). (2.3)

The mass eigenstates (v ) are then easily identified to be

~, =v ~,'.f (2.4)

The relevant piece of the weak Lagrangian is then given
by

(2.5)

ation here, such terms must be bare mass terms, but
in a more involved model they could arise, for instance,
due to the vacuum expectation value of a Higgs singlet.
To facilitate discussion, we combine all the left-handed
neutrinos into a (n+ m)-dimensional vector in the fiavor
space denoting it by v'L. The most general mass term
is thus given by

In this section we give a description of an exact gen-
eral procedure for calculating two-loop neutrino masses
applicable to any extension of the standard model which
incorporates singlet right-handed neutrinos. (We remark
below on the reason why a one-loop mass does not arise
in the situation considered here, where only right-handed
handed neutrinos are added to the existing particle spec-
trum. ) After setting up the generic integral that needs
to be calculated we describe the procedure for evaluating
it exactly in the Appendix.

The lepton sector of the extension considered here has,
in general, n() 3) doublet fields [v,'-&l;r, ]+ and m singlet
fields (v&L)' = (vz)R. (Here i = 1, ..., n, A = 1, ..., m,
and v'—:Cv is the charge conjugate spinor. ) In addi-
tion, one has the charged lepton SU(2) L, singlet fields l;R.
The primes on the neutrino fields denote weak eigenstates
as opposed to physical particle states. Without any loss
of generality, we have assumed that the weak eigenstates
li are the same as the corresponding mass eigenstates;
i.e., the charged lepton mass matrix is diagonal.

As noted in the Introduction, in addition to the Dirac
mass terms, the most general Lagrangian consistent with
the gauge symmetry of the standard model also contains
possible Majorana mass terms for neutrinos of the form
mgR(v&L)'v&1. In the minimal model under consider-

where

J„+ = ) l;p„Pl,v,
' = ) ) K; l;p„Pgv;,

i=i i=1 a=1

J„= ) (l;p„Pl.l; + v,'p„Pr, v,')
2cw i

(2 6)

n fL+TB

) l;p„PL,l; + ) (KtK)~pv~p„Pl, vp2cgr i=1 a,P=1

(2.7)

is the (n + m)-dimensional analogue of the quark sector
Cabibbo-Kobayashi-Maskawa matrix. Note that though

That JH has to be symmetric is evident from the charge
conjugation property of fermion bilinears.

Here c~ = cos8~, where 0~ is the Weinberg angle,
g = e/sin&gr, Pl. = (1 —ps)/2, and
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KK~ = diag(I && 0), (KtK) p g b p. Thus we do have
flavor-changing neutral currents (FCNC's) in the neu-
trino sector.

Having set up the general formalism, we now concen-
trate on the case where n ) m. There exist then n —m
neutrinos that are strictly massless at the tree level. We
calculate the changes to such a spectrum accruing from
quantum corrections.

Before proceeding, in view of the fact that there exist
massive neutrinos and also FCNC's in the neutrino sec-
tor, it is appropriate at this point to remark on the pos-
sibility of one-loop graphs with a Z or a Higgs exchange
introducing a nontrivial correction to the neutrino mass
matrix. However, it can be easily seen that it is possible
to rotate the neutrino states such that only m of them
have Yukawa couplings to the Higgs boson. Thus, only
those doublet states that are massive at the tree level
obtain a Higgs induced mass at the one-loop level. In
addition, since the Bavor-changing Z couplings have the
same mixing parameters as the Bavor-changing Yukawa
couplings, the one-loop Z exchange diagrams do not con-
tribute to the masses of the n —m neutrinos which are
massless at the tree level. This reasoning applies at all

I

w ( —e)

v,.'Q)

w ( —
p)

FIG. 1. The taro-loop diagram which gives rise to the mass
corrections considered in this paper.

orders to any diagram where all virtual particles are neu-
tral. Hence the relevant diagram to compute is that given
in Fig. 1.

