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We present our full analysis of the two flavor Nambu —Jona-Lasinio model with SU(2) xSU(2)
chiral symmetry on the four-dimensional hypercubic lattice with naive and Wilson fermions. We
find that this model is an excellent toy field theory to investigate issues related to lattice +CD. We
use the large-N approximation to leading order in 1/N to obtain nonperturbative analytical results
over almost the whole parameter range. By using numerical simulations we estimate that the size of
the 1/N corrections for most of the quantities we consider are small and in this way we strengthen
the validity of the leading-order large-N calculations. We obtain results regarding the approach to
the continuum chiral limit, the effects of the zero momentum fermionic modes on finite lattices, and
the scalar and pseudoscalar spectrum.

PACS number(s): 12.40.—y, 11.30.Rd, 12.38.Gc

I. INTRODUCTION

At present the low energy properties of QCD can only
be studied numerically using lattice gauge theory. It is
believed that in order to obtain reasonable results in rea-
sonable time periods the computing power needed is of
the order of one terafIop. Although supercomputers with
such capacity may be built in the next few years it is still
important to use other methods to get insights into the
physics as well as into the behavior of the theory on the
lattice.

The Nambu —Jona-Lasinio (NJL) model was introduced
before the discovery of quarks as a theory of nucleons
interacting with a four-Fermi interaction. Today the
fermionic fields of the model are reinterpreted as being
those of the quarks. The most important feature of the
model that qualifies it to describe some of the important
low energy properties of QCD is that it possesses the
same chiral symmetry as QCD and that this symmetry
can be realized in the Goldstone mode.

The NJL model can also be motivated by an argument
found in [1]. The gauge field in the full theory of QCD
develops a finite correlation length of the size of the in-
verse mass of the lightest glueball (( 1550 MeV, see for
example [2]). If we consider QCD on a lattice and inte-
grate the high momentum Huctuations of the fermionic
and gauge fields down to A ( 1550 MeV then the lattice
spacing will be of the order of the correlation length and
we must then essentially have a theory of fermions with
contact interactions and cutoff A. The resulting effective
Lagrangian will maintain the original chiral symmetry
but will of course be more complicated. If we further
restrict our attention to energies much below the cutoff,
naively speaking, it should be enough to keep in the La-
grangian the least irrelevant operator, namely, the four-
Fermi dimension-six operator. This is the NJL model.

Unfortunately, by only keeping the four-Fermi opera-
tor, valuable information was lost and the model does
not confine the quarks. Therefore, strictly speaking, it
cannot be a true effective field theory of QCD. Further-

more, if, for example, we want to study the o particle,
which on phenomenological grounds is believed to have
mass = 750 MeV, then the separation of scales is prob-
ably not large enough to justify the neglect of operators
with dimension higher than six. Nevertheless, as men-
tioned above, the NJL ~odel possesses the same chiral
symmetry as QCD and it can realize this symmetry in
the Goldstone mode. It is this feature that is most cru-
cial in the understanding of the lightest hadrons and the
reason for the successful quantitative predictions of the
model.

The NJL model has been studied extensively for var-
ious cases with continuum type regularizations. For a
comprehensive review the reader is referred to [3] and
references therein. Also for some recent work in the con-
tinuum see [4]. Furthermore the NJL model is a special
case of Yukawa models that, under a different context,
have been studied extensively with lattice regularization
[5]. The model has also been studied on the lattice [6] in
connection with the possible equivalence of the top quark
condensate with the Higgs boson field [7]. In that work,
however, the separation of scales is very large (the cut-
off is of the order 10i4 GeV), and it is therefore quite a
different problem than the one considered here.

In this paper we do not attempt to use the NJL
model to make physical predictions. Our interest in the
NJL model is purely qualitative and originates &om the
fact that its lattice version is an excellent toy model
to investigate issues related to lattice QCD. This is the
case primarily because it is an effective four-dimensional
fermionic theory that has the same chiral symmetry a~

QCD, which symmetry in an appropriate phase may be
realized in the Goldstone mode, and because one can use
the large Napproximation -to leading order in 1/N to
obtain nonperturbative analytical results over almost the
whole parameter range. Also by using numerical simula-
tions of the model one can estimate the size of the 1/N
corrections and in this way strengthen the validity of the
leading-order large-N ca1culations. As it will be shown in
this paper the 1/N corrections estimated in this way are
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small for most of the quantities we consider. This means
that one has a good analytical handle on the model. Be-
cause of this a wealth of information can be extracted.

For naive fermions we calculate the scalar and pseu-
doscalar spectra as a function of the cutoH'and find agree-
ment with general expectations. This is not perceived as
a quantitative prediction but rather as a first approxima-
tion to a physical picture. Purthermore, since the NJL
model possesses the right symmetry of a possible embed-
ding theory of the Higgs sector it can therefore provide an
interesting example of such a theory. We brieQy discuss
this possibility.

One of the main purposes of our work involves the
study of the Wilson formulation of lattice fermions. This
formulation breaks the chiral symmetry of the model ex-
plicitly. The symmetry is expected to be restored as a
result of the tuning of the Wilson parameter e to some
critical value e . Needless to say this is a very impor-
tant issue for /CD and it would be very useful to clarify
how it is realized in a simpler model. This involves, for
example, issues such as what the continuum chiral limit
on a lattice is and how does one define e, For W. ilson
fermions we also determine the effect of the heavy dou-
blers on the o particle. We show that the heavy doublers
raise the mass of the 0 to be of order cutofF.

Another issue investigated in this paper involves the
study of the efFects of the zero modes on finite lattices.
This is of particular importance to numerical simulations.
We demonstrate that in certain cases these eKects are
large and can obscure the extrapolation to infinite vol-
ume physics. We also estimate the size of the 1/N cor-
rections by comparing leading-order large-N results on
finite-size lattices with numerical results on the same size
lattices and find that in most cases the 1/N corrections
are small. This is of interest since, as mentioned above,
the NJL model has been and is studied extensively as
a phenomenological model using continuum type regu-
larizations and among other methods the leading-order
large-N approximation.

