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We deduce constraints on time-reversal-noninvariant (TRNI), parity-conserving (PC) hadronic
interactions from nucleon, nuclear, and atomic electric dipole moment (EDM) limits. Such interac-
tions generate EDM s through weak radiative corrections. We consider long-range mechanisms, i.e. ,

those mediated by meson exchanges in contrast with short-range two-loop mechanisms. We 6nd
that the ratio of typical TRNI, PC nuclear matrix elements to those of the strong interaction are
& 10, a limit about 2 orders of magnitude more stringent than those from direct detailed balance
studies of such interactions Th. is corresponds to a bound of ~g~~

& 10, where g~ is a TRNI PC
pNN coupling.

PACS number(s): 13.40.Em, 11.30.Er, 24.80.—x, 35.10.Di

I. INTRODUCTION

Time-reversal-noninvariant (TRNI), parity-noncon-
serving (PNC) interactions arise naturally in the min-
imal standard model through the Kobayashi-Maskawa
phase and through the 8 term. Additional possibil-
ities exist in extended models with left-right symme-
try, more complicated Higgs sectors, etc. [1]. Experi-
mental constraints on such interactions are often very
stringent; for example, the neutron and atomic elec-
tric dipole moment limits on ]8~ are about & 10
In contrast, fundamental TRNI parity-conserving (PC)
interactions do not arise in the standard model. In
fact, it has been argued generally that, in renormalizable
gauge models with elementary quarks, Havor-conserving
TRNI PC interactions between quarks do not arise in first
order in the boson exchanges between fermions. Such in-
teraction could be generated, e.g. , through weak correc-
tions to TRNI PNC interactions [2]. Consequently, one
expects such induced interactions to be extremely weak.

Despite this expectation, direct experimental con-
straints on TRNI PC interactions are relatively weak.
For instance, compound nucleus studies of detailed bal-
ance and nuclear energy-level Quctuations yield o.
2 x 10, where n measures the magnitude of typical
TRNI PC nuclear matrix elements relative to those of
the residual strong interaction [3—5]. A neutron trans-
mission experiment [6] xneasuring the TRNI PC fivefold
correlation

a. (kxI)(k I),
where cr and k are the neutron spin and momentum and

I the nuclear spin, produced a similar limit, o. & 5 x 10
Another set of constraints on TRNI PC interactions

are indirect, namely, those extracted from TRNI PNC
observables: Weak corrections to TRNI PC interactions
can generate TRNI PNC observables, so that constraints
on the former may be obtained from measurements of the
latter. The extraordinary precision of TRNI PNC limits,
such as those obtained in neutron and atomic electric
dipole moment searches, results in interesting constraints
on TRNI PC interactions, despite the need for the weak
interaction. For iostance, dimensional arguments suggest
that the neutron electric dipole moment (EDM) bound
requires TRNI PC meson-nucleon couplings to be & 10
[71

In this paper we will attempt to quantify neutron and
atomic EDM limits on long-range TRNI PC nucleus-
nucleus interactions [8]. By "long-range" we mean that
the mechanism generating the EDM involves hadronic
distance scales typical of meson exchange. Such interac-
tions can then be described in terms of effective meson-
nucleon couplings (either TRNI and PC or weak, PNC).
This approach allows us to quantitatively compare such
constraints with those direct tests of TRNI PC inter-
actions in compound nuclei andjor with slow neutrons.
Of course, the effective meson-nucleon couplings are pre-
sumably generated f]t.

.om short-range boson exchanges be-
tween quarks, in analogy with the more familiar case of
hadronic PNC [9].

We will discuss atomic EDM's generated from TRNI
PC nuclear interactions in combination with Z exchange
between electrons and the nucleus, and the neutron and
nuclear EDM's produced &om such TRNI PC interac-
tions in combination with hadronic weak meson-nucleon
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couplings. We 6nd that EDM limits on TRNI PC inter-
actions are typically about 2 orders of magnitude more
stringent than those deduced from compound nucleus
studies, that is, a 10 . (The corresponding limit on
the strength of a TRNI PC pNN coupling is [g~~ & 10 .)
We also compare our results to the estimates by Conti
and Khriplovich [10] of representative short-range two-

loop contributions to nucleon EDM's.

II. TRNI PC AND TRI PNC NN
INTERACTIONS

The weak PNC hadronic NN interaction at low en-
ergies is conventionally described in terms of meson ex-
change, where one meson-nucleon coupling is strong and
the other weak. The validity of this description rests in
part on the success of meson exchange models in describ-
ing strong NN interactions at low energies (E & 300
MeV), and in part on the observation that a sufficiently

general PNC meson-exchange potential will generate the
five possible S P-partial wave amplitudes ( Si m Pi
b,I = 0, Sp ~ Pp EI = 0, 1, 2, and sSi ~ sPi
b,I = 1). Thus one can think of the meson-exchange de-
scription both as a bookkeeping device for the most gen-
eral elementary amplitude governing the long-wavelength
PNC components in nuclear wave functions and as a
model for extrapolating those amplitudes to higher en-

ergies. These amplitudes, and by inference the meson-
nucleon couplings, have been constrained by a number
of PNC experiments in NN, few-nucleon, and nuclear
systems [11]. While in principle they could be calcu-
lated from the standard electroweak model, hadronic ef-
fects dress the elementary S' and Z exchanges occurring
within the vertices in a complicated way. Consequently,
standard model estimates [9] of meson-nucleon PNC cou-
plings are typically assigned an uncertainty of factors of
k(1—3).

