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Anticipating improved determinations of m&,
~

V~b/V, q ~, Bz, and Fn QBn in the next five years
we will make an excursion into the future in order to find a possible picture of the unitarity triangle,
the quark mixing, and CP violation around the year 2000. %'e then analyze what impact on this
picture the measurements of the four possibly cleanest quantities will have: B(K+ ~ n+vP), zs/z„
sin(2a), and sin(2P). Our analysis shows very clearly that there is an exciting time ahead of us.
In the course of our investigations we extend the analysis of the unitarity triangle beyond leading
order in A and we derive several useful analytic formulas for quantities of interest.

PACS number(s): 12.15.Hh, 11.30.Er, 12.15.Ff, 14.65.Ha

I. INTRODUCTION

Among the quantities studied in the rich Geld of
rare and CP-violating decays [1—7] the branching ratio
B(K+ ~ x+vv), the ratio zd/z, of B&~ B&~ to B-o Bo-
mixing, and a class of CP asymmetries in neutral B de-
cays, all being essentially free from any hadronic uncer-
tainties, stand out as ideally suited for the determination
of the Cabibbo-Kobayashi-Maskawa (CKM) parameters.
Simultaneously they appear to be in the reach of exper-
imentalists in the next five to ten years. The decays
Kl, -+ vr vv and B -+ X,vv are also theoretically very
clean but much harder to measure.

B(K+ ~ ++vs) and zg/z, are probably the best
quantities for the determination of the CKM element Vzp

and consequently play important roles in constraining the
shape of the unitarity triangle.

The decay K+ m m+vv is dominated by short dis-
tance loop diagrams involving the heavy top quark and
also receives sizable contributions &om internal charm
quark exchanges. The /CD corrections to this decay
have been calculated in the leading logarithmic approx-
imation a long time ago [8—10]. The recent calculation
[11] of next-to-leading /CD corrections reduced consi-
derably the theoretical uncertainty due to the choice of
the renormalization scales present in the leading order
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expression. Since the relevant hadronic matrix element
of the operator sp„(l —ps)d Pp„(1 —ps) v can be mea-
sured in the leading decay K+ -+ moe+v, the resulting
theoretical expression for B(K+ -+ m+vv) is only a func-
tion of the CKM parameters, the /CD scale AMs, where
MS denotes the modified minimal subtraction scheme,
and the quark masses mq and m, . Moreover, because of
the work of Ref. [11] the scales in mt and m, are un-
der control so that the sensitivity of B(K+ m x+vv) to
m, stressed in Refs. [12,13] is considerably reduced. The
long distance contributions to K+ —+ x+vv have been
considered in Refs. [14—16] and found to be very small:
two to three orders of magnitude smaller than the short
distance contribution at the level of the branching ratio.

The top quark mass dependence and the /CD correc-
tions to Bo Bo mixing -cancel in the ratio zg/z„which
depends only on the CKM parameters and SU(3)-Havor-
breaking eH'ects in the relevant hadronic matrix elements.
These SU(3)-breaking effects contain much smaller the-
oretical uncertainties than the hadronic matrix elements
present in xp and x, separately. The measurement
of zd/z, gives then a good determination of the ratio
[ Vqd/Vt, [

and consequently of one side of the unitarity
triangle.

The CP asymmetry in the decay B&o ~ QK8 allows in
the standard model a direct measurement of the angle P
in the unitarity triangle without any theoretical uncer-
tainties [5]. Similarly the decay Bd -+ x+vr gives the
angle n, although in this case strategies involving other
channels are necessary in order to remove hadronic un-
certainties related to penguin contributions [17—21]. The
determination of the angle p &om CP asyrnmetries in
neutral B decays is more difficult but not impossible [22].

At present B(K+ + n+vv), z~/z„and the CP asym-
metries in neutral B decays given by sin(2$;) (P;
a, l3, p) can be predicted using the values of [ V„s/V, g

~

and
~

V,g
~

extracted from tree level Bdecays, the analysis
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of the parameter e~ describing the indirect CP violation
in K -+ ~m. decays, and the analysis of zz = (EM)&/I'z
describing the size of B~-B~ mixing.

All these ingredients are subject to theoretical uncer-
tainties related to nonperturbative parameters entering
the relevant formulas. Moreover, the last two require the
value of mq. Consequently the existing predictions for
B(K+ ~ x+vv), z„and Cp asymmetries in B decays
are rather uncertain.

In this paper we would like to address the following
questions.

What accuracy of theoretical predictions for B(K+ ~
vv), z„sin(2$;), and the unitarity triangle could one

expect around the year 2000 assuming reasonable im-
provements for the values of

I V,s I, I V„s/V, s I, mq, and
the nonperturbative parameters in question?

What would be the impact of a measurement of
B(K+ m x+vv) on the CKM parameters and in par-
ticular on the value of

I Vqq I?
What would be the impact of a measurement of x, ?
What would be the impact of a measurement of sin(2P)

and how important would be simultaneous measurements
of sin(2n) and sin(2p)?

How well should one measure B(K+ + n+ vv),
sin(2P), V,s, mq, and zg/z, in order to obtain an ac-
ceptable determination of the CKM matrix on the basis
of these five quantities alone?

As by-products of these studies, we will update the
I

analysis of B(K+ + x+vv), z„sin(2$;), and of the
unitarity triangle in view of theoretical and experimental
developments which took place in 1993, we will extend
the analysis of the unitarity triangle beyond the leading
order in the expansion parameter A =I V„, I, and we will
derive several approximate analytic formulas and bounds
which should be useful in following the developments in
this Geld in the 1990s.

Our paper is organized as follows. In Sec. II we extend
the Wolfenstein parametrization and the analysis of the
unitarity triangle beyond the leading order in A and we
give improved formulas for sin(2$;). In Sec. III we collect
the formulas for e~, Bo Be m-ixing, and B(K+ en+-vP)
beyond leading order in A. In Sec. IV we list several
analytic results which can be derived using Wolfenstein
parametrization beyond leading A, which to a very good
accuracy represent exact numerical analysis. In Sec. V
we systematically address the questions posed above. We
end the paper with a brief summary and a, number of
conclusions.