In this paper we consider the two-fiavor (up and
down) NJL model with SU(2) xSU(2) chiral symmetry
and SU(N) color symmetry, with scalar and pseudoscalar
couplings [8] on the four-dimensional hypercubic lattice.
We consider both naive and Wilson fermions and we
study the model using a large-N expansion as well as
a hybrid Monte Carlo (HMC) numerical simulation. A
shorter version of this work containing only the main re-
sults has appeared elsewhere [S].

Throughout the paper we use a notation whereby small
letters denote quantities in lattice units and capital let-
ters denote quantities in physical (MeV or GeV) units.
The lattice spacing is denoted by a.

The paper is organized as follows. The model and its
lattice version are described in Sec. II. The large-N anal-
ysis to leading order in large N is given in Sec. III. Us-
ing asymptotic expansions we study in Sec. IIIA the
case of naive fermions on an infinite lattice and present

I

results regarding the scalar-pseudoscalar sector of /CD
and brieHy discuss their possible relevance to the Higgs
boson sector. In Sec. IIIB we study the case of Wilson
fermions on an infinite lattice using asymptotic expan-
sions and present results regarding the approach to the
chiral continuum limit as well as the eH'ect of the dou-
blers on the scalar particle self energy. The numerical
and large-N work on finite lattices is described in Sec.
IV. We present there, in Sec. IV A, a comparison of our
numerical results with the large-N results obtained on
same-size lattices and obtain an estimate of the size of
the 1/N corrections. In Sec. IVB we examine the efFects
of the zero momentum quark modes on finite lattices in
connection to the inversion time of the conjugate gradi-
ent algorithm used in the HMC, and more importantly
in connection to finite-size eKects. We have recently be-
come aware that another group [10] has obtained com-
plementary results. In particular, for the case of Wil-
son fermions, the authors showed, using the leading-order
large-N approximation, that there is a phase where the
remaining Bavor-parity symmetry breaks spontaneously
generating a nonzero vacuum expectation value for the
pion field. Their work was done at infinite volume us-

ing numerical integration and among other things it was
shown that the phase line is a line at which all three pi-
ons are massless. This line was plotted for all efFective
quark masses. In this work we always stay on the sym-
metric side of this line where the vacuum expectation
value of the pion field is zero. At infinite volume, using
asymptotic expansions, we had calculated the part of this
line [Fig. 2(a)] that corresponds to small eH'ective quark
masses since this is the region where continuum physics
is extracted. Our calculations, up to errors relevant to
the approximations used, are in agreement. However, on
a finite volume the comparison is not as straightforward
and it deserves special attention. For this reason Sec.
IV C was added where the zero pion mass line on a finite
volume is discussed in detail. Finally, a short summary
and conclusion is given in Sec. V.

II. THE MODEL

The Lagrangian density in Minkowski space and in
continuum notation is

8 = @(iP —m, )%+ ' (@~)'+(%i~,r4)' . (1)

In the above expression all indices have been suppressed.
The fermionic field@is a fiavor SU(2) doublet and a color
SU(N) ¹olumn vector. The Lagrangian is diagonal in
color, in contrast with the full @CD Lagrangian which is
diagonal in fiavor. r = (ri, r2, rs) are the three isospin
Pauli matrices, P = p"8„,and mo is the bare quark mass
(if mo g 0 the chiral symmetry is explicitly broken). To
obtain a Lagrangian that is quadratic in the fermionic
fields we introduce the scalar auxiliary field o and the
three pseudoscalar auxiliary fields m' = jvri, n2, ms'. Us-
ing the functional identity [8]

exp i d x 44 + Cip57@ dodm exp i d x —4 o+ip5T ~ @—&f ] & +~
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the Lagrangian density becomes

2 = 4M% —n,fP, (o'+ ~'),
with Pq ——Pq/N and the trace taken over space, spin,
flavor, and color. The second is appropriate for numerical
simulations and is given by

M =if —mp —o. —ip5r ~ n. .

Here ny = 2 is the number of flavors and Pq ——

The fermionic Belds can now be integrated and the re-
sulting partition function is

g = d~dm detM Ne '"~~' " ~ ~ +

Notice that there is no explicit kinetic energy term for
the cr and m Belds. As we will show soon this term is
part of det M.

In the general case the fermionic determinant has a
phase that is related to the chiral anomaly and the Wess-
Zumino term [11]. In our work because the flavor space
is restricted to SU(2) the phase is not present and we will
write our action in a symmetric fashion with regard to
M and Mt. Going to Euclidean space and appropriately
discretizing the above Lagrangian we obtain the model
on the Euclidean hypercubic lattice. On the lattice, as it
is well known, we have species doubling. The doubling
in the NJL model will be interpreted as a doubling of the
color degrees of f'reedom. To treat this problem we add
to the Lagrangian density an irrelevant operator (Wilson
term) of the form 2" 482@, a being the lattice spacing
and r a constant. We consider the r = 0 case where no ef-
fort is made to remove the doublers (naive fermions) and
also the r g 0 case where the doubler masses are raised
to the cutoff (Wilson fermions) and the chiral symmetry
is explicitly broken. With these considerations and after
appropriate scaling of the Belds and couplings, so that
only dimensionless quantities appear, we obtain

Z = deed%'dodm e

Z = dxdXtd~dm e-s',

N/2

So = ) ) (X.'yStnS(.-„'X„*)
x,y i=i

+ntP, (o.' + n„')t' „I
with X being pseudofermionic Belds.