We shall work in the weak interaction basis for the
external neutrinos and the mass basis for all the virtual
particles. Furthermore, we shall concentrate only on the
first n x n block of M, i.e., on the generation of Majorana
mass terms for the doublet neutrinos. In the unitary
gauge, the correction to the neutrino propagator is then
given by

( )'( )'""s 4

X
i (g" —q~q /—m~~) —i(g"" —k"k"/m2~)

(2.8)
q —m~ k —m~

The mass correction is given by M, = Z; (p = 0), and after some algebra this leads to

(2.9)

where

17;,,
= (k + q) ((k + q) —m )(q —p; )(q —m~)(k —mL )(k —p ). (2.io)

We see that the mass corrections would be identically zero if m = 0, Vo. . This ought to be so as any mass
renormalization must be proportional to the bare mass terms. The integral above has a naive degree of divergence of
4. However, note that

) m Kt,.Kt, =&;, =0, (2.ii)

and hence,

(k + q)2
~+~ t t 3). K,K,m

- (k+ q)2 —m2
(2.i2)

This clearly is analogous to the Glashow-Iliopoulos-Maiani (GIM) mechanism in the quark sector. Even on substitution
of Eq. (2.i2) in Eq. (2.9), the integral in the latter is still formally divergent. Notice, however, that this is but an
artifact of the unitary gauge and is not a real divergence [13]. In fact, by invoking identities similar to Eq. (2.i2) or
equivalently, by working in the Feynman gauge, one obtains
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n+m 2 + 2 2 2

&x=1

(2.i3)

where

Am m m m m m
dkd qk qf )qm+ m)})q~+ m)))(k+ q)~ + m~z))(k+ q)~ +m&4))k~+m))(k~ +m~~)

(2.14)

is an Euclidean integral evaluated in the Appendix.
The expression in Eq. (2.13) thus represents the Ma-

jorana mass generated for the doublet neutrino at the
two-loop level. In operator language, it arises &om terms
of the form

(L'r, ) L,r, est)~, (2.i5)

III. APPLICATION: THE SOLAR NEUTRINO
DEFICIT AND COBE DATA

In order to make a connection to experiment and phe-
nomenology, we now specialize to the n = 3 and m = 1
case and examine the two-loop mass corrections in the
context of (a) the MSW solution [6] to the solar neutrino
deficit reported by various detectors [7—10] and (b) re-
cent COBE [ll] data and its implications for neutrinos
as dark matter.

The solar deficit is the only long-standing possible ev-
idence for physics beyond the standard model, and the
MSW mechanism is its most popular resolution. In its
essence, the mechanism requires neutrinos to be massive
(and nondegenerate), allowing the interaction eigenstate
v, (assumed to comprise predominantly of the lightest

where L;I, represents the doublet lepton fields, P is the
usual Higgs 6eld, and S represents the lepton-number-
violating operator (whether a Higgs singlet or a bare
mass term). We note that this five-dimensional effec-
tive operator for the radiative masses is the same as that
for the conventional seesaw mechanism. The difference
between the two resides in the scale of mass generation.
Two-loop radiative masses compatible with the solar and
COBE data can arise &om right-handed neutrinos at the
several hundred GeV scale, as we show below, whereas
the seesaw mechanism generates similar valued masses
via heavy neutrinos at the grand uni6ed scale.

We also note that though the corrections ostensibly
are proportional to ms [Eq. (2.13)], the actual depen-
dence is linear (apart from logarithmic corrections) due
to suppressions hidden in A. As m becomes larger and
terms of the order (p;/m )2 become negligible, the cor-
rection goes as Z Kt,Kt m, which is simply the (ij)th
element of the tree-level mass matrix, and hence zero for
the cases of interest here.

Finally, we remark that a complex JH in Eq. (2.1) ob-
viously leads to a complex diagonalizing matrix V and
hence to CP-violating processes in general. However, for
the m = 1 case which we study here, we perform all nu-
merical calculations assuming a real neutrino mass ma-
trix.