The standard form of the meson exchange weak NN
potential can be calculated &om the strong and PNC
weak couplings [9,12]:

(2a)H = ig~~ivN—ps' P N+gpN 7„+i cr„„k" v P"N+g~N p„+i ' o„„k" $"N,

H = N(r x Q ),N —N h r 23I2" +h P", + (3rgg", —r P") P„ysN —N(h P" +h r,P")P„AN .

This yields the m-, p-, and (d-exchange NN potential [9,11]

(2b)

V (r) = [7.(1) x r(2)],[o(l) + o'(2)] u (r)

+— FpT(1) ' T(2) + —[T(1) + T(2))z + [3r(1)zr(2)z —T(1) T(2)]
1(

M
~

2 2 6

x((1+p, )i[cr(1) x cr(2)] u (r) + [e(1)—o(2)] v (r))

+—[r(1) —v(2)], [cr(1) + ir(2)] [Giv„(r) —Fiv~(r)]

when r = rq —r2, u = [pi —pi, e "/4mr], and v =
(pt —p2, e "/47rr), and where the strong scalar and
vector magnetic moments are assigned their vector dom-
inance values p,, = —0.12 and p,„=3.70. The AI = 1
pion exchange strength E, the AI = 0, 1, and 2 p ex-

I

change strengths Fp, Ei, and E2, and the b,I = 0 and 1
~ exchange strengths Go and Gq are given as products of
weak and strong meson couplings in Table I. A fit to pp,
few-body, and nuclear PNC observables yields Fo 10
and F & 0.4 x 10 [11].

TABLE I. Weak coupling constants and "best value" and "reasonable range" standard model
values of Ref. [11].

CoefBcient
F

R

Gp
Gg

Equivalent

g ivivf /V&&
—g~hp/2

—g h'/2
—g h'/2

Best value (10 )
1.08
1.59
0.027
1.33
0.80
0.48

Reasonable range (10 )
0:2.71

—1.59:4.29
0:0.053

—1.06:1.54
—2.39:4.29
0.32:0.80
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Similarly, the general structure of TRM PC NN in-
teractions has been discussed by Herczeg [13] and by Si-
monius [14]. The lowest allowed partial waves are the
AI = 0 S~ ++ D~ and AI = 1 'P~ ++ P~ amplitudes,
and these should dominate TRNI PC interactions at nu-

clear length scales. Simonius discussed the most general
single-meson-exchange model for such interactions. As
no scalar-pseudoscalar exchanges are allowed, no pion-
range interaction exists. The spin and isospin structure
of J g 0 normal parity exchanges is unique: the isospin-
operator is the isovector (vq x a2)„corresponding to
charged mesons, and the permitted spin-orbit structures
are the singlet-triplet transitions 'Pq ++ Pq, 'Dq ~ D2,
etc. The longest ranged TRNI PC vector meson exchange
is thus p+. The strong pNN vertex is given by Eq. (2a),
while the TRNI vertex is

(c)

yTRNI
iI, p ]4

TRNI

ii it

y PNC

zO

nucleus

JITRN' = gpgpN —" o„„k"~2(7. Q~+' —r+P"*)N . (4)2M

p-meson exchange then generates the nonrelativistic
TRNI PC NN potential [14]

m3
V~(r) = Mzg~h "[v(l)—x w(2)]s

x (1+mp~)(erg —o, ) (5)

where the strong coupling g~ = 2.79 and where g~
parametrizes the strength of the TRNI vertex. The an-

gular momentum operator l = r x (pq —p2) j2. This
potential contributes to the pn interaction only.

For J g 0 unnatural parity exchanges all allowed TRNI
PC partial wave amplitudes can contribute ( Sq ~ Dq,

Pg E+ Pg, D2 E+ D2, P2 E+ F2, etc. ) . Various
authors have discussed the potential generated by Az ex-

change [15].
In this paper we adopt the Simonius p-exchange poten-

tial [Eq. (5)] as a representative phenomenological TRNI
PC interaction. This selection is made because it is the
longest range meson-exchange interaction, and for rea-
sons of simplicity. [Note that the inclusion of the Aq

would produce a potential analogous to Eq. (3), fully

general in the long-wavelength limit. ]

III. LONG-RANGED CONTRIBUTIONS
TO THE NEUTRON, NUCLEAR, AND

ATOMIC ELECTRIC DIPOLE MOMENTS

TRNI PC interactions in combination with the weak
interaction can generate TRNI PNC observables. It
has long been appreciated that the stringent limits on
neutron and atomic EDM's must then impose impor-
tant limits on TRNI PC interactions. In this paper we
extract such limits by studying long-range mechanisms
generating EDM s, i.e., mechanisms involving meson ex-
change length scales in nuclei or the neutron. The limits
we obtain on the TRNI PC meson-nucleus coupling g~
are translated into a bound on o., the ratio of typical
TRNI PC and strong nuclear matrix elements, so that a
comparison to direct tests of TRNI in compound nuclei
can be made.