III. LARCE N

(T(z) = cr, +, m(x) =6o.(z) 8m(x)

N N
(8)

In momentum space the inverse quark propagator at
the saddle is

We perform a standard large-N expansion with the
action of Eq. (6). The large-N approximation will be
reasonable for as long as Pq is of order one. We as-
sume a translation invariant saddle and small fluctua-
tions around it. For the case of naive fermions using the
chiral symmetry we rotate the Gelds so that the saddle
field conBguration lies along the fT direction. For the case
of Wilson fermions the chiral symmetry is broken and the
saddle Beld conBguration lies along the 0 direction. As
was shown in [10], the remaining parity-flavor symmetry
can spontaneously break generating a nonzero vacuum
expectation value for the pion Beld. However, in this
work we will always stay in the parity-flavor symmetric
phase where the pion Beld has zero expectation value.
We have

Nj2

g —) ) (y'M @' y'+ 'Mt @'+ t')
&,y 4=1

+ otal, (o.' + n'. )t'.o I,
1

M*v = 2) [h'~ —&)~+~,v —(~~+r)~*-~,wl

+(4r + mp + o +ipse ~ r)b „,
with p& Hermitian. This partition function can be cast
into two di6'erent forms. The erst can be studied using
a large-N expansion and is given by

Z = dard' e

M, (p) =i ) p„sinp„+r 4 —) cosp„+mp+o, .
P

We identify
O+ Crs = mq

as the quark mass. This de6nition is valid close to the
continuum limit where mq is small. It must be pointed

out that mq is the constituent quark mass since all high

energy gluonic degrees of freedom of QCD have been in-

tegrated out. In physical units the quark mass will be
taken to be equal to one third the proton mass.

bo (z)
We expand around the saddle (expansion m

~1*'). Th ood g th ff t pot t 1

S1 = N —
21 Tr lnM —

21 Tr lnlt
(6)

N
= —2ny ln [g(p, m~)] + nyPgcr, ,

+nttti) (o'+n')), where J' = I & ~" 1, for an infinite lattice (B de-

notes the hypercubic lattice Brillouin zone) and Ip
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„& with ni, n2, ns E [0, I~ —1], n4 C

] an ~ 'L L. L. L. L,
lattice with spatial extend I and temporal extent Lq.
In the above equation g(p, mz) is defined as

g(p, mq) = ) sin p„+ [rui(p) + mq]
V

= p'+ m,'+ O(p'm, )
2

ur(p) =4 —) cosp„= —+O(p ) .

The saddle point equations are obtained at the point
where the linear term vanishes:

Pg o, + me+ rur(p)'
2 „g(p,ms+ o.,)

(is)

The o and n' propagators G (q) and G (q) can
be obtained &om the second order term of the
expansion around the saddle 2 j bo'(q)G bo (—q) +
2 f bm(q)G ibm'( —q) with

(i4)

sin(k+ ~) sin(k —~) +/ — rui(k+ ~~) + m, ru~(k —,) + mq

{k+ ~, )g(k

~ ~

We define the pion wave function renormalization con-
stant Z and pion mass m &om

lirnG (q) =Z (q +m )
qmG

(16)

With this definition we find using Eqs. (14) and (15)

cos k~ + r sin k~

2 „ g(k, m~)2

Pl 1

2 „g(k,mq) I)

G q= im + —,000 =0

and we cannot obtain closed form expressions for m and
p~ 0

On a finite lattice the finite momentum sums can be
calculated with the aid of a computer and the above
quantities except p can be exactly determined. This
will be done in Sec. IV A when we will compare the nu-
merical results obtained on a finite lattice with the large-
N predictions for the same lattice size. For an infinite
lattice the momentum integrals can be evaluated numer-
ically but this will not serve our purposes since we are
interested in obtaining analytical expressions. For this
reason we resort to performing asymptotic expansions in
small mq, m, m, and q, considering the logarithms as
being of order zero. The asymptotic expansions will be
given separately for the r = 0 and r g 0 cases in the next
two sections.

Notice that Z is positive and therefore does not create
local stability problems (the propagator is positive). Also
notice that with this definition of the pion mass, m will
be the true pole of G only if m is small. For the cases
we are interested in this will always be true. Unfortu-
nately we cannot define the o mass m and width p in
a similar way since m will not be small in general. The
proper definition in this case is

A. Naive fermions at infinite volume, v = 0

In this case we have species doubling. The doubling is
interpreted as a "doubling" of the color degrees of &ee-
dom. That this interpretation is appropriate can be seen
from Eq. (11). For r = 0 the function g(p, m~) of Eq.
(12) is periodic with period vr and not 2vr. This means
that the integral in Eq. (11) splits into 16 equal pieces
and therefore the effective potential will be made up &om
16N copies. Therefore we set the number of colors N, to

N, = 16N (20)

Some of the typical integrals we will encounter are

1

„g(k+&, m~) g(k —
&2, m~)

(2i)

Simple trigonometric relations relate these integrals with
the corresponding integrals that arise for Bose particles.
We get

J„(m) = 16 (4" J„(2m))

Io(q, m) = 16Io (2q, 2m),
(22)

where J„and Ie are defined as in Eq. (21) but with

g(k, m) = 2 P„[1—cos(k„)]+m the inverse propagator
of a bosonic particle. The asymptotic expansions of J&
and J2 have been evaluated to leading order in mq with
very accurately determined coefficients in [12] Appendix
B. The leading order term of IG is universal except for
a lattice constant. For example, it has been evaluated
for the F4 lattice in [1S]. The lattice constant needed
also appears in the leading order term of the asymptotic
expansion of J2 and for the hypercubic lattice can be
taken from [12]. For the convenience of the reader we
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present these results below:

Ji (m) = r p + m (ri + silnm ) + O(m ),

1

Ip (q, m) = —si ds ln[m + s(l —s)q ]
0

—(r, + s, ) + O(m2) + O(q2),

(23)

with

rp = 0.154 933 390,
r~ ———0.030 345 755,

1

16vr2
Sy

(24)

Pi ——2Ji(0) = 8rp . (25)

Because r = 0, if we set mp ——0 the chiral symmetry is
not explicitly broken. In that case there are two solutions
to the saddle point Eq. (13), namely, cr, = 0 and cr, P 0.
For pi ) pi, the dominating saddle is 0, = 0 and we
are in a chirally symmetric phase with massive o. and ~

fields

and

massless

quark m~ = a, = 0. For pi & pi. the
dominating saddle is o, g 0 and we are in a phase with
spontaneously broken chiral symmetry. The pions are
the Goldstone bosons and become massless. The sigma
is the massive mode and the quarks acquire a dynamically
generated mass m~ = o, g 0. The critical value of Pi is