II. CABIBBO-KOBAYASHI-MASKAWA MATRIX

A. Standard parametriaation

We will dominantly use the standard parametrization
[23]

C12C13

V = —S12C23 C128238138ib

ib812823 C12C23813+

S12C13
ib

C12C23 —S12823813&
i8—S23C12 812C23 813~

813e
S23C13

C23C13

(2.1)

where c,~ = cos 8;z and s,~
= sin 8;~ with i and j being

generation labels (i,j = 1, 2, 3). c;~ and s,i can all be
chosen to be positive. The measurements of the CP vio-
lation in K decays force b to be in the range 0 ( b & vr.

The extensive phenomenology of the last few years has
shown that 813 and s23 are small numbers: 10 and
10 2, respectively. Consequently to an excellent accu-
racy c13 ——c23 ——1 and the four independent parameters
are given as

(2.2)

B. Wolfenstein parametrisat ion
beyond leading order

r A

—A

l AA (1 —g —ig) —AA

1 ——
2

We will also use the Wolfenstein parametrization [24].
It is an approximate parametrization of the CKM matrix
in which each element is expanded as a power series in
the small parameter A =I V„, I= 0.22:

I
V« I= +a2+ b2 —2abcosb,

a =I vgv, g, I, b=I V~Vs
I

(2.3)

with the phase 8 extracted from CP-violating transitions
or loop processes sensitive to

I V&~ I. The latter fact is
based on the observation that for 0 & b & m, as required
by the analysis of CP violation, there is a one-to-one
correspondence between b and IVq~I given by

and the set (2.2) is replaced by

(2.5)

The Wolfenstein parametrization has several nice fea-
tures. In particular it overs in conjunction with the uni-
tarity triangle a very transparent geometrical representa-
tion of the structure of the CKM matrix and allows one
to derive several analytic results to be discussed below.
This turns out to be very useful in the phenomenology
of rare decays and of CP violation.
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8)2 ——A, 82s ——AA ) sise ' = AA (g —ill),

(2.6)

to all orders in A. In view of the comments made above
this can certainly be done. It follows that

ass cos b,
ai282s

ass
g = sinb.

S128
(2.7)

When using the Wolfenstein parametriz ation one
should remember that it is an approximation and that in
certain situations neglecting O(A ) terms may give wrong
results. The question then arises how to find O(A4) and
higher order terms? The point is that, as in any pertur-
bative expansion, the O(A4) and higher order terins are
not unique. This is the reason why in different papers in
the literature difFerent O(A4) terms can be found. The
nonuniqueness of higher order terms in A is not trouble-
some however. As in any perturbation theory, different
choices of expanding in A will result in different numerical
values for the parameters in (2.5) being extracted from
the data without changing the physics when all terms are
summed up. Here it sufBces to find an expansion in A

which allows for simple relations between the parameters
(2.2) and (2.5). This will also restore the unitarity of the
CKM matrix which in the Wolfenstein parametrization
as given in (2.4) is not satisfied exactly.

To this end we go back to (2.1) and we impose the
relations

Vip = AA (1 —g —ir]) (2.9)

with

A')
2) (2.10)

In order to derive analytic results we need accurate ex-
plicit expressions for A; = V;dV where i = c, t. We have

ImA, = —ImA. = gA'A', (2.11)

t' A21
ReA, = —A/ 1 ——/,

2
(2.12)

ReA, = —
I

1 ——l~ A (1 —g).
( A2)

(2.i3)

Expressions (2.11) and (2.12) represent to an accuracy
of 0.2% the exact formulas obtained using (2.1). The
expression (2.13) deviates by at most 2% from the exact
formula in the full range of parameters considered. In or-
der to keep the analytic expressions in Secs. III and IV in
a transparent form we have dropped a small O(Ar) term
in deriving (2.13). After inserting expressions (2.11)—
(2.13) in exact formulas for quantities of interest, further
expansion in A should not be made.

We observe that (2.6) and (2.7) represent simply the
change of variables from (2.2) to (2.5). Making this
change of variables in the standard parametrization (2.1)
we find the CKM matrix as a function of (A, A, g, rl),
which satisfies unitarity exactly. We also note that in
view of cis ——1 —O(A ) the relations between s;~ and

[ V~ [ in (2.2) are satisfied to high accuracy. The relations
in (2.7) have been first used in Ref. [25]. However, our
improved treatment of the unitarity triangle presented
below goes beyond the analysis of Ref. [25].

The procedure outlined above gives automatically the
corrections to the Wolfenstein parametrization in (2.4).
Indeed expressing (2.1) in terms of Wolfenstein param-
eters using (2.6) and then expanding in powers of A we
rec'over the matrix in (2.4) and in addition find explicit
corrections of O(A4) and higher order terms. V„s remains
unchanged. The corrections to V„, and V,g appear only
at O(A ) and O(As), respectively. For many practical
purposes the corrections to the real parts can also be ne-
glected. The essential corrections to the imaginary parts
are

C. Unitarity triangle beyond leading order

The unitarity of the CKM matrix provides us with
several relations of which

V„gV„'~ + V,gV, ~ + VggV, q
——0 (2.i4)

V,gV, g
———AA + O(A ). (2.15)

is the most useful one. In the complex plane relation
(2.14) can be represented as a triangle, the so-called
"unitarity —triangle" (UT). Phenomenologically this tri-
angle is very interesting as it involves simultaneously the
elements V„g, Vg, and Vtg, which are under extensive
discussion at present.

In the usual analyses of the unitarity triangle only
terms O(As) are kept in (2.14) (Refs. [4,5,13,25—27]). It
is, however, straightforwd to include the next-to-leading
O(As) terms. We note first that

AV~g ———iA A g, DVg, ———iAA g. (2.S)

Thus to an excellent accuracy V,~V & is real with
~

V,qV;z ~= AA . Keeping O(A ) corrections and rescaling
all terms in (2.14) by AA we find

These two corrections have to be taken into account in
the discussion of CI violation. However, the imaginary
part of V, which in our expansion in A appears only at
O(A ) can be fully neglected.

In order to improve the accuracy of the unitarity tri-
angle discussed below we will also include the O(As) cor-
rection to Vqg which gives

1
V„gV„'~ ——@+i', VigV, q

——1 —(g + ig)

(2.16)

with g and g defined in (2.10). Thus we can repre-
sent (2.14) as the unitarity triangle in the complex (g, g)
plane. This is shown in Fig. 1. The length of the side CB
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A=(p, q) III. BASIC FORMULAS

A. Constraint from e~

C=(0,0) B=(1,0)

The usual box diagram calculation together with the
experimental value for c~ specifies a hyperbola in the
(p, rl) plane with rl ) 0 (Refs. [13,26]). With our new
coordinates (p, rl) we get

FIG. l. Unitarity triangle in the complex (p, rl) plane.

r) [(1 —P)A r)2S(z&) + Pp(E) A BJc = 0.223.