J
V

nucleus

FIG. 1. Schematic representations of (s) the s'-p loop con-

trjbutjon to the nucleon EDM, (b) the atomic EDM generated

by Z exchange between the electrons and nucleons in combi-
nation with a polarizing TRNI p potential in the nucleus, and

(c) the nuclear EDM generated by the simultaneous polariza-
tion of the nucleus by TRNI p and PNC vr potentials.

VVe stress that, although the interactions we study oc-
cur at meson-exchange length scales, the physics which
generates g~ can involve very short distances (e.g. , TRNI
quark-quark interactions mediated by heavy vector-
boson exchange). Attempts to compute g~ using fun-

damental interactions at the level of quarks involves a
considerable degree of theoretical uncertainty —a conse-
quence of the present lack of reliable methods for com-
puting low-energy hadronic four (or more) quark opera-
tor matrix elements from first principles in @CD. Thus,
we treat g~ as an effective parameter which (i) character-
izes long-distance interactions induced by short-distance
TRNI physics, and (ii) may be used to compare con-
straints &om competing experiments. %e note also that
short-range physics may, in general, generate EDM mech-
anisms which cannot be represented in terms of meson ex-
change and effective meson-nucleon TRNI PC couplings.
Examples of such short-ranged EDM mechanisms have
been recently considered by Conti and Khriplovich, who
claim very stringent limits [10]. We will discuss these
limits and the comparison with the present work in our
conclusions.

The experimental limits on the neutron and atomic
electric dipole moments have reached remarkable sen-

sitivity. The two-standard-deviation upper bound on
the magnitude of the neutron EDM is 8 x 10 e cm

[16,17], while the limit on the atomic EDM of ~ Hg is

d~ & 1.3 x 10 e cm (95%%uo C.L.) [18]. In this paper we

evaluate three EDM mechanisms, the meson-cloud con-
tribution to the EDM of the nucleon, the nuclear EDM
that arises &om the simultaneous polarization of the neu-

cleus by the PNC weak and PC TRNI interactions, and
the atomic EDM that arises from a PC TRNI interac-
tion in the nucleus in combination with Z exchange be-
tween the nucleus and the atomic electrons. These mech-
anisms are represented schematically in Fig. 1. The re-
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suiting comparisons to the experimental limits then pro-
vide bounds on g~ and, equivalently, o..

IV. THE NEUTRON EDM

Dimensional estimates have been made of the con-
straints the neutron EDM, induced by weak radiative
corrections, places on TRNI PC meson-nucleon couphngs
[7]. We have made such estimates more quantitative by
evaluating the meson-cloud contribution to the EDM in a
model where the TRNI is generated by the pNN coupling
gp. The calculated hadronic loop is depicted in Fig. 1(a),
where for the weak hadronic coupling only f in Table
I is retained. In principle, there exists a large number
of additional diagrams dependent on g~ which also con-
tribute, such as the loop where the pion in Fig. 1(a) is
replaced by the p. However, we expect the amplitude
associated with the loop in Fig. 1(a) to at least set the
scale of, if not dominate over, all hadronic loops since
it contains the lowest-mass meson: one naively expects
the longest range interactions to produce the large charge
separations that dominate the EDM.

In carrying out the loop calculation, one faces a choice
of regularization scheme. For point hadron couplings, the
loop integral is linearly divergent. One approach to reg-
ulating this divergence would be to adopt the Geld the-
oretic framework of chiral perturbation theory (CPT).
However, as the loop contains no chiral singularities,
higher-dimension operators appearing in the chiral La-
grangian could generate terms analytic in the meson
masses which are as important as those arising from the
loop. Since one has, at present, insufficient information
to determine the coefficients of the higher-dimension chi-

I

ral operators, the result of a CPT calculation would be
ambiguous. An alternative approach, which we follow,
is to treat the hadrons as extended objects and include
form factors at the meson-nucleon vertices. While this
approach is admittedly more model dependent than that
of CPT, it allows one to incorporate experimental infor-
mation on the physics of meson-nucleon vertices.

We introduce form factors at both meson-nucleon ver-

tices, using the parametrization of Ref. [19]:

m'- ~'
(6)

iM„= id„u(p') o„„q"psu(p), (7)

where u(p) is the nucleon spinor and q = p' —p. The
neutron EDM d„ is

16 2m~mp
(8)

where F is a complicated function of the masses and cut-
ofF:

where k is the meson momentum and m its mass. The
cutofF parameter was fit to baryon-baryon scattering by
the Bonn group, which found 1.0 GeV& A & 1.5 GeV.
In general, the momentum dependence of the meson-
nucleon vertices generates additional "seagull" interac-
tions that must be included to preserve electromagnetic
gauge invariance [20,21]. In the case of the p —n loop of
Fig. 1(a), however, seagull vertices make no contribution
to the EDM.