All of our analysis will be done in the broken phase.
The asymptotic expansion of G (q) is

G (q) = Z m +4nyq (2Ie(q, m~) —i Ji(0)j
+O(q ) +O(m q ), (26)

where only the leading order term of Z m and Ip
is to be kept. The coefBcient of the q term will be
equal to Z for q —+ 0. The pion mass should sat-
isfy G (q = (im, 0, 0, 0)) = 0. To this order in the
asymptotic expansion this will be true only if the co-
efficient of the q term for q = (im, 0, 0, Oj is very
close to Z . From the asymptotic expansion of Ie(q, m~)
[Eqs. (22) and (23)] we see that this will happen for
m s(1 —s) (( m2 where s F [0, 1]. Therefore for this
definition of m to be valid we must not only demand
that m is small, as mentioned in the previous section,
but also that

m„' g& 4m,'

For all the cases we will be interested in this will be
satisfied. For example, with Mq ——310 MeV and M

M140 MeV we get 4M,
——0.054.

Equation 17 can be rewritten in the form

Z = —(4 + m~) J2(mv) —Ji(m~) . (28)

Using Eqs. (22), (23), and (28) we find the leading order
term of the asymptotic expansion of Z:

Z ' = 16[zo —z, lnm,'],
rp

zp = —2n~ —+ rq + sq + syln4 for ny ——2, zp ——0.022 204 130,
16

zy = 2nysy

(29)

As mentioned in the previous section Z is always posi-
tive and does not create local stability problems. From
the above equation we find that Z will become negative
if m~ ) exp 2" 1.55. This provides us with a point
above which the small mq approximation is certainly not
valid. In our analysis we will never need to be close to
this point. However, the above equation has a much more
important consequence. It can be shown [8] that the pion
decay constant f is related to mz and Z via m.' = 4nqz. ' J, (m, ),

mq —mp
(32)

boson being a top quark condensate, we point out that
similar considerations as in the previous paragraph can
be used to estimate the cutofF of such a theory. With
N, = 3, ny ——1, I" = 246 GeV, Mq = 170 GeV we
obtain A = 3 x 10' GeV. This is consistent with the
much more complete and detailed analysis of [7].

Equation (18) can be rewritten in the form

f =Nm Z„'

Using Eqs. (30), (29), and (20) we get

= N, [z ezilnm ]
mq

(30)
where the saddle point Eq. (13) was used to eliminate

pi. Using Eqs. (32), (23), and (22), we find the leading
order term of the asymptotic expansion of m

(mq —me) [ze —zilnmz]

ThenwithN =3 n =2, ~ = + = '+ =03
and with mq ——Mqa, A = —we find A = 1150 MeV. This
is consistent with the expectation that the cutofF of the
theory should be & 1550 MeV (the mass of the lightest
glueball [2]).

Although, as mentioned in the Introduction, it is not
the aim of this work to study the possibility of the Higgs

Notice that when the chiral symmetry is not explicitly
broken, namely, mp ——0, then in the broken phase where

m~ —mo ——~, P 0, m = 0 as it should.
Next we concentrate on m and p . Using the saddle

point equation (13) to eliminate Pi and Eq. (29) the
leading order term of the asymptotic expansion of the
inverse sigma propagator of Eq. (14) is
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N, (zo —z~lnm~Pm~ 4-4nI —(4 +4m )Io (24, 2m&) ——4 ) +O(q )+O(m )+O(q m ), (24)

1000 I I I I I I I I

800

600

where only the leading order term of Io given in Eq.
(23) is to be kept. The leading order term of Ig contains
a ln( —1) that we take to be equal to +i+ (taking it to
be equal to —iver results to a negative width). Using the
above equation and the de6nition 19 we can calculate m
and p~. Because we cannot get a closed form expression
we solve numerically and the result is shown in Fig. 1.

From Fig. 1 we 6nd that if we set the quark mass to
one third the proton mass Mq —-—310 MeV then M~ =
726 MeV, I' = 135 MeV, and A = x/a = 1150 MeV.
M is consistent with phenomenological expectations and
as mentioned earlier A is consistent with the expectation
that the cutoff should be close and below the mass of
the lightest glueball (1550 MeV). The width however is
underestimated. The reason is traced to the fact that to
leading order in large N the width receives contributions
only &om the quark bubble and not &om the pion bub-
ble because the pion bubble is of order 1/N. Because the
phase space available for the cr to decay to two quarks is
much smaller than the phase space to decay to two pi-
ons, the pion loop contribution, although of order 1/N,
is probably more important than the quark loop contri-
bution.

The above result can also be used to make an inter-
esting observation. If the Higgs boson sector is the low

energy effective field theory of a NJL model with ex-
actly the same parameters as the low energy /CD ex-
cept for M = 0 and E = 246 GeV, then we find
M = 1915 GeV. This corresponds to m = 2 where one
would expect very large deviations &om the low energy
behavior of scattering cross sections. Although we have
not calculated these deviations the value of the width
serves as an indication of their size. In a way, departure
&om low energy behavior will be signaled by an increas-

ing width of the o to two quark decay. At m —2 the
width is already fairly large.

As a 6nal comment notice that close to the continuum
limit and by setting the renormalization point of the in-
tegral Ig in Eq. (34) at q = 0 we obtain

(35)

In this case the doublers have been removed by raising
their masses to the cuto8'. The chiral symmetry has been
explicitly broken by the Wilson term and the pions are
massive. The number of colors is

N, =N (36)

Some of the typical integrals we will encounter are

u) (k)"J„(mq) =

1
Ip(q, mp) =

„g(k+~2 mv)g(k —&, m~)
'

(37)

Unfortunately there are no simple trigonometric relations
that relate these integrals with the corresponding inte-
grals that arise for Bose particles as in the r = 0 case.
We will need the asymptotic expansions of Jo q, Jq q to

2
'f t

order m and the leading order term of J02 . We have
calculated them and the result is given in Appendix A.
We will also need the leading order asymptotic expan-
sion of the Io integral. This, up to the lattice constant rq
that needs to be calculated and is given in Appendix A,
is the same as the leading order term of Ip in Eq. (23).
Some of the lattice constants that we will need can be
parametrized as

where we have used the definition of Eq. (19). This is
the result obtained in the literature with continuum type
regularizations (see for example [8]). This result, because
of the off-shell renormalization point, is only approximate
and also neglects the contribution of the quarks to p .