Here

(3.i)

which lies on the real axis equals unity when Eq. (2.14) is
rescaled by V,pV,'b. We observe that beyond the leading
order in A the point A does not correspond to (p, g) but to
(p, rl). Clearly within 3%%uo accuracy p = p and rl = g. Yet
in the distant future the accuracy of experimental results
and theoretical calculations may improve considerably so
that the more accurate formulation given here will be ap-
propriate. For instance, the experiments at the CERN
Large Hadron Collider (LHC) should measure sin(2P) to
an accuracy of 2—

3%%uc (Ref. [28]).
Using simple trigonometry one can calculate sin(2$, )

in terms of (p, 7i) with the result

1
Pp(s) = [rlsS(z. , zt) —rlgx. ] —,

1 9 1
S(z, ) = z,

4 4 (1 —zg)

+t+ ln xt,
2 -2't 1

3 1

2 (1 —x,)'

(3 4)

x, 3x, ( z,
S(x„xg) = z, ln ——

I
1+ l

x. 4(l —xt) ( 1 —z, )
(3 3)

2n(n' + p' —p)

(p + ~')[(1 —p)' + n'] '

2'(1 —p)""'"'=
( —.-) "-'

(2.i7)

(2.is)
gi ——1.1, g2 ——0.57,

where x, = m, /M~. BJc is the renormalization group
invariant nonperturbative parameter describing the size
of (Ko

I (ad)v ~(sd)v ~ I
K ) and rl; represent @CD

corrections to the box diagrams.
In our numerical analysis we will use

2 p17 2 p'g
sin 2p

P2 + rl2 P2 + rl2
' (2.19) g3 —0.36 (leading order)

(3.5)

The lengths CA and BA in the rescaled triangle of Fig.
1 are denoted by Rb and Rt, respectively, and are given
by

I
V„dV„'s

I
( A~) 1 V„s

IVdV~I i 2 j A Vs

(2.20)

from Refs. [29], [30], and [31—34], respectively. The val-
ues for B~ are speci6ed below.

B. B -B mixing

The experimental knowledge of the B&-Bd mixing de-
scribed by the parameter zd = AM/I'~ determines

I
Vtd I. Using the usual formulas for box diagrams with

top quark exchanges one 6nds

cb xd —
I

Vtd I' P(Bd —Bd)S(z~), (3 6)

The expressions for Rb and Rt given here in terms of
(p, ri) are excellent approximations. Clearly Rb and Rq
can also be determined by measuring two of the angles

where

P(Bd —Bd) = 3.89 x 10
1.5 ps

F~, QB@,
200 Mev

'fIB

0.55

sin(p) sin(n + p) sin(p)
sin(n) sin(n) sin(p + p)

' (2.22)
and consequently

sin(p) sin(n + p) sin(p)
sin(n) sin(n) sin(p + p)

' (2.23) I
V« I= A&'R„ R, =1.63

Ro

S(x~)
(3 8)
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Here

x~ 200 MeV 0.038 0.55

Fg, Vt'Bg, & re~

~ ~

7B, mB, FB,EBB,
Rg, —

7B, mB, Fg. QBp.

- 2

(3.11)

and

- O.S

1 xg1——gl —A (1 —2g),
QRd,

(3.12)

~—:
] Vg, ] 1.5 ps

(3.1o)

with 7n being the B-meson lifetime. rln is the /CD
factor analogous to g2 and calculated to be g~ ——0.55
(Ref. [30]). F~~ is the B-meson decay constant and B~,
denotes a nonperturbative parameter analogous to B~.
The values of zd, F~~ QBn~, and ]V,s~ will be specified
below.

It is well known (see for instance [27]) that the accuracy
of the determination of

] Vid
~

and R& can be considerably
improved by measuring simultaneously the B,-B, mixing
described by z, . Defining the ratio

and using (3.8) we find the matrix element
~

Vid ~. The
last factor in (3.12) describes a small departure of ] Vi,

~

from
~

V,s ~. The g dependence in (3.12) can safely be
neglected. In this way R& does not depend either on m&

or on
~

V,s ]. Since it is easier to calculate Rd than Rp,
formula (3.12) gives a much more reliable determination
of Ri than (3.8), provided z, has been measured.

C. The rare decay K+ ~ m+vv

The K+ ~ x+vv branching ratio for one single neu-
trino flavor I (I = e, p, 7 ) is given by

B(K ~ s vv)
2 2 . 4 ~

V VcdXggg + Vi Vtdx(zi)
cr2B(K+ m ~Pe+v) 2

V„,2' sin 8~

Summing over three neutrino flavors, using Eqs. (2.11)—(2.13) and setting

(3.13)

we obtain

1
Ck =

128 ) sin Hid = 0.23, B(K+ ~ m e+v) = 4.82 x 10 (3.14)

2 cB(K+ -+ x+vv) = 4.64 x 10 A X (zi) — (cry) + —(gp —g) + —(gp —g)0 0 0 (3.15)

with

=1 Po

A2X(zi) '
l

Pl XNL
a4 ' (3.16)

The function X(zi) is given as

X(z,) = ilxXp(z, )
x 2+ z 3x —6

Xp(zi) = —— lnz
8 1 —z (1 —z)2

(3.17)

with g~ ——0.985

(3.18)

where rex is the next-to-leading-order (NLO) correction
calculated in Ref. [35] . For determining Pp given in
Table I we take the NLO results for XiivL of Ref. [11].
Here m, = m, (m, ).

The measured value of B(K+ ~ vr+vv) determines an
ellipse in the (g, Fy) plane centered at (gp 0) with

where

T0
1

A4X2(z, )
0B(K+ ~ x+vv)

X
4.64 x 10—&&

8 T——(Pp —Pp )9
(3.21)

The last term in (3.21) is very small and can safely be

TABLE I. Values of Pp for various AMs (GeV) and
m, (GeV).