I

mass eigenstate) to oscillate to v„or v due to the differ-
ence in the forward scattering potential seen by the two
states in their passage through solar matter. It thus iden-
ti6es a range of vacuum mixing angle and mass squared
difference values which are compatible with the de6cit
observed by the various detectors. Figure 2, excluding
curves labeled (a), (b), and (c), is taken from Ref. [14]
and shows the familiar two-flavor mixing MSW solution

space, where 8 is the Cabibbo mixing angle and Em2 is

the difference of the squares of the two neutrino masses,
which, in the present context, reflect the two-loop quan-

turn correction calculated here.
COBE data on the anisotropy of the microwave back-
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FIG. 2. The MSW solution space for the solar neutrino
deficit, from Ref. [14]. Superimposed on it are the three curves
(a), (b), and (c) which represent sample calculations using
our results. All neutrino masses reaect corrections at the
two-loop level. Each curve shows the mass squared difFerences
and mixings for the two lightest neutrinos for fixed values of
the masses of the other two heavier neutrinos. Curve (a)
corresponds to a singlet mass of 100 GeV and a v mass of

8.6 eV. Curve (b) corresponds to a singlet mass of 400 GeV
and a v„mass of 7 eV. Finally, curve (c) represents a singlet
mass of 1 TeV and a v~ mass of 9.8 eV.
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ground, while not making a definitive statement on the
nature of dark matter, seem to suggest that it may have
both hot and cold components, with the former being
a neutrino (since it is the only known hot dark matter
candidate) with a mass of = 10 eV.

We use both of the above considerations to restrict the
rather large parameter space available to us.

In the scenario with one additional singlet, we have
two massive and two massless neutrinos at the tree level.
The lighter of the two massive neutrinos has a mass gen-
erated by the seesaw eHect of the heavy singlet. The two
massive ones acquire both one-loop and two-loop cor-
rections, which are small (as expected) compared to the
corresponding entries of the tree-level input mass matrix.
The other two massless neutrinos acquire masses at the
two-loop level. Once the full (tree + loop) mass matrix
is diagonalized, however, it is fully possible for the loop
corrected masses to depart from the "ball park" scale set
by the seesaw mass. This underscores the importance of
the loop corrections.

The two tree-level masses and all the radiative cor-
rections are expressible in terms of four input mass pa-
rameters for the matrix M. For various plausible (fixed)
values of m, (the singlet mass, signifying the scale of
new physics) and the added constraint that one other
neutrino have a mass in the 10 eV range, we obtain a
one parameter set of curves (see Fig. 2) which denotes
the intersection of the "two-loop space" with the MSW
solution space. Note that restricting ourselves to the
two-dimensional MSW space imposes a third constraint,
i.e. , that the v, mixes predominantly with only one other
state. Curve (a) in Fig. 2 corresponds to a singlet mass
of 100 GeV and a v mass of —8.6 eV. The two-loop
masses and mixings of v, and v„are then such that they
span the MSW space as shown. Curve (b) corresponds
to a singlet mass of 400 GeV, and a v„mass of = 7
eV. v and v, then acquire radiative masses and mixings
that span the solution space as shown. For sin 28 greater
than —3 x 10 ', v~ becomes lighter than v„and MSW
oscillations occur between antineutrino rather than neu-
trino states, and are thus not relevant. We note that
(b) passes through the (small-angle, nonadiabatic) MSW
region that is compatible with all detectors and also rep-
resents a value of m„(? eV) that provides a good fit to
COBE data in the context of a hot plus cold dark mat-
ter scenario. Finally, curve (c) represents a singlet mass
of 1 TeV and a v„mass of 9.8 eV, and terminates
where it does because for larger mixing angles the v be-
comes heavier than the v . Note that the determination
of which flavor the v, oscillates to is made by examining
the mixing (diagonalizing) matrix of the full (i.e. , tree +
loop) mass matrix. A (reasonable) assumption built into
the results is that v is the lightest state.