B. Wilson fermions at infinite volume, r g 0

400 a„=J„(0), m —n& 1. (38)
b

200
In our analysis only few of them appear and we have
calculated them for r = 1 and r = 0.1. They are given
in Appendix A together with the constants

FIG. l. r =O, N, =3, F =93MeV, andM =140MeV.
From top to bottom the lines correspond to the cr mass, quark
mass, and cr width calculated in the large-N approximation
to leading order in mq. The vertical line denotes the point
where the quark mass is equal to 310 MeV.

o-(' —'), (,.)I,4
+ 16~2

1
16m2 '

where 0 is the step function.
The asymptotic expansion of G ~(q) is

(39)
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G (q) = Z m +4rtyq —Ip(q, mq) + ap y—(" ) r'(r' —1)
az z + O(qs) + O(q'mq),

where only the leading order term of Z m„and Ip is to
be kept. The same restrictions on m as in Eq. (27) are
needed.

The leading order term of the asymptotic expansion of
Z~ 1S

Z ' = [zp —zglnm ],

1 —r r(1 —r)
zp ——2ny r~+ 8~+ apl

and m go to zero. This point is

a1,1

ap, 1

2&,rag g
~chirai

mp
(47)

and all physics should be extracted at the vicinity of this
point.

Using the asymptotic expansions of Eqs. (13) and (42)
to order m~ we plot for small mq and m~ the constant
mq and constant m lines for r = 1 in Fig. 2(a) and for
r = 0.1 in Fig. 2(b). The two figures are qualitatively
the same with the mq ——0, m~ = 0 point shifted toward

for nf ——2, r = 1, zp = 0.0223,

Zy = 2Afsy (41)
0 45

Notice that for r = 1, zp has a value that is very close to
the one of the r = 0 case. Because of that and since zq

is universal all the discussion relating to Eqs. (29), (30),
and (31) is also valid here.

Equation (18) can be rewritten in the form
0,40

m = 4ngZ [mp Jp g(mq) + rJ, g(mq)], (42)2= 1

mq —mp

where the saddle point equation (13) was used to elim-

inate Pq. The leading order term of the asymptotic ex-
pansion of m is

4Af mpap y + Tag y
m~ = +0m,

(m, —mp) [zp —zglnmz]
(43)

0 30
0.25 0.30 0.35 0.40 0.45

p)

We are now in a position to investigate the approach
to the continuum chiral limit. The theory has two ad-
justable bare parameters, Pq and mp. The parameter
mp is related to the more familiar hopping parameter K

(often used in /CD) by 40—
1

8r + 2mp
(44)

The two bare parameters control mq and m~ through
Eqs. (13) and (42). The following statements can be
made. (i) The mq = 0 line where the continuum limit is
retrieved is defined by

20—

2N rag gg+ ' =0.
mp

Q

1.8 2.0 2.2 2.4

(ii) For any mq, mp can be adjusted so that m = 0.
The m = 0 line is given by

mp~p, l (mq) + &Jg, j (mq) = 0

As was shown in [10] this line separates the Savor-parity
symmetric phase &om the Havor-parity broken phase. In
this work we always stay in the symmetric phase. (iii)
The continuum chiral limit is obtained when both mq

Fl~. 2. (a) The pi, s = 1/(8 + 2rno) plane for r = 1.0,

N = 2. The solid lines are constant m lines. From top to

bottom they correspond to m = 0, 0.1,0.2, 0.3. The dotted

lines are constant m~ lines. From right to left they correspond

to m~ = —0.2, —0.1,0.0, 0.1, 0.2, 0.3. The m~ = O, m = 0

point is located at P1 h, i
= 0.3416, Kehiral = 0.3994. (b)

Same as in (a) but for r = 0.1. The mq = 0, rn = 0 point is

located at Pi ——2.1492, tc = 34.843.
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larger ic and Pi. In fact as r —i 0 it can be easily shown

that Pi —i N/ji, where Pi is the critical value of the
r = 0 case [see Eq. (25)], and ic -+ oo. From Eq. (43)
we find that as m~ ~ 0 also m 1/lnm~ —i 0. This
implies that the mq ——0 line is also an m = 0 line. This
behavior is apparent in Figs. 2(a) and 2(b). However,
this is an artifact of our approximation in defining m
As mentioned earlier [see the comment after Eq. (40)]
our definition of m~ will be valid only if m (& 4m
which cannot be satisfied on the mq ——0 line except on
the one point where it intersects the m = 0 line. The
constant m lines are therefore valid only in the regions
where m && 4m . To get the full constant m~ lines a
more detailed analysis would be necessary

From these figures we see that if for a fixed Pi we were
to change e from smaller to larger values (as is often done
in /CD with dynamical Wilson fermions) then if )gi (
Pi „, , we would reach the m = 0 limit before we reach
the continuum limit. On the other hand if Pi ) Pi „,

we would reach the continuum limit before we reach the
m = 0 limit. As mentioned in (iii) above, there is

only one point in the Pi, Ic plane where we can obtain a
continuum chiral limit.

Using the saddle point Eq. (13) the chiral condensate
is found to be

(0 4) = —2Pi(m~ —mp) = 2—Pio,
Af

(4S)

and it is not zero when m~ = 0 and/or m = 0. There-
fore it cannot serve as an order parameter for Wilson
fermions. On the other hand when r = 0 and mp ——0
(il)'@) is an order parameter because 0, is an order pa-
rameter.