The result of the loop integration is the EDM Lorentz
structure

2 2 -2 -2
F = ———[3Lo —I ~

—2L~]+ — — [2Ls + (3 —2A )L~ —A L~ + 3A Lo]6 ' ' ' (A~ —m~)(A~ —m~)

+(

+(

m2 — 2

[2Ls ' + (3 —2m~) I, ' —m~L, ' + 3m~ Lo ']—A~ m~ —m~
1I' p

m2 —A2
[2Ls + (3 —2m )Lz —m L~ "+3m Lo ] (9)

with m = m/M and L„=f dzz" ln[z~+ (1 —z)m~].
Evaluating this expression for A = 1.4 GeV and g~ ~ =
0.4 we find

We conclude

DDH

igp[ & 0.5 x 10

1.5 x 10 yp ecm, (10)

where fDDH is the calculated "best value" weak PNC
nNN coupling of Ref. [11],and f is its physical value.
The experimental bounds on the neutron EDM from the
Grenoble [16] and Gatchina [17] experiments are —(3 +
5) x 10 ~s e cm and +(2.6+4.2 +1.6) x 10 ~s e cm at lo',
and the corresponding 2o upper bounds are given [16,17]
as 12 x 10 2 ecm and 11 x 10 ecm, respectively. We
adopt, as the combined result,

]d ]
&8x10 ecm.

Later we will show that limit translates into a bound on
a, the ratio of TRNI nuclear matrix elements to that
of the strong residual interaction, of ~o. ]

& 10 s, using

f = f These bounds . change by less than a factor
of 2 as A is varied over the recommended range of Bonn-
potential values.

The bound in Eq. (11) depends on the strength of the
~NN PNC weak coupling, and for this reason can be
evaded. This is because of the puzzling result, deduced
primarily &om measurements of the circular polarization
of the 1081 keV p ray from ~sI', that f is no more
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than 1/3 of the expected "best value" estimate f of
Donoghue, Desplanques, and Holstein [ll]. On the other
hand, we also expect that limits comparable to Eq. (11)
could be deduced from diagrams similar to Fig. 1(a), but
including different p- and m-meson loops. The isoscalar
PNC pNN coupling is known to be approximately of
the expected strength, that is, near the best value of
Ref. [9]. Consequently, we expect Eq. (11) to set the
scale of neutron EDM limits on g~.

V. ATOMIC EDM'S ARISING
FROM ATOMIC PNC [8]

multipoles of the axial three-current (M2, M4, etc.),
and even multipoles of the vector three-current (E2, E4,
etc.). The electric multipoles vanish in leading order
by Siegert's theorem leaving the spin-dependent pieces
and higher-order corrections. Furthermore, the contri-
butions of higher multipoles to the electron-nucleus in-
teraction are typically suppressed by powers of (r~/r~),
where r~ and r~ are the nuclear and atomic radii, since
large angular momentum transfers produce unfavorable
electron overlaps with the nucleus. One concludes that
the electron-nucleus interaction will be dominated by the
C1, . C1N dipole term, which is contained in the inter-
action

Given a TRNI PC nuclear interaction, Z exchange be-
tween the nucleus and the atomic electrons can gener-
ate an atomic EDM [Fig. 1(b)]. The coupling of the
exchanged Z to the nucleus must be TRNI and PC,
under the assumption that the nucleus remains in its
ground state. Ground state expectation values linear
in the TRNI amplitude can exist for odd multipoles of
the axial charge operator (Cls, Cas, etc), even magnetic

]

H = dxp, (x)p~(x),
2

(12)

where p, (x) is the electron vector charge density and
ps~(x) the nuclear axial charge density. For nonrelativis-
tic nucleons the corresponding electron interaction gen-
erating S m P transitions is a contact interaction

A

H,s(x) = — 'gx(l —4 six gw) &4(x) 4sM s) . s* —.ss' =&' ——.ss' &' "* ss(') 4gss s) (sg)=GF 1 2 (I) GS 1 1 GS

24M I

)- 4gs 4, I )(I-l ~,s ~cs) ~H,
Eo —EI„ (14)

where g~ ——1.25, 8~ is the Weinberg angle, I is the
nuclear spin, lP ) is the nuclear ground state, and the
ClsN matrix element is evaluated in the magnetic state
M=I.

If lPz ) is the unperturbed TRI ground state, the nu-
clear matrix element in Eq. (13) can be written

where the sum extends over a complete set of nuclear
excited states. To evaluate this expression we employ
a trick frequently used in studies of nuclear PNC, the
replacement of a many-body operator by an efFective one-
body one. This approximation is exact in the limit of a
mean-6eld nuclear model, but can also be surprisingly
accurate in more realistic calculations.

If we evaluate this effective operator for a spin- and
isospin-symmetric core, the result is given diagrammati-
cally by Fig. 2. The survival of a single contraction (and
its time reverse)

(&I&.~l~) = — ). (~ICINI~) (P~IV~I~~) + (P~lv~l~~) E E E (~ICI~I~) (15)+E Qp +cr)F

is due to a number of special properties of the opera-
tors. Because of its time reversal properties, Cl~ has no
diagonal single particle matrix elements. Because the Si-
monius potential V~ carries charge, there are no particle-

„&TRNr
P

), yTRNZ
P

FIG. 2. The one-body effective operator representing the
dominant axial coupling of the Z (J = 1 projection of the
axial charge) to a nucleus in its ground state. The TRNI is
provided by an NN p-exchange potential.