We stress that these curves represent a phenomenologi-
cal exercise more than anything else to demonstrate that
our calculations can make connection with experiment

when the full parameter space, which is quite large, is
constrained by imposing physically and empirically well-
motivated restrictions.

We note that the singlet mass values chosen by us (100
GeV, 400 GeV, and 1 TeV) are not in conHict with accel-
erator [15] or cosmological [16] bounds on these particles.

We also note that the well-known atmospheric neutrino
anomaly [12], in conjunction with the solar neutrino and
COBE data, seems to point towards highly degenerate
neutrinos of mass 2.5 eV each. It is not possible to
obtain (at least, not naturally) such a spectrum via the
radiative mass generation scheme considered in this pa-
per, without special assumptions. This is the reason why
we have based our phenomenological calculations on solar
and COBE data only.

IV. CONCLUSIONS

We have explicitly obtained an analytic form for the
radiative two-loop masses acquired by doublet neutrinos
in models where right-handed singlets are present. We
have made an eff'ort to keep our calculation general, and
the expression for the mass correction that we obtain
may have applications in other models with right-handed
neutrinos. We have calculated these masses (for the one
singlet case) in the light of experimental data from solar
neutrino detectors and from COBE, within the confines
of the MSW solution to the solar deficit. In doing so
our objective has been to identify a scale of new physics
that can lead, in a simple way, to naturally small masses
for neutrinos which have physically meaningful values,
without requiring drastic changes in the presently known
particle spectrum or gauge group structure.
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APPENDIX A: EVALUATION OF Algg458

In this section we discuss the exact evaluation of the
fundamental finite two-loop four-dimensional integral un-

derlying the mechanism. As a first step, though, we con-
sider the more general two-loop Euclidean space integral
A $23456 defined by
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which we will evaluate analytically and then specialize
to the case we are concerned with. For reasons which
we explain below we choose to calculate Eq. (Al) in d
dimensions where

(A2)

and p is an arbitrary mass parameter introduced to en-
sure the coupling constant remains dimensionless in our
d-dimensional manipulations. The subscripts on A]23456
correspond to the masses m2 of the integral and we

note that the function has certain obvious symmetries,
A/23456 A2 $3456 A5634] 2 ) which ought to be preserved
in the final expression. The strategy to evaluate Eq. (Al)
is to use partial fractions to obtain a sum of two-loop in-
tegrals with three propagators and then to substitute for
the value of each of these subintegrals, which have been
considered by other authors in different contexts before,
[17—20]. For instance, if we define

I(x, y, z) = I(2a, 0, 0)

+I"[F('c —y-) + F(2c —z) —F(x —2c)],
(A7)

where

2 2 2
I;~s = I(m;, m, m&),

2)4—d
I" = I'(2 —-' d)I'(1 —-d),

(4vr) d 2

a =
2 [x + y + z —2xy —2yz —2zx]

c= x+y+z (A8)

observe that in the partial fraction decomposition of Eq.
(Al) the I;I~ type terms, which are also divergent, for-

mally cancel to leave only the I;~I, terms. To proceed we

recall the important properties of I,~I, which have been
discussed in more detail in [21]. In d dimensions the exact
value, for arbitrary (mass), x, y, and z, is

Jizie = 2[I;Iz —I&Is —Ii,I; —(m& —m; —m )Izs] (A4)

where

1

, (p'+m,')' (A5)

1
I,~I. A6

~ (p + m, )[(p + q)2 + m .](q2 + m~&)

and the latter function is totally symmetric, correspond-
ing to a two-loop vacuum graph (i.e., zero external mo-
mentum). The integral I;~i, has been considered in [17,18]
and a single integral representation of it exists, [19—21].
For our purposes, however, we have chosen to use the ele-
gant formula given in [21] since it is explicitly symmetric
in the masses. Although A]23456 is itself ultraviolet finite
the subintegrals, Eqs. (A3) and (A4), are divergent and
therefore require regularization. In [20,21] dimensional
regularization was introduced to control these infinities,
which is why we choose to calculate Eq. (Al) in d di-
mensions, so that I;~I, involves double and simple poles
in e where d = 4 —2~. Therefore, in the final result these
must cancel for all m2. As a first step, it is trivial to