Next we concentrate on m and p . The leading order
term of the asymptotic expansion of the inverse sigma
propagator of Eq. (14) is

M2
G (p) =

o N[zo —zzlnm ) m +4zoo —
(p +4m )Io(qmo)+p +oRoo+ oB m+ ooBm+ zBqoI

+ O(q ) + O(m ) + O(q m~) + O(qm ) (49)

where only the leading order term of Ip is to be kept. Rp, Rz, R2, and R3 are lattice constants defined below:

Rp ——2r a2, 2)
2 Rg ——4rag2 —Sr a33 R2 —24r a44 —20r a233 4 2

R3 ———r2 —1 r2

16 4 i, g4(k, 0)
Rp —— ) sin k„g(k, 0) —2r u) (k) —2ii)(k) cos(k„) (50)

m Rp2 (51)

Rp, Ry, R2 can be calculated Rom the a„'s. R3 has
to be calculated separately and is given in Appendix A.
Notice that Rp, Rq, R2, and R3 go to zero for vanishing
r.

It is immediately apparent that the Rp and mqR&
terms do not scale appropriately. As a result

sponds to a bubble integral with two external legs 0 (q)
and 0(—q) and two quarks fiowing in the bubble with
momenta k —q/2 and k + q/2. Now, each species has
momentum that belongs in a section B;, i = 1, 2, . . . , 16
of the Brillouin zone B with extent x/2 and —z'/2 &om
the origin in each direction (see the first two columns of
Table I). For small q both quarks will have momentum

TABLE I. The masses of the 16 species for small r.
and therefore M is of order cutoff. For the NJL model
at large N we can trace the reason for this phenomenon
and offer an exact answer. Such a phenomenon may also
be responsible for the diKculty in observing a o. particle
in numerical simulations of @CD with dynamical Wilson
fermions.

First we realize that although the Wilson term has
raised the doubler masses to the cutoff, the doublers
have not disappeared and they can possibly contribute
through vacuum polarization effects. We must then try
to separate their contribution. Toward this end consider
the defining equation of the o propagator Eq. (14). The

M
Pi/2 term contributes to the &,"m term of Eq. (49).
This term scales "correctly" and it will not concern us.
We focus on I of Eq. (15). I (q) Re Tr I& M, (k-
z2)M, (k+z2) where M, (p) is the quark propagator at the
saddle point and is given in Eq. (9). This integral corre-

"Brillouin zone"
Bg
B2
B3
B4
B5
B6
Bg
Bs
Bg
Bio

Bg3
Bg4
Bg5
Bg6

Origin
0000
vr 000
Om00
00m 0
0 0 0 7r

ma 00
vr Ovr 0
vr 00vr
0 vr vr 0
07rOm
00vr vr

Our ~m
vrOm vr

vr m Ovr

vr srvr0

Species mass +O(r )
my ——0

m2 =2r
m3 =2r
m4 —2r
m5 —2'r

m6 ——4r
my ——4r
ms =4r
mg ——4r
myp ——4r
my( ——4r
my2 ——6r
mg3 ——6r
m(4 ——6r
m(5 ——6r
my6 ——8r
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around k and we can then separate the contributions of
each species by splitting the integral into the 16 regions
B;. This way we can isolate the contribution to each
term in I from the propagating quark and the 15 dou-
blers. We will only discuss the contributions to the Rp
term since m Rp, but similar arguments hold for the
Rq, R2, and R3 terms.

Prom the de6nitions in 50, 38, 37 and splitting the in-
tegral into 16 regions as described in the previous para-
graph we obtain

2 ). xs(k)2

xx g„(k, O)
(52)

where we have explicitly denoted the r dependence of
g(k, 0). It is immediately apparent that the contribution,
Rp', form the Bz region where the propagating quark
lives is not zero. Therefore we cannot attribute the whole
Rp term to the doublers.

The contribution of the propagating quark comes from
the high momentum section of the Bq region. To see this
consider a spherical section M mq centered around
the origin (0, 0, 0, 0) of Bx. We have

~ g„(k, 0) xx, „m g„(k, 0)

Since W(k) k and g„(k, O) k2 [see Eq. (12)] we find
m(k) 4

(I p) Q mq and there fore

xx, „~g„(k, 0)' (54)

r(p) = 0 if p c Bx,

r(p) = r if p c B2, Bs, . . .Bxs .
(55)

Then

Rp =2 xU(k)
2

g„k, 0 2

= 2r
xs(k)

xx g„(k, O)2
(56)

and the 0 mass m Rp will be composed entirely from
contributions due to the doublers.

The above discussion can become more transparent for
r (( 1. The masses of the 16 species are the roots of
g„sin k„+ r2(4 —P„cosk„)2. For small r they are
given in Table I.

We calculate the leading order term of the asymptotic
expansion of Rp in m; and 6nd

The Wilson term has not only raised the masses of the
doublers but has also changed the high frequency behav-
ior of the propagating quark. In a bubble integral this
change is visible.

We could contrive a Wilson term that will raise the
doubler masses but not change the high frequency be-
havior of the propagating quark. This can be done by
introducing a momentum dependent r such that

xs(k)'

xx, g„ p(k, 0)2
16

—2 ) m2 [rx + sx + sxlnm2 + O(m4) (57)

with rx and sx given in Eq. (39). The first term comes
because of the change of the high frequency behavior of
the propagator of each species. The second term clearly
shows that m2 can be written as a sum over the doubler
masses squared.

IV. NUMERICAL AND LARGE N VfORK ON
FINITE LATTICES

A. Numerical results and large N

In this section we present our numerical results for N =
2 and we compare them with the large-N predictions

We simulate the action in Eq. (7) for N = 2 using
a standard hybrid Monte Carlo (HMC) algorithm [14].
We use the conjugate gradient (CG) algorithm without
preconditioning to invert the matrix MtM and the leap-
frog algorithm to integrate the equations of motion. We
measure expectation values of operators that involve the
0 and m 6elds as well as operators that involve the pseu-
dofermionic 6elds or traces of appropriate combinations
of the matrix M.