I

hole bubbles (with Cl~s entering on one end and V~ the
other). And, as V~ vanishes when separately averaged
to a one-body effective potential, all tadpoles at the p
vertices vanish.

In Ref. [8] we evaluated Eq. (15) in a spin- and isospin-
symmetric Fermi gas model, with the simplifying as-
sumption that the single-particle Green's functions ap-
pearing in Eq. (15) could be replaced by a constant en-

ergy denominator hen, the sheD model oscillator spac-
ing. The result was the efFective TRNI PNC atomic po-
tential

G . 2 2
H(x) = g~(1 —4sin 8g ) p„g gp

2 15+2

x (I) Vh(x) .
m~M3 Ru
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This potential is identical in form to that for electrons
interacting with a PNC TRNI nuclear EDM, once the
effects of shielding [22] have been included

HKoM(x) = —4s aQ Vb(x), (17)
(I)

where Q is the Schiff moment. A recent, very precise
measurement of the atomic dipole moment d~(~ssHg) by
Jacobs et al. [18],

~d~( Hg)~ & 1.3 x 10 e cm (95% C.L.)

then yields

iQ(' 'Hg)
i & 3.2 x 10 "f

Equivalently, for the interaction of Eq. (16), we find

iy'
i

& 3.2 x 10 (95% C.L.), (18a)

iypi & 9.3 x 10 (95% C.L.) . (18b)

VI. ATOMIC EDM'S ARISING
FROM NUCLEAR PNC

A one-body nuclear EDM will be generated by the di-
agram of Fig. 1(a), where the nucleus can be visualized
naively as the unpaired valence particle above a spin-
paired nuclear core. However, calculations of nuclear
EDM's generated by TRNI PNC interactions, such as the
8 term in the /CD Lagrangian, suggest the possibility
of a signi6cant many-body enhancement of the nuclear
EDM over its one-body scale [24]. To evaluate this pos-

where we have used sin Ogr ——0.22, ky ——280 MeV, and~ = 41A ~ MeV=7. 02 MeV. The notation "efF" signi-
6es that this limit has been obtained in an independent
particle model where the effects of short-range correla-
tions on the p-exchange potential are omitted. To deter-
mine the corresponding limit on g~, we evaluated a series
of shell model matrix elements of the Simonius potential
for harmonic oscillator states near the proton and neu-
tron Fermi seas, using both uncorrelated and correlated
two-nucleon wave functions. The correlation function
employed is that of Miller and Spencer [23]. Correlations
reduce the rms matrix element by a factor of 2.9. Thus
we conclude that the true TRNI meson-nucleon coupling
has the weaker upper bound

&ex)

h,

. TRNI
-' PXC

h,

FIG. 3. Illustration of the screening of the direction in-

teraction of the external 6eld vrith a nuclear EDM by the
polarization of the atomic cloud.

where (d) is the ground-state expectation value of the
nuclear dipole operator

sibility in the present case, we consider processes in which
the nucleus couples to an external electric field because
of the simultaneous polarization of the nuclear ground
state by the interactions of Eqs. (3) and (5) [Fig. 1(c)].

The task of estimating this second-order polarization
contribution is quite formidable. Unlike the calculation
in Sec. V, where the properties of the C1~ operator
limit the contributing TRNI polarization amplitudes to
those with long wavelengths, high momentum intermedi-
ate states contribute to the nuclear EDM. [Note that the
C15& operator, in a harmonic oscillator basis, generates
transitions with AN = 0 or 2, where N is the principal
oscillator quantum number. Thus, while TRNI ampli-
tudes with AN && 2 are produced when Vz acts on the
ground state, these do not contribute to the polarization
sum of Sec. V.] In the case of the nuclear EDM, however,
highly excited nuclear excited states can contribute be-
tween subsequent actions of V~ and V, considerably
complicating the calculation.

The direct interaction of a nuclear EDM with an ex-
ternal electric 6eld is almost completely screened by the
corresponding polarization of the atomic electrons, as il-
lustrated in Fig. 3. The residual interaction depends on
nuclear 6nite size e8'ects and on hyperfine interactions,
and can be expressed in terms of an efFective electron-
nucleus CP-odd interaction (in the interesting case of
8 ++ P atomic transitions):

H'~ = —4sn Vb(x)[ ( r2d) —ss(r~)(d)
(I)

+ hyperfine corrections],

(19)

~(2I+ 1)(I+1) (
) 1/2

"PXPH 7
TRNI, PNC

(2o)

Here pH (y) is the nuclear charge operator, the sum of the
usual charge operator [po (y) = g, z(l + vs(i)/2)b(y-
r(i))] and the TRNI one generated by the time compo-
nent of the current of Eq. (7), I is the nuclear ground
state spin, and

~~
denotes a matrix element reduced in

angular momentum. The notation ()TRNI, FNc is a re-
minder that only TRNI PNC terxns yield a nonvanishing
contribution to the matrix element. These come &om
two sources. The combined action of V and VPNc