Pp(K+)
A2X(zi) ' Msl

0.20
0.25
0.30
0.35

and having the axes squared

-2= 2
gl TO (3.2o)

Pp(K+) = Pp + Pp, (3.19)— —2, 13' 3'' 1.25

0.457
0.441
0.425
0.408

po
1.30

0.494
0.477
0.461
0.444

1.35

0.531
0.515
0.498
0.480

1.25

0.312
0.296
0.280
0.262

PT
1.30

0.342
0.326
0.309
0.292

1.35

0.373
0.357
0.340
0.322
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neglected.
The ellipse defined by ro, go, and 0 given above inter-

sects for the allowed range of parameters with the circle
(2.20) . This allows one to determine g and rl with

g=
~

gp — g —(1 —0 )(g —r +oB1 2

1 —o2 0 0 0 s )
(3.22)

as can be easily verified using (2.17) and (2.18). Conse-
quently (g, g) must lie sufficiently away &om the curve
of Eq. (3.27) in order to rule out the superweak scenario
on the basis of B decays to CP eigenstates. We will
investigate in Sec. V whether this is likely to happen in
the future experiments.

IV. ANALYTIC RESULTS

and consequently

R~~ = ]. + R~2 —2g,

where g is assumed to be positive.
In the leading order of the Wolfenstein parametrization

0 M 1, (3.24)

and B(K+ -+ x+vv) determines a circle in the (g, q)
plane centered at (gp, 0) and having the radius r p of (3.21)
with sr = 1. Formulas (3.22) and (3.23) simplify then to

D. B decays and superweak models

ro —Bs2 1 ( Rl', —r )p
R, =1+&,+ —go, g= —

i go+
go 2 & go

(3.25)
in accordance with Ref. [11].

Now, we want to give a list of results following from
the formulas above which can be presented in an analytic
form. Some of these results appeared previously in the
literature.

A. Lower bounds on m& and Bg from c~

The hyperbola (3.1) intersects the circle given by (2.20)
in two points. It is usually stated in the literature that
one of these points corresponds to g & 0 and the other
one to Lo & 0. For most values of A, B~, and mq this is
in fact true. However, with decreasing A, B~, and m~,
the hyperbola (3.1) moves away from the origin of the
(g, il) plane and both solutions can appear for g ( 0. For
sufficiently low values of these parameters the hyperbola
and the circle only touch each other at a small negative
value of g. In this way a lower bound for m& as a function
of B», V,s and

i V„s/Vos i
can be found.

With an accurate approximation for S(xs),

S(2:g) = 0.784x ' (4.1)
Although the CP asymmetries in B decays in which

the final state is a CP eigenstate ofFer a way to measure
the angles of the unitarity triangle, they may in principle
fail to distinguish the standard model &om superweak
models. As discussed by Gerard and Nakada [36] and by
Liu and Wolfenstein [37], nonvanishing asymmetries are
also expected in superweak scenarios. In order to rule out
superweak models one has to measure the asymmetries in
two distinct channels and find that they differ Rom each
other. As an example, consider B + s/IKs (CP = —1)
and Bo m x+7r (CP = 1) for which the time integrated
asymmetries are

(
( ')-'"

2

) - 0.658
—1.2

i
(4.2)

A detailed analysis of (4.2) can be found in Ref. [39].
Here we want to stress that once mq has been deter-

one can derive an analytic lower bound on m~ (Ref. [39]),
which to an accuracy of 2%%up reproduces the exact numer-
ical result. It is given by

Acp(/K5) = —sin(2P) 1+x„'

(3.26)
0.8

Ac p(m+vr ) = —sin(2o. ) I+ x~

Generally these two asymmetries could difFer in the stan-
dard model both in sign and magnitude. In a superweak
model however these asymmetries difFer only by the sign
of the CP parity of the final state. Yet as emphasized by
Winstein [38] if sin2P = —sin 2cI, it will be impossible
to distinguish the standard model result from superweak
models. This will happen for any g ) 0 and g given by
[38]

E 0.6
CQ

OA

0.2

{a}
——— {b}—— — {C}

0.036
I

0.038 0.040
V,b

I

0.042 0.044

S = II —
S)I/ (3.27)

FIG. 2. Lower bound on B» for
i

V /V, B]= B0.06 (a),
V„B/V,s ~= 0.08 (b), ) V„B/V,B i= 0.10 (c) from e» and

m~ & 180GeV.
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mined, the same analysis gives the minimal value of B~
consistent with measured sx as a function of [ V,s

~

and

[ V„s/V, s [. We find

(B~); = A Ri, (22:, A + 1.2)] (4.3)

Choosing mq ——180 GeV we show (B~); as a function
of [ V,s [ for different values of

[ V„s/V, s [
in Fig. 2. For

lower values of mq the bound is stronger. We observe that
for mq & 180 GeV,

~
V„t,/V, s ~& 0.10, and

[ V,s ~& 0.040
only values B~ & 0.55 are consistent with e~ in the
framework of the standard model.

(0,0)

FIG. 3. Determination of ( sin(2P))

(1,0)

B. Upper bound on sin(2P)

which depends only on Rg. As shown in Fig. 3 it is found
to be

For the present range of Rs the angle P is smaller than
45'. This allows one to derive an upper bound on sin(2P),

I

( sin(2P) ) = 2Rr y 1 —R~& .

This implies

(4.4)

' 0.795 (P~a„= 26.3') ) ~
V„s/V, (,

~

= 0.10,
(sin(2)9)) = g 0.663 (P „=20.8'),

(
V„s/Vs (

= 0.08,
0.513 (P „=15.4'),

[ V„s/Vs [
= 0.06.

(4 5)

A lower bound on sin(2P) can only be found numerically
as it depends on iI. The result can be inferred from our
numerical analysis in Sec. V.

C. sin(2P) from sx and Bo-Bo mixing

Combining (3.1) and (3.8) one can derive an analytic
formula for sin(2P). We find

This should be contrasted with any CP-conserving
transition sensitive to

~
Vqg ~, such as B Bmixing-,

K+ ~ x+vv, Kl, -+ pp, , B ~ p,p, , which for given values
of m(, , F~i/B~, V,s, zg determine uniquely the value of
0.

Although several analyses of this determination have
been presented in the literature (see in particular
Ref. [13]),we think it is useful to have simple analytic
expressions to help us to answer immediately, whether or
not the favored solution g & 0 is chosen.