I

q (p2 + m,. )(q2 + m2)[(p + q)2 + m2]'

then Eq. (Al) is built out of a sum of eight such integrals
where its only symmetry is J;~I, ——J~;p. Rewriting the
numerator of Eq. (A3) one finds

and
CaP 1

(32 a2) (4—d)/2
' (A9)

I(x, y, z) = —I(2b, 0, 0) sin( 2z.d)

+r'[a(-,"—x) + a(ic —y) + a(i.—.)]
(Alo)

where

and, for example,

XlP 1

(32 + b2)(4 —d)/2 (All)

I(x, o, o) = I'(2 —id)I'(3 —d)I'2(-'d —1)x" 3

(4~)"r(-'d)(/ ')" ' (A12)

which is clearly singular in four dimensions. To obtain
the finite part of A]23455 each part of I(x, y, z) needs to
be expanded in powers of e to the order 1 term and the
poles in e canceled. The nontrivial part of this exercise is
the 5 expansion of the F(iU) and G(m) integrals. These
have been given in [21] and we record that, to the e-finite
term,

The result (A7) is valid in the region of (x, y, z) space
where a & 0. For the case when a ( 0, then the solu-

tion is, with b = —a,

(re) I(x, y, z) =—C 1 3C——Li —-'(L2 —6Li + ((x) y, z)
2/2

+c[7+ ((2)] + (y + z —x)lnylnz

+(z + x —y) lnzlnx + (y + x —z) lnylnx), (A13)

where ((n) is the Riemann zeta function, L; = xln x + yln y+ zln z, lnx = 1n(x/p ), p = 4ze ~@2 and p is Euler's
constant, and for a2 ) 0,
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((x, y, z) = 8a[M(p, ) ™(p„)™(—
4 )] (A14) and I (t) is the Lobachevskij function,

where
t

M(t) = — dglnsinhg (A15)
L(t) = — d81ncos8. (A19)

and the angles P are defined by
- 1

2C —X= arccoth (A16)

Equation (A17) can also be rewritten as

((x, y, z) = 8b[L(8,) + L(8„) —L( 8*)—] (A20)

- 1—C —Q
0@ = arctan

b
(A18)

For a ( 0, then

((z, y, z) = 8b[L(8 ) + L(8„)+ L(8, ) —
2 sr ln 2], (A17)

where the 8 angles are given by

where L(t) = j d8lncos8in order to make the obvious

analytic continuation across a2 = 0 more apparent. It is
worth noting that essentially Eq. (Al) has been reduced
to a single simple function, Eq. (A19), whose properties
are well known. We have used the following identities in
order to write an efFicient program to calculate A] 23456
for a range of physical mass values. For instance [22],

L(t) = —L(—t) for ——,'~ & t & —,'~,
I (t) = L( z vr —t) + (t —4m) ln 2 —2L(2 —2t) for 0 & t & —lr,

L(t) = +L(vr + t) p m ln 2. (A21)

Therefore, when the argument of the Lobachevskij function is known, the identities of Eq. (A21) mean that one need
only write a routine to evaluate L(t) numerically in the range [0, 2 sr). For example, if 0 & A & 2x then, for any integer
A)

L(27m+ A) = 2vrnln 2+ I (A) (A22)

and so on.
Returning to the partial fraction form of A] 23456 with the result for I,~ ~, the c and L, terms of the ~ expansion

cancel in the final expression, and we can therefore take the limit back to four dimensions, e m 0. Consequently, we
end up with the following analytic expression:

1 . . . , (m'l (m'l
Al23456 —

4 2 2 2 2 2 2 (m3 ™l™5)(l35 mllnl 2 I
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» I, I