The reader will realize that the matrix M of Eq. (5)
of the NJL model does not provide any signi6cant ad-
vantages as far as inversion time is concerned over the
matrix M of full @CD. The CG will be as time con-
suming as in full /CD. The advantage comes because of
another reason. Since the cuto8' of the NJI model is at
& 1550 MeV and since we will want to look at energies
around the pion mass we are dealing with a ratio of scales
= A/M = 10. Therefore we should expect that lattices
of size 164 should be large enough for this purpose. These
size lattices can be simulated in 1/4 of the 64K processor
CM-2 supercomputer at SCRI in a reasonable amount
of time. Although this was the original justi6cation for
performing the numerical simulation it turned out that
the numerical results had a more important consequence.
As we will demonstrate in Sec. IVA the numerical re-

sults on a given 6nite-size lattice are in good agreement
with the leading-order large-N results on the same-size
lattice, indicating that the 1/N corrections are small for
the quantities we were able to measure.

The large-N results on 6nite-size lattices are obtained
by explicitly performing the four-dimensional 6nite mo-

mentum sums on a workstation.
Some of the typical parameters of our numerical sim-

ulation are trajectory length 7. = 1, step size dw

0.02 —0.05, CG residue 10,CG iterations 20 —160, ac-
ceptance rate ) 90%, measurexnents per "point" 100,
autocorelations 2 —10, time for one CG iteration for a
16 lattice on 16 K processors of the SCRI CM-2 1.3
sec.
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FIG. 3. r=O, mo=O, N=2, L =8, Lt, ——16. The
diamonds are the values of mq and the crosses are the values

of m~ = {—N(tptlt')/(2pI)) + mo from the numerical simu-

lation. Because of the functional identity, Eq. (2), the two

quantities are expected to be equal. The solid line is the
large-N prediction on the same size lattice. The dotted line

denotes the infinite volume Pq, from the large Ncalcu-lation.
For PI & Pq. the model is in the broken phase.

2.0

2 1.0—
E

0.5—

Q Q i I I I I I I I

FIG. 4. Same as in Fig. 3 but for the U(2) x U(2) NJL and
for r = 1, L~ ——8. Notice that the diamonds and crosses are
almost identical.

(scaled to N = 2 when necessary) on same-size lattices.
To check for consistency of the fermionic and auxiliary

fields we plot ms and m' = {—N(hII'III)/(2p~))+me vs py
as determined from the numerical simulation. Because of
the functional identity, Eq. (2), we should have mz ——m' .
This relation is satisfied nicely.

The agreement with large N of dynamically deter-
mined quantities vs bare quantities is quite good and
helps us to get oriented in the bare parameter space.
This can be seen for various values of the parameters in
Figs. 3, 4, 5, and 7(a).

The important comparison with large N that will help

FIG. 5. r = 1, Pq ——2.5, N = 2. The diamonds are the val-

ues of mq from the numerical simulation for L = 8, Lz ——16.
The solid line is the large-N result on the same size lattice.

us get a feel for the size of the 1/N corrections comes
&om comparisons of dynamically determined quantities
vs other dynamically determined quantities. In particu-
lar we exchange one of the bare parameters for (o').

In Fig. 6 we present the 0 and m propagators in mo-

mentum space for ten small momenta and r = 0. It is
&om this figure that we would have to extract Z . As it
can be seen the large-N prediction for the same (0') as the
one measured in the simulation is in good agreement with
the numerical results. The large-N predictions in Figs.
6(a)—6(d) "fit" the numerical results with y2 per degree
of &eedom 0.38, 0.67, 0.32, 0.42, respectively. This means

that the determination oi f„= (o)II o as a function of

(n) has small 1/N corrections.
Another dynamically determined quantity that agrees

well with the large-N prediction when plotted vs (o) is
the pion mass m . This plot is shown in Fig. 7(b). This
figure suggests that the 1/N corrections to m are fairly
small. In this figure, as well as in Fig. 7(a), m was not
calculated &om the definition 16 but as the imaginary
pole of G [see Eq. (14)j.

It should be noted that the good agreement of the
large-1V results with the numerical simulations is not only
present for naive fermions where the number of species is
16 times larger and therefore one would have naively ex-
pected the leading-order large-N expansion to be a good
approximation. It is also present for Wilson fermions

(r P 0) as it can be seen from Figs. 4, 5, 7(a), and 7(b).
Finally, as discussed in detail in Sec. IIIB, for r g 0

the 0 mass is of order cutoH' and therefore very heavy to
be able to measure &om the decay of the o —o correlation
function. However, for r = 0 one would expect to be able
to measure m . As we will discuss in the next section this
is not possible with the lattice sizes accessible to us. This
is unfortunate since m is another very important quan-
tity. However, we expect the size of the 1/N corrections
of m to be similar to the ones of m and therefore fairly
small. Also, measurements of the sigma width were not
performed, but, as discussed in Sec. III A, we expect the
1/N corrections to the width to be fairly large.
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FIG. 6. (a) The cr propagator in momen-
tum space for 10 small momenta with r = 0,
mo = 0, p, Mo

——2.2, (o') = n, = 0.4840,
N = 2, L = 16, L~ ——16. Thecrossesarethe
values &om the numerical simulation. The
diamonds are the large-N results and "St"
the numerical results with a y /Nnp = 0.38.
(b) Same as in (a) but for PqMo = 2.4,
(o) = rr, = 0.35. The large-N results "St"
the numerical results with a g /Nnp = 0.67.
(c) Same as in (a) but for the pion prop-
agator. The large-N results "St" the nu-
merical results with a g /NDp = 0.32. (d)
Same as in (b) but for the pion propagator.
The large-N results "St" the numerical re-
sults with a y /Nnp = 0.42.

0
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0 ~ 5 I I I 1 B. The sero momentum mode of the quarks

To leading order at large N the matrix Mt M of Eq. (5)
is diagonal in momentum, spin, Savor, and color spaces:

= ) sin p„+ mz+ r 4 —) cosp„

+0(]./N) .