1 0 223
1.33A ~,R' A B~

—rIPp(s) (4.6)
f. B -B miainy

Po(s) is weakly dependent on mi and for 150 & mq &
180 GeV one has Pe(e') —0.26 6 0.02. As (7 & 0.45 for

[ V„s/V, s
~

& 0.1 the first term in parentheses is generally
by a factor of 2—3 larger than the second term. Since
this dominant term is independent of mq, the values for
sin(2P) extracted from s'a and Bo Bo mixing show -only
a weak dependence on mq, as stressed in particular in
Ref. [6].

D. Ambiguity in g

It is well known that in the analysis of e~ with fixed

[ V„s/V, s [ and ~V,s~ one gets two solutions for (g, rI) with

g being larger for the solution with larger g . The so-
lution of this ambiguity in g is very important for CP-
violating decays K& —+ vr e+e, K& -+ vr vv and the
CP asymmetries in B decays governed by sin(2P), be-
cause B(Klo ~ n'oe+e ), B(KIo ~ m vv), and sin(2P)
are larger for the solution with larger g. The preferred
solution in searches of CP violation corresponds in most
cases to g & 0.

We require that Rq & gl + R&s. Then for a given value
of Rp one gets a positive g. Using the analytic formula
(4.1) and introducing the "scaling" variable [4]

(4.7)

we find using (3.8) and (3.9) the condition

0.55 xg 179 GeV 200 MeV

0.72 z(B~o) QI + R2

(4.8)

When this inequality is satisfied the favored solution
with g & 0 is bound to be chosen. Setting g~ ——0.55
we plot in Fig. 4 the smallest value of F~ i/B~ consistent
with (4.8) as a function of z(B&~) for different values of
[V„(,/V, (,

~

and xg = 0.72. We observe that for z(B&) &

180 GeV one needs F~~gB~~ & 180 MeV in order to
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FIG. 4. Lower bound on Fii~ gB~~ for
I

V s/V, b I= 0.06

(a), I
V„s/V, z I= 0.08 (b), I

V„s/V, b I= 0.10 (c) necessary for
Lo) 0.

FIG. 5. Upper bound on B(K+ ~ 7r+vv) for
I

V„s/V, q
I

= 0.06 (a), I
V„s/V, b I= 0.08 (b), I

V„b/V, s I= 0.10 (c) neces-

sary for g & 0.

Xd 1(*™n (4.9)

For Rg, = 1 and Rs = 1/3 we have (x,);„18.6zq.

have g & 0.
Using (3.12) we can also find a minimal value for z,

consistent with Ri & gl + R&~. One gets, to a very good
approximation,

and ro defined in (3.19) and (3.21), respectively. Neglect-
ing the tiny contribution of the second term in (3.21),
using the formula

X(z ) = 0.65x, ' (4.10)

- 1.74

which reproduces the function X(zi) to an accuracy of
0.5% for the range of mi considered in this paper, and
introducing the variable [4]

2. K+ m m+vv

An analogous condition can be derived Rom the decay
K+ ~ vr+vv by requiring /go + (Rso)2 & ro with go

(K+) =
0.038

we find the condition

(4.11)

„1 (z(K+) &
'"

B(K+ +vr+vv) & 4-.64 x 10 —
& 0.40

Io. ( Mw
+ Po(K+) +o.&6

~ ~
(s, ~I'I .

fz(K+) )
i, Mw )

(4.12)

This bound is shown in Fig. 5 as a function of the variable
z(K+). Although this solution is welcome in searches
for CP violation, the experimental bound on B(K+ m
s+ vv), which could be reached in the coming years [40],
will be most probably above it.

V. PHENOMENOLOGICAL ANALYSIS

A. First look

In order to describe the situation of 1994 aRer a pos-
sible top quark discovery we first make the following
choices for the relevant parameters.

Range I:

IV.sl = o 038+0.oo4
I

V-s/V. s I=008+002
Blr = 0.7 6 0.2, gB~,F~, = (200 6 30) MeV,

xg = 0.72 + 0.08, mi ——(165+ 15) GeV.
(5.1)

The values of
I

Vs
I

and
I

V„/Vs, lsgiven here are
consistent with the recent summary in [41]. The values
of B~ cover comfortably the range of most recent lattice
(BJr = 0.825+0.027) (Ref. [42]) and 1/N (BIr = 0.7+0.1)
(Ref. [43]) results. They also touch the range of values
obtained in the hadron duality approach (BJr =0.46.
0.1) (Ref. [44]). /Bid„F~, given here is in the range
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of various lattice and @CD sum rule estimates [45]. zg
is in accordance with the most recent average of CLEO
and ARGUS data [7] and it is compatible with the data
&om the CERN e+e collider LEP. We set 7~ ——1.5
ps (Ref. [46]) in the whole analysis because the existing
small error on ~~ (b,7& = +0.04 ps) has only a very small
impact on our numerical results.

The choice for mz requires certainly an explanation.
The high precision electroweak studies give in the stan-
dard model typically mq 165 6 30 GeV, where the
central value corresponds to mIr = 300 GeV (Ref. [47]).
Since we work in the standard model we expect that mq

will be found in this range. A top quark discovery at
Fermilab Tevatron will certainly narrow this range by
at least a factor of 2. It is of interest to see what im-
pact this would have for the phenomenology considered
here. At this level of accuracy one has to state how m&

is defined. The /CD corrections to e'rc, Bo Bo mix-ing,
and K+ ~ x+vv used here correspond to the running
top quark mass in the MS scheme evaluated at mq, i.e.,
mq in (5.1) and in all formulas of this paper represents
mq(mq). The physical top quark mass as the pole of the

l. Quadrant
Min Max

2. Quadrant
Min Max

b

sin(2o)
sin(2P)
sin(27)

~
Vgg

~

x10
&e

B(K+ +a+-vv) x 10'

44.5 90.0
—0.67 0.74
0.50 0.80

0 1.00

6.9 10.0
10.8 24.2

0.62 1.39

90.0
0.50
0.38

—1.00

8.6
7.7
0.67

135.9
1.00
0.74

0

11.8
14.4
1.46

renormalized propagator is then given by

m~~ "'(mq) = mq 1+ph„, 4n, (m()
3x

(5.2)

TABLE II. Ranges for scan of basic parameters for range
I, shown in Eq. (5.1). Split according to the two di8'erent so-
lutions for the CKM phase b in the Brst and second quadrant.