™3»
I 2 I

»
I 2 I
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I

2 2 2 2 (mls ( 1m' 2(m'31 (m'3'I 2 (m'si (mP
im3 ims) gml) (ms qm ) l(m3)

+(m4 ™l™6)&l46 —ml»
I . I

» I, I

—m. »
I 2 I

»
I 2 I
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I

(ml ) ™ll 2 ™41 (mal 2 (m'61 (m'61
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I
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I
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(A23)
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where g;~g = ((m2, m2, m~&) and it is evaluated according to Eqs. (A14) or (A17) depending on whether the particular
az is positive or negative. A further check on our manipulations to obtain Eq. (A23) is the absence of the arbitrary
mass p which was required at intermediate steps to have logarithms whose arguments were dimensionless quantities.

Although it may appear that the final result is singular in certain cases through denominator factors like (m~~ —m22)

when m& ——m» the expression within the square brackets also vanishes. Moreover, if one sets m2 ——mz + b, where
b is small, and expands in powers of b then in the limit as b —+ 0 a nonzero nonsingular function of the independent
mass remains. Further, there is no difhculty with singularities when one or more masses is zero. To illustrate this
point explicitly we consider the integral Aq2iss where the zero subscript means the corresponding mass of Eq. (Al)
is zero. Its form can readily be deduced from Eq. (A23) by taking the m4 ~ 0 limit. However, to do this the behavior
of ((x, y, z) in the z ~ 0 limit is required since Eq. (A23) has terms like lnm4 which are potentially infinite in the
limit we require. It is easy to deduce from the explicit representation, Eq. (A14), that

y (zl x)
((z, y, z) (z —y) 2Li2 1 —— + ln

~

—
~

ln
z gy& z&

(A24)

as z ~ 0. Thus a little algebra leads to the compact expression

1

4(4z ) (m —m )m (m —m )

with

X m3 —mq —m5 ]35 3 1 6 $36

—(ms —m2 —ms)(23s + (ms —m2 —ms)(23s p(ms, m~, ms) + p(ms, m~, ms)

+p(ms mz, ms) —p(ms, m2 s) + "( x s) ~( i s) ~(mz s) + ~( 2 s)] (A25)

fx'l r z y y z) fz&t
p(z, y, z) = (x —y —z) x ln

~

—
~

ln
(

— + y ln — ln — + z ln —
)
ln

~

—
~

gy& Ez x z Ey)
(A26)

and

y (*l
A(x, y) = (x + y) 2(x —y)Li2 1 —— —y ln

&y)
(A27)

where Liz(t) is the dilogarithm function. Its properties have been discussed extensively in [23] but we make use of
the following ones heres:

Li2(—t) + Lip( —1/t) = —((2) —
2 ln t for t ) 0

Li2(t) + Li2(1 —t) = ((2) —ln t ln(1 —t), (A28)

and its integral representation is [23]

d8
Li2(t) = — —ln(1 —s)

Q 8
(A29)

where Liz(l) = t,'(2) = vr2/6.
Finally, another check on our overall expression Eq. (A23) is the comparison with the earlier result of [5] where

only m3 and m4 are nonzero, i.e., AQQ34QQ which was evaluated by an independent method. We can easily deduce
an expression for AQQ34QQ from Eq. (A25) by using the relation (A24) or by returning to the I,zr, representation of
Eq. (Al) and taking the appropriate limits in that case. Useful for the former approach are the properties of the
dilogarithm function [23], while in the latter instance we made use of the Taylor expansion of the I;~~ about the zero
mass and, in particular,

8 I(x, y, z)
ByOz

y=s=Q

r'(-,'d —2)r(4 —-', d) r(5 —d)*'-'
(4z.) (p )"—41'(-'d) (A30)

whose e expansion is easy to determine. Consequently, we find
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(4z.)4 (ms2 —m42) (m4 )
This is in total agreement with the explicit calculation of [5] and is a necessary nontrivial check that we have the
overall normalization of our integral correct, in terms of signs and factors of 2m.
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