P

[

in the nuclear wave function generate a nonzero matrix
element of the C1 projection of po, while the t 1 pro-
jection of the TRNI charge operator corresponding to
Eq. (7) is nonzero between unperturbed wave functions.
The TRNI and PNC nuclear polarization contribution in
the wave function is expected to dominate the dipole mo-

ment, and is all we consider in this section. The dipole
moment is multiplied by the normalized second moment
of the usual charge operator
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(I'x) = — I f d yy'prr (y) I)2I + 1
(21)

The remaining TRNI operator of Eq. (19) is the second
moment of the dipole density

1
(r d) =

g(2I + 1)(I+ 1)I

x(III f d yy'yprr(y)III)TRrrrrrrc , (22)

We note that quantity [(r d) —ss (r ) (d)] = Q is the Schiff
moment discussed in Sec. V.

To determine the scale of the SchiK moment for Hg
that would arise from the combined effects of V andV, we again appeal to effective operators. That is, we

evaluate ((i) and (r2d) in a mean field picture in which the
nuclear ground state is approximated as a single particle
outside of a closed core. The efFective operator corre-
sponds to the contraction

) (n]O,p]p)at ap —— — ) (nipiiV [alibi)at ap ag, a~, ) (n2]Oiip2)at ap,
aP ~1P1 &1~1 1 Yl &1 1 ~ p

x — ) (nspsiV ~~pshs)at, ap" as, a~,
~3P3 "Y3 2

63 + y3 CX3 P3

- quadruply contracted

+other time orderings

where Oi represents the dipole and r -weighted dipole

operators P, i 2rs(i)r(i) and P,. i r(i) +2' ' r(i) of
Eqs. (20) and (22). [Note that the isoscalar dipole op-
erator cannot cause intrinsic excitations: it is entirely

I

spurious. ] The contractions are performed by transform-
ing to particle and hole operators relative to a Fermi
sea, which for simplicity we chose to be spin and isospin
symmetric. While the contractions are somewhat simpli-

FIG. 4. Contributions to
the one-body nuclear EDM of
Eq. (23) corresponding to the
time ordering where the exten-
ral field acts between a PNC in-
teraction (single dashed line) in
the initial state and a TRNI in-
teraction (double dashed line)
in the final state.
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fied by the properties of V~ [see the discussion following
Eq. (15)], the evaluation of the full set of surviving terms
is a formidable task. The 36 diagrams that survive for
the operator ordering V OqV are given in Fig. 4,
while the corresponding diagrams for the effective TRNI
PNC potential due to the time ordering 0~V V
are given in Fig. 5.

The single-particle matrix elements corresponding to
these diagrams were evaluated numerically in a harmonic
oscillator basis by explicit summations over intermediate
states. The harmonic oscillator is convenient because it
provides a discrete basis as well as a nuclear size scale
(the oscillator parameter) on which matrix elements of
the dipole operators depend explicitly. The matrix el-
ements of V ~ and V can be evaluated with the
standard techniques of Brody-Moshinsky brackets and
Talmi integrals [25]. We included in these matrix ele-
ments a two-nucleon correlation function [23] to account
for the hard-core repulsion (or high-momentum interac-
tions) absent in the shell model. The summations are
convergent, but high-lying excitations must be included
to obtain reliable results. We included particle excita-
tions up to 12hcu 170 MeV above the Fermi sea, where
we found the results were stable to & 4'Po when an addi-

tional shell was added.
We are primarily interested in Hg, where the most

restrictive EDM limit has been obtained. This is an
odd neutron nucleus that can be described reasonably
by a Nilsson model with small negative deformation,
b —0.1. The levels near the neutron Fermi surface have
the 3pi)2, 3ps)2, and 2fs)2 shells as their spherical-limit
parents. Thus we focused on Eq. (23) for low angular mo-
mentum states, I =0—3. To help make the calculations
tractable, we chose relatively simple nuclear cores, eval-
uating the polarization sums for 28qg2, 1d3y2, and ld5g2
particles outside a 0 core and for 2ps)2 and 1fs)2 parti-
cles outside a Ca core. We chose oscillator parameters
for these cores of b = 1.7 f and 1.86 f, values correspond-
ing to realistic nuclear densities.

As the effective operator in Eq. (23) has J = 1, we
know its exact magnetic dependence; we can also de-
termine the exact isospin dependence &om proton and
neutron matrix elements. The goal of our work is to
complete the characterization of an approximate, eH'ec-

tive operator by deducing its form &om a limited set of
matrix elements. Helping us is the observation that as
meson ranges are small compared to the nuclear size, the
operator should depend on gross nuclear properties such

c '.X

]4

]

II +
ii IL

FIG. 5. As in Fig. 4, only for
an eHective TRNI PNC compo-
nent in the initial state gener-
ated by subsequent PNC and
TRNI polarizations. Only one
time ordering of the intearc-
tions is shown.
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as the density, a quantity that varies only gently with
Inass number A.