1.0

0.8

For the range of mq considered here m~
"' is higher than

m& by 7+1 GeV.
For AMs and m, affecting B(K+ -+ 7r+vv) we use

0.6

0.4— AMs ——(0.275 6 0.075) GeV

0.2 m, = m, (m, ) = (1.3+ 0.05) GeV. (5.3)

0.8

0.6

0.4

0.2
I l

I

I » i i I g ( g i I s i e i I i s i s I

I

0.8

0.6

I I il

0 I I I I I I I I I I I I I I I I I ~ I I I

I

In Fig. 6 (graph I) we show the resulting unitarity tri-
angle . To this end the analysis of e~ and of B&-B& mix-
ing have been used. In Table II we show the resulting
ranges for b, sin(2$;), B(K+ ~ m+vv),

~
Vip ~, and z,

corresponding to the choice of the parameters in (5.1).
In calculating z, we have set Rg, ——1.

We observe the following.
The uncertainty in the value of sin(2P) is inoder-

ate. We find sin(2P) 0.59 + 0.21. Consequently a
large asymmetry Ac~(@K,) is expected. In particular
sin(2P) & 0.38.

The uncertainties in sin(2a) and in sin(2p) are huge.
Similarly the uncertainties in the predicted values of

B(K+ ~ s+vv),
~

Vqq ~, and x, are large.

0.4 B. A look in the future

0.2
, i I

I
I

I

0..0 I I I ~ I I I I ~

-1.0 -0.5
I I ~ s s ~ I c g I s I

0.0 0.5 1.0

FIG. 6. Unitarity triangle in the (g, g) plane determined
by ssc,

~
V~i, /V, s ~, and xa using ranges I, II, and III as in

Eqs. (5.1), (5.4), and (5.5), respectively.

It is to be expected that the uncertainties in (5.1) will
be reduced in the next five years through the improved
determinations of

] Vs
~

and
] V„s/V, s ~

at CLEO II [7],
the improved measurements of xp, and the discovery of
the top quark giving an improved mz range. We also an-
ticipate that the extensive e8'orts of theorists, in partic-
ular using the lattice methods, will considerably reduce
the errors on BJr and gB~Fgy.
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We consider the following ranges of parameters.
Range II:

TABLE IV. Same as in Table II but for range III, shown
ln Eq. (5.5).

lv.sl = 0.040 + 0.002
I v-5/v. s I= 0.08 + 0.01,

BJr = 0.75 + 0.07, gB~~F~, ——(185 + 15) MeV,

xg = 0.72 + 0.04, mg ——(170 6 7) GeV .

(5.4)

Range III:

0 04.0+0.001,
I V„s/V.s I= 0.08+0.005,

BJr = 0.75 + 0.05, gB~~F~, = (185 + 10) MeV,

2:q = 0.72 6 0.04, m& ——(170 + 5) GeV .

(5.5)

b

sin(2n)
sin(2P)
sin(2p)

Iv«l x1o'
8

B(K+ -+ s.+vv) x 10'

69.0
0.01
0.60

0

8.4
11.9
0.88

90.0
0.66
0.70
0.67

9.6
15.6
1.12

1. Quadrant
Min Max

90.0
0.60
0.52

—0.69

9.1
10.1
0.92

113.7
0.99
0.66

0

10.4
13.3
1.18

2. Quadrant
Min Max

For AMs and m we use

~„s ——O.S Gev, m, = 1.3GeV. (5.6)

0.60 + 0.14 (range II),
0.61 6 0.09 (range III) . (5.7)

The uncertainties in sin(2n) and sin(2p) although
somewhat reduced remain very large.

For
I V« I, z» and B(K+ -+ x+vv) we find

(9.5 6 1.4) x 10 (range II),
(9 4+ 1.0) x 10 (range III), (5.8)

For each range we repeat the analysis of Sec. V A. The
results are given in Fig. 6 (graphs II and III) and Ta-
bles III and IV.

We observe the following.
The uncertainty in the value of sin(2P) has been con-

siderably reduced. We 6nd

This exercise implies that if the accuracy of various
parameters given in (5.4) and (5.5) is achieved the de-
termination of

I
V«

I
and the predictions for sin(2P) and

BR(K+ ~ x+vv) are quite accurate. A sizable uncer-
tainty in x, remains, however.

Another important message &om this analysis is the in-
ability of a precise determination of sin(2a) and sin(2p)
on the basis of sir, B —BD, IV5I, and IV„b/V, sl alone.
Although the great sensitivity of sin(2cL) and sin(2p) to
various parameters has been already stressed by several
authors, in particular in Refs. [27,26,48,49], our analysis
shows that even with the improved values of the param-
eters in question, as given in (5.4) and (5.5), a precise
determination of sin(2a) and sin(2p) should not be ex-
pected in this millennium.

The fact that sin(2P) can be much easier determined
than sin(2a) and sin(2p) is easy to understand. Since
R~ is generally by at least a factor of 2 larger than Rp,
the angle P is much less sensitive to the changes in the
position of the point A = (g, rI) in the unitarity triangle
than the remaining two angles.

13.3 + 4.3 (range II),
12.9 6 2.8 (range III), (5.9)

+ + (1.07 6 0.24) x 10 (range II),
(1.03 k 0.15) x 10 io (range III) .

(5.10)

1. Quadrant
Min Max

2. Quadrant
Min Max

b

sin(2n)
sin(2P)
sin(2p)

I
v«

I
x1o'

S
B(K+ -+ m+vv) x 10

60.9 90.0
—0.30 0.69
0.57 0.73

0 085
8.1
11.2
0.83

9.8
17.6
1.22

90.0
0.57
0.46

—0.91
9.0
9.1
0.86

122.5
1.00
0.69

0

10.8
13.0
1.3

TABLE III. Same as in Table II but for range II, shown in
Eq. (5.4).

C. The impact of B(K+ m m+vv) and as js:,

B(K+ m vr+vv) and zq/x, determine
I

V« I
and R~

If our expectations for the ranges discussed above are
correct we should be able to have a rather accurate pre-
diction for B(K+ ~ m+vv) using the analysis of s~ and
of B& B&~ mixing. Me-asuring B(K+ -+ s+vv) to similar
accuracy would either confirm the standard model pre-
dictions or indicate some physics beyond the standard
model.

We infer &om Tables III and IV that measurements of
B(K+ ~ m+vv) with the accuracy of +10% would be
very useful in this respect.