The obvious spin-space operators having positive par-
ity, J = 1, and no density dependence are cr (i) and

[Y2(O;)o (i)]i,. The former is strongest in the stretched
state (j = /+ s), while the latter vanishes for t = 0 and is

strongest for antiparallel states (j = / —s). The numerical
results are very nicely represented by the latter,

( b.', i (
d, (i) = (1.17 x 10 f)gp[Y2(O;) I83 cr(i)]g, — 0.85 + 0.021

(24)

where we have scaled the weak PNC couplings according
to the best values of Ref. [11]. The overall coefficient
of the f term (1.17 x 10 sf) varies by about +20%%uo

over the range of matrix elements studied; the overall
coefBcients of the vector meson contributions vary by less
than +10%. This effective operator predicts no s-wave
strength, consistent with the numerical result that the
matrix element for a neutron 28&i2 transition is 0.086
that of a 1d3i2 transition. No p-exchange tensor term
appears because it alone among the possible couplings
was not well represented by a simple effective operator.
[Note that its matrix elements were very small, so this is
of no consequence numerically. ]

In fact, all of the vector meson AI g 0 PNC cou-

plings make negligible contributions d;+. [This result
follows in part from the assumption of an isoscalar core.
Corrections proportional to (N —Z)/A will arise in a
more general treatment. See Ref. [11] for an analogous,
more general calculation in the case of PNC. ] Clearly the
strongest contributions come from hg and f in the case
of an odd-neutron nucleus. Thus Hg is a favorable
case for constraining g~.

The calculation was repeated for the second operator
of Eq. (19), r2d, with the pleasing and simple result

Q( Hg) = (
—1.3 x 10 f )gp

( h', i I' f„'i
X 0.85

I,ODDH I +,DDH)
(27)

Thus using the DDH best values, we conclude &om the
experiment result

ig i
( 0.013 (95% C.L.) (28)

a bound very similar to that found from the atomic PNC
calculation of Sec. V.

VII. LIMITS ON ]n] AND CONCLUSIONS

Direct tests of TRNI PC NN interactions have been
made, following a suggestion by Wigner, in compound-
nucleus studies of detailed balance and nuclear energy-
level Buctuations. Limits are usually quoted in terms
of the typical strength of TRNI PC nuclear matrix el-
ements to those of the residual strong interaction, a =
(HTRNg pc)/(H, q«~s). From detailed balance studies in
the region of overlapping compound-nucleus resonances,
Boose, Harney, and Weidenmuller [4] deduced

[r'(i)d. (')]'=1»"(i)d (i) (25) (99% CL) .

The uncertainty in the overall coefficient is +10%, that is,
each component in Eq. (24) scales in this way, with the
variations in the scaling coefBcient always lying within
10% of the average value 1.13.

Our approach was then to take this effective operator
and embed it in a more realistic calculation for Hg.
We adopted the Nilsson model, using parameters for the
valence shells taken from Gustafson et aL [26]. A defor-
raation of b = —0.1 was used, placing the valence neutron
in the [NnzAK] = [501—

] orbit. The resulting transition
density matrix then yields

(qj]d. ]qq} = (3.5 x 1O-")g,

where b 2 43f is the o. scillator parameter. Using the
same model to evaluate (r" } and employing Eq. (25), it
follows

French et aL [5] studied spectral fluctuations and
strength distribution in the regime of isolated resonances
in the compound nucleus. From the spectral Buctuations
they deduced

io.
i

( 2 x 10 (99% C.L.) .

Finally, we note that the limit from the neutron trans-
mission experiment exploiting the Bvefold TRNI PC cor-
relation [6] is

i~i ( 5 x 1O-' (95% C.r..) .

The connection between o. and g~ can be established by
considering NN matrix elements of the Simonius poten-
tial given in Eq. (5). These were evaluated for shells near
the proton and neutron Fermi surfaces in Hg (2dsi2,
1hii(2, 1hgg2, 3pii2, and liis)2) using a harmonic oscil-
lator wave function characterized by b = 2.43 f, as in
Sec. VI. As in our earlier calculations, we modi6ed the
two-nucleon densities by a correlation function to take
account of the short-range correlations missing from the
shell model. The result, averaging 41 nonzero matrix el-
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ements of V~(r) for gp = 1, is a rms matrix element of
3.6 keV. The scale of the matrix elements arises &om the
fact that TRNI p exchange is short-ranged (mp » ky,
the Fermi momentum) and proceeds, in leading order in
k~, by Pz ++ Pq transitions. Thus there is a natural
suppression (k~/m~) 0.09.

By evaluating corresponding strong interaction ma-
trix elements for Serber- YuhLwa and Rosenfeld potentials
[27], we determined [8] that the corresponding scale for
matrix elements of shell model residual interactions is

300 keV. We then deduce, from Eqs. (11), (18b), and
(28) the following bounds at 95% C.L.

or equivalently

0 64(f. / f (
neutron,

11 Hg, atomic PNC,

I0 46(&',/~' ")+ o 54(&-/& ")
I

Hg, nuclear PNC,

' 0.53(fD H/f
~

neutron,
3 9 3 Hg, atomic PNC

)gp) + 10 13
[0.46(Qo/Qs DDH) + 0.54(f /fDDH)

[

Hg, nuclear PNC .