The accuracy of predictions for x, is poorer as seen in
(5.9). A measurement of x, at a +10% level will have
therefore a considerable impact on the determination of
the CKM parameters and in particular Rq [see (3.12)],
provided Rg, is known within 10% accuracy. A numerical
exercise is presented in Sec. VE.

D. The impact of O'P asymmetries in H decays

Measuring the CP asymmetries in neutral B decays
will give the de6nitive answer whether the CKM descrip-
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tion of CP violation is correct. Ass»ming that this is in
fact the case, we want to investigate the impact of the
measurements of sin(2$;) on the determination of the
unitarity triangle.

Since in the rescaled triangle of Fig. 1 one side is
known, it suffices to measure two angles to determine
the triangle completely.

It is well known that the measurement of the CP asym-
metry in the decay B ~ gK, should give a measure-
ment of sin(2P) without any theoretical uncertainties.
One expects that prior to LHC experiments the error
on sin(2P) should amount roughly to b, sin(2P) = +0.06
(Refs. [7,50,51]). The measurement of sin(2o, ) is more dif-
ficult. It requires in addition the measurement of several
channels in order to eliminate the penguin contributions.
An error 6 sin(2n) = +0.10 prior to LHC could however
be achieved at a SLAG B factory [50].

In Fig. 7 we show the impact of such measurements
and also plot the curve (3.27) which represents superweak
models. Specifically we take

0.60 + 0.18,
o.fio + o.ofi,

(5.11a)
(5.11b)

—0.20 6 0.10 (I),
sin(2a) = ~ 0.10+0.10 (II),

0.70 6 0.10 (III) .
(5.12)

In Fig. 8 we replace the impact of sin(2n) by the impact
of a measurement of sin(2p) keeping sin(2P) unchanged.
We choose the values

sin(2p) = &

—0.50 6 0.10 (I),
0 6 0.10 (II),

0.50 6 0.10 (III) .
(5.13)

as an illustration of two measurements of sin(2P) with
two different accuracies. Next we take the following three
choices for sin(2n):

1..0 I I I l
[

I I I 1
)

I I I I
f

I I I I 1..0 I I I I
f

I )I t
I

)
I I f I
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I I I I

0.8— 0.8—

0.6— 0.6—

0.4— 04
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I0.0 I I ~ I
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~ I I I
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[

~ ~ I ~ 0..0 ' ' ' ' '
' ' ' ' 'I'I' ' ' ' '

' ' ' ' '

0.8 0.8

0.6— 0.6

0.4— 04

0.2 0.2
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0.8—

I0.0 I I 1 I
/

I ~ I I
(

~ I I
f

1 I I I

/

0.8—

0.6 0.6

0.4— 0.4—

0.2 0.2

0.0
-1.0 -0.5 0.0

P
0.5 1.0

0.0
-1.0 -0.5 0.0

P

0.5 1.0

FIG. 7. Determination of the unitarity triangle in the (g, g)
plane by measuring sin(2p) and sin(2n) as in Eqs. (5.11) and
(5.12), respectively. For sin(2n) we always find two solutions
in (g, g) and for sin(2P) we only use the solution consistent
with

( V„g/V, g ~( 0.1.

FIG. 8. Determination of the unitarity triangle in the (g, fi)
plane by measuring sin(2P) and sin(2p) as in Eqs. (5.11) and
(5.13), respectively. For sin(2p) we always find two solutions
in (g, g) and for sin(2P) we only use the solution consistent
with

~

V g/V, g (( 0.1.
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TABLE V. Predicted ranges for various quantities calcu-
lated by restricting sin(2n) and sin(2P) to the ranges of (5.14)
and using

~

V,q ~, zq, and m~ of (5.4). There is no allowed
solution for the second quadrant.

r—sin2() (a)
——— sin2() (b)

. XJ'X

b

sin(2p)

~

V«
~

x10'

B(K+ +s+-vv) x 10"

Min

69.5
0.42

8.4
15.0
0.90

Max

77.8
0.66

9.1
17.5
1.12

00~——--'
-1.0 -0.5 0.0

P

J

0.5 1.0 -1.0

FIG. 9. Allowed ranges in the
straints from Eqs. (5.15) and (5.16)
Rg ——1.0 + 0.1.

-0.5 0.0 0.5 1.0

(g, f)) plane with con
for B(K+ + m+vv) and

We observe that the measurexnent of sin(2n) or sin(2p)
in conjunction with sin(2P) at the expected precision will
have a large impact on the accuracy of the determination
of the unitarity triangle and of the CKM parameters. In
order to show this more explicitly we take, as an example,

sin(2P) = 0.60+ 0.06, sin(2n) = 0.10 + 0.10,

(5.14)

and give in Table V the predicted ranges for b, sin(2p),
B(K+ ~ m+vv),

~
Vqg ~, and z, corresponding to the

values of sin(2P) and sin(2n) given in (5.14) and
~

V,s ~,

zg, and mq of (5.4). We use only the solution of sin(2P)
consistent with

~
V„s/V, b ~& 0.1.

It should be stressed that this impressive accuracy can
only be achieved by xneasuring sin(2n) or sin(2p) in addi-
tion to sin(2P). This is easy to understand in view of the
fact that the expected accuracy of the measurements of
sin(2n) and sin(2p) is considerably higher than the cor-
responding accuracy of the predictions on basis of e~,
B'-B' mixing, ] V s/V. s ~, and

~
V.s

~

alone.

E. X'+ —+ m+vv, sin(2P), ] V,q ~,

mg, and zg/z,

We would like to address now our last question posed
in the Introduction.

How well should one measure B(K+ m x+vv),
sin(2P),

~
V,s ~, mq, and zg/z, in order to obtain an

acceptable determination of the CKM matrix on the ba-
sis of these five quantities alone'? As we stated at the
beginning of this paper, K+ + vr+vv and sin(2P) are
essentially &ee of any theoretical uncertainties.

~
V,b ~,

however, is easier to determine than
~

V„b/V, x, ]
and once

the top quark is discovered, m& should be known rel-
atively well. Finally zg/z, determines directly Rt, by
means of Eq. (3.12).

In Fig. 9 we show the result of this exercise taking (5.6)
and

+ (1.0+0.2) x 10 xo (I),
(1.0+ 0.1) 10-" (II) .

In Table VI we give the predicted ranges of various
quantities for the two cases considered.

In addition we show in Fig. 9 the result of a possible
measurement of zg/z, corresponding to Rt. ——1.0 6 0.1.
We observe that provided the expected accuracy of mea-
surements is achieved we should have a respectable de-
termination of

~
Vq~

~

this way. Figure 9 indicates that
for the b,V,s and Amq assumed here, B(K+ m m+vv)
must be measured with a precision of +10%%uo to be com-
petitive with b.Rq ——+10%%uc extracted hopefully in the
future &om zg/z, . The uncertainty in the predictions
for sin(2n) and sin(2p) is very large as in the analysis of
Sec. VB.

F. sa-, B~~-Bg mixing, sin(2P), and sin(2n)

It is useful to combine the results of Secs. VA, VB,
and V D by making the customary sin(2P) versus sin(2n)
plot [5]. This plot demonstrates very clearly the corre-
lation between sin(2n) and sin(2P). The allowed ranges
for sin(2n) and sin(2P) corresponding to the choices of
the parameters in (5.1), (5.4), and (5.5) are shown in
Fig. 10 together with the results of the independent mea-
surements of sin(2P) = 0.60 + 0.06 and sin(2n) given
by (5.12). The latter are represented by dark shaded
rectangles. The black rectangles illustrate the accu-
racy of future LHC measurements [b, sin(2n) = +0.04,
csin(2P) = +0.02] (Ref. [28]).

We also show the results of an analysis in which the

TABLE VI. Ranges of various quantities calculated with
constraints from Eqs. (5.15) and (5.16).

Man

sin(2P) = 0.60 + 0.06, ] V,i, ~= 0.040 + 0.001,

mq ——(170 + 5) GeV,
(5.15)

sin(2n)
sin(2p)

~
Vt.g

~

x10

—0.917
—0.704

6.9

0.978
1.000

10.3

—0.691
—0.418

0.973
0.976
9.7
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1.0
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-0.5 0.0 0.5
sin2a

1.0 -1.0

(IV)
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sin2a
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FIG. 10. sin(2~) versus sin(2P) plot corresponding to the
parameter ranges I—IV as in (5.1), (5.4), (5.5), and (5.17)
and the dark shaded rectangles given by (5.12) and (5.11b).
The black rectangles illustrate the accuracy of future LHC
measurements.

accuracy of various parameters is as in (5.4) but with the
central values modified.

Range IV:

In addition we show the prediction of superweak the-
ories which in this plot is represented by a straight line.

There are several interesting features on this plot.
The impact of the direct measurements of sin(2P) and

sin(2a) is clearly visible in this plot.
In cases III and IV we have examples where the mea-

surements of sin(2a) are incompatible with the predic-
tions coming from e~ and B -B mixing. This would
be a signal for physics beyond the standard model. The
measurement of sin(2o. ) is essential for this.

Case IV shows that for a special choice of parame-
ters the predictions for the asymmetries coming from e~,
Bo Bo mixing, [ V,-s ~, and

~
V„s/V, s [

can be quite ac-
curate when these four constraints can only be satisfied
simultaneously in a small area of the (g, g) space. De-
creasing

~
V,s ~, ~

V„s/V, s ~, and m|, and increasing F~
would make the allowed region in case IV even smaller.

We also observe that the future measurements of asym-
metries and the improved ranges for the parameters rel-
evant for c~ and B -B mixing will probably allow one
to rule out the superweak models.

VI. SUMMARY AND CONCLUSIONS

The top quark discovery and the measurements of
B(K+ —& x+vv), z, and of CP-violating asymmetries
in B decays will play crucial roles in the determination
of the CKM parameters and in the tests of the standard
model. Similarly the improvements in the determina-

~V,s~
= 0.038+0.002,

~
V„s/V, s

~

= 0.08+0.01,
B~ = 0.70+0.07, gB~,F~, = (185+15) MeV,

xg = 0.72 +0.04, mq ——(165 k 7) GeV.

(5.17)

tion of the CKM elements V„g and V,g in tree level B
decays and the improved calculations of the nonpertur-
bative parameters like BIc and 1/B~FJ3 will advance our
understanding of weak decay phenomenology. In this pa-
per we have made an excursion into the future trying to
see what one could expect in this field in the coming 6ve
to ten years prior to LHC experiments.

In the 6rst part of the numerical analysis we have in-
vestigated how the top quark discovery together with
the improved determinations of (V„s/V, s(, ~V,s(, Bg,
and 1/B~F~ would allow for the determination of the
unitarity triangle and more accurate predictions for
K+ w n.+vv, Bo Bo m-ixing, and sin(2$;). Our main
6ndings in this part can be summarized as follows: We
expect that around the year 2000 satisfactory predictions
for

~
V|g ~, sin(2P), and B(K+ ~ n+vv) should be possi-

ble; a sizable uncertainty in x, and huge uncertainties in
sin(2a) and in sin(2p) will remain, however.

In the second part of our analysis we have investigated
the impact of future measurements of B(K+ ~ n+vv),
z„and sin(2$;). Our main findings in this second part
can be summarized as follows: The measurements of
sin(2a), sin(2P), and sin(2p) will have an impressive im-

pact on the determination of the CKM parameters and
the tests of the standard model; this impact is further
strengthened by combining the constraints considered in
the two parts of our analysis as seen most clearly in
Fig. 10; future LHC B physics experiments around the
year 2005 will refine these studies as evident &om Fig. 10
and Ref. [28].

In our analysis we have concentrated on quantities
which have either been already measured (sic, z~) or
quantities which are practically ft.'ee from theoretical un-
certainties such as zg/z„K+ ~ vr+vv, and certain
asymmetries in B decays. We stress at this point, how-
ever, that the measurements of s'/s, B ~ sp, KL, ~
p+p, KL, ~ vr e+e, KL, ~ m vv, and other rare de-
cays discussed in the literature are also very important
for our understanding of weak decays. In particular a
measurement of a nonzero Re(e'/s), to be expected in few
years &om now, will most probably give the 6rst signal
of direct CP violation. Unfortunately, all these decays
are either theoretically less clean than the decays consid-
ered here or they are more difficult to measure. Clearly
some dramatic improvements in the experimental tech-
niques and in nonperturbative methods could change this
picture in the future.

We hope that our investigations and the analytic for-
mulas derived in this paper will facilitate the waiting for
m&, K+ -+ vr+vv, B,-B, , mixing and CP asymmetries
in B decays. There is clearly a very exciting time ahead
of us.
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