The scale of the constraint &om the neutron EDM liroit
is thus about 10 . Although we have evaluated only
one of several possible hadronic loop diagrams in arriving
at this constriant, and although it contains some uncer-
tainty due to the loose experimental bounds on f, we
nevertheless consider it to set the scale of the neutron
EDM limit on ~a~ based on hadronic loops.

The limits &om the EDM of Hg, whether &om
atomic PNC or from nuclear PNC, are at ~a~ & 10
about a factor of 20 below the compound nucleus lim-
its. There appears to be no loophole for avoiding these
bounds. We note that, in contrast to the case where
nuclear and atomic EDM's are induced by TRNI PNC
interactions [24], the most stringent limits on TRNI PC
physics appear to be generated by the neutron EDM.

Our bounds have been established for interactions of
meson-exchange range. One expects TRNI to be gener-
ated at a more fundamental level by new weak interac-
tions mediated by boson exchanges of very short range.
This physics is buried within our effective coupling g~.
The virtue of g~ as a starting point for TRNI PC phe-
nomenology is that one can reliably relate this quantity
to observables, and thus quantitatively compare the sen-
sitivity of rather disparate experiments, such as TRNI
PNC EDM measurements and direct compound nucleus
tests of TRNI PC interactions. This has been the pri-
mary motivation for the work reported here.

For standard model interactions, such as hadronic par-
ity violation, one has a theory for relating underlying bo-
son couplings to those of mesons and nucleons. While for
hadronic PNC this relation is somewhat complicated by
strong interaction corrections, one has some con6dence
that meson-nucleon couplings can be estimated to within
factors of (1—3) [9]. The situation with PC TRNI interac-
tions is quite difFerent. As Herczeg, Kambor, Simonius,
and Wyler have shown [2], a general feature of renor-
malizable gauge theories with elementary quarks is the
absence of fIavor-conserving TRNI PC interactions that
are Brst order in the boson exchange between fermions.

Nevertheless, in analogy with the introduction of g~
at the meson-nucleon level, one can ass»me an efFec-

tive TRNI PC derivative boson-quark coupling. Using
such a starting point, Khriplovich [28] has made a di-
mensional estimate of the one-loop weak radiative cor-
rections through which an EDM could be generated. By
equating the scale of the radiatively induced TRNI PNC
quark-gluon coupling to neutron/atomic EDM's, he esti-
mates a bound on the TRNI PC boson-fermion coupling
of & 10t ~m2 ~ 10,a scale comparable to our neutron
EDM limit on n.

Later Conti and Khriplovich [10] argued that repre-
sentative two-loop corrections would permit the weak in-
teraction to contribute at full strength and thus be en-
hanced by a factor of a/~G~m

~
10, relative to the

one-loop corrections. This is clearly a short-range mecha-
nism distinct &om those we have considered here because
the two-loop contribution cannot be factored into a prod-
uct of weak PNC and TRNI PC interactions separated
by low-momentum states. Thus these bounds are not in
contradiction to our less restrictive results for long-range
mechanisms. In Ref. [10] two classes of two-loop dia-
grams are considered, corresponding to an attachment
of a gluon or photon, respectively. The former could
contribute to a long-range nuclear interaction of a dif-
ferent sort, associated with an induced TRNI PNC ver-
tex. The most restrictive bounds, which are derived &om
Fig. 1(a) of Ref. [10], then limit TRNI PC quark-quark
interactions that carry color. Limits from the remain-
ing diagrams [Figs. 1(b) and 1(c)] are about an order of
magnitude weaker, but constrain colorless TRNI PC in-
teractions. The diagrams involving the attachment of a
photon generate a quark EDM; here Fig. 1(a) contributes
for a colorless TRNI PC interaction.

These contributions involve a sum over fermions in a
closed fermion loop. Since fermions are ass»med to be
massless in the calculations of Ref. [10], the amplitude
for a single fermion carries no fermion mass dependence.
Thus, taking Figs. 1(b) and 1(c) as an example, the only
dependence on the species of fermion enters via the prod-
uct of the virtual fermion's axial vector coupling to the
Zo and its coupling to the X boson, which mediates the
TRNI PC quark-fermion interaction. Thus it is possible,
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depending on one's model for the latter coupling, that the
sum over fermions within a given generation may vanish,
in a manner analogous to the cancellation responsible
for Glashow-Iliopoulos-Maiani (GIM) suppression of the
EL, —Ep mass difference. Until a model for the X-quark
interaction is speci6ed and a complete two-loop calcula-
tion performed, it is difBcult to assess the plausibility of
such a scheme for avoiding the low-energy consequences
of these two-loop contributions.

In conclusion, we have considered neutron and atomic
EDM's that could arise &om weak radiative corrections
to TRNI PC interactions of meson exchange range. We
were able to make quantitative connections between these
indirect tests of TRNI PC interactions and the direct

ones based on detailed balance. The former appear to
be more restrictive by about two orders of magnitude.
Thus it would seem that direct tests of TRNI PC in-
teractions, such as those performed in compound nuclei,
cannot compete with the indirect constraints imposed by
the limits on neutron and atomic EDM's.
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