- 2

0 0 I I

0, 125

0 ~ 5 I I I I

0.130 0.135 0.140 The smallest eigenvalue of this matrix is ms and corre-
sponds to the p = 0 matrix element. This in turn corre-
sponds to the zero momentum modes of the quarks which
from now on we will simply refer to as "zero modes. "

For small mq the condition number c of this matrix is

4
c for r =0, c

2mq

64r
2

for r =1.
mq

(59)

0.2—

0.1—
(b)

0.0
0.35 0.390.380.37

(o)
FIG. 7. (a) Pq = 2.5, r = 1, N = 2, L = 8, Lq ——16.

The crosses are the MC data. The solid line is the large-N
prediction on the same size lattice. (b) Same as in (a) but as
a function of (o).

A large condition number will make the inversion of
MtM very slow. An important observation can be made
by noticing the dependence of the condition number on
r. This suggests that performing the simulation with
smaller r will yield a quite faster inversion. It is possible
that this may also be the case for /CD.

But the unwelcomed eRect of the zero modes on a finite
lattice is not limited to large inversion times. Because on
a Bnite lattice their sects are not suppressed by the mea-
sure but instead by an inverse volume factor, it turns out
that in certain cases they severely obscure the physics.
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In Fig. 8 we plot m~ = (o) vs Pi for r = 0, mo ——0,
L = 8, and Li ——16 (same as Fig. 3). By simply
looking at the numerical results we would not only be
unable to estimate the critical point but also we would
be unable to see any indication of a phase transition. The
large-N result on the same-size lattice also has the same
problems. As we increase the lattice size in the large-N
calculation (solid lines from top to bottom) we see that
a picture of an order parameter slowly materializes. At
L = 64, Lq ——64 a fairly good prediction of the large-
N infinite volume critical point is achieved. If we now
do the same large-N calculation but neglect &om the
momentum sums the zero modes, we obtain as a result
the two dotted lines for L = 8, Lt ——16 and L = 16,
Ii ——16 (from left to right). We see that neglecting
the zero modes on an L = 8, L& ——16 lattice gives very
similar results as the ones obtained on a L = 64, Lq ——64
lattice with the zero modes included.

If we plot the effective potential of Eq. (11) vs 0, for
a finite lattice we will obtain a result as in Fig. 9. The
"spike" is a result of the presence of the zero mode on
the lattice sum and extends to infinity. The presence
of this spike may create thermalization problems if the
initial configuration is chosen on the "wrong" side of the
"spike. " Of course the "width" of the spike is negligible
and therefore this problem may not be important.

As mentioned at the end of the previous section, al-
though one would expect to be able to measure the 0
mass in the r = 0 case we were not able to do so. Large
N provides an explanation of this unexpected problem.
In Fig. 10(a) we plot the real part of the inverse 0 propa-
gator, Eq. (14), for a finite lattice with L = 16, L, = 16
and external momentum set to q = Jim, 0, 0, 0). The cr

1.0

0.8

10 0

—10.5

—:11.0—

0.0 0.2 0.4 0.6 0.8

FIG. 9. r = 1, Pi ——2 5, N = 2, L = 8, Li ——16. The
lines are the large Neffec-tive potential with mo ———0.2 (bot-
tom) and mo = —0.5 (top). The crosses indicate the absolute
minimum. V,g is infinite at the spikes.

mass should be obtained at the zero of this function. We
see that because of the presence of a discontinuity we do
not obtain a root until m becomes heavy. The presence
of this discontinuity is again due to the zero modes.

In Fig. 10(b) we plot the left most case of Fig. 10(a)
(dotted line). As we already mentioned there is no zero.
If we increase the lattice size to L = 32, Li ——32 (solid
line) we see that a zero develops. The infinite volume
result from the asymptotic expansion (dashed line) has
a zero nearby and no discontinuity since the zero modes
are fully suppressed. If on the L = 16, L& ——16 lattice
we now exclude the zero modes (dot-dash line) we see
that the discontinuity disappears and a zero very close
to the infinite volume result is obtained.

0.6— C. The m = 0 line on a Bnite lattice at large N

0.4—

0.0

FIG. 8. r = 0, mfa ——0, N = 2. The diamonds are
the values of mq from the numerical simulation for Lz = 8,
lt = 16. The solid lines are the large-N numbers with the
zero mode included. Prom right to left they correspond to
(L = S, Lg ——16), (L = 16, Lt, ——16), (L = 32, Li ——32),
(L = 64, Lt, ——64). The dotted lines are the large-N numbers
with the zero mode excluded. From right to left they corre-
spond to (L = 16, Lt, ——16), (L = S, L~ ——16). The solid
vertical line denotes the inSnite volume Pi. from the large N
calculation. For Pi & Pi. the model is in the broken phase.

The m = 0 zero line is of particular importance since
it is there that the continuum chiral limit is obtained.
As discussed in Sec. IIIB this limit is obtained in the
part of the m = 0 line that corresponds to small quark
mass. That region was presented in Figs. 2(a) and 2(b)
for —0.2 & mq & 0.3. If, for the same values of mq, the
zero pion mass line is calculated on a finite volume one
finds that the corresponding ranges of K and Pi change
by almost an order of magnitude. To be more speci6c,
for r = 1 the point of the the zero pion mass line corre-
sponding, for example, to mq: 0 015 has mp ———2.75
and Pi ——0.34 at infinite volume [see Fig. 2(a)]. The
same point on an L = 8, Lq ——16 lattice has mp ———0.37
and Pi ——2.51. This change is fairly unusual and it may
appear as if there is a contradiction between the 6nite
and in6nite volume results. In particular, in the in6nite
volume work of [10] no point with m = 0 was found for

Pi ) 1.41. To clarify this issue we plot in Fig. 11(a)
the m = 0 line for an L = 8, Lq ——16 lattice for
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—oo ( mq ( +oo. This line is calculated as follows: For
a given value of mq we use the finite volume version of
Eq. (46)

1 1 1 to(k)
LsL& ~„g(k,m~) LsLt, g(k, m~)

to calculate mo. Next, using this mq and mo we calculate

Pi by combining Eqs. (10) and (13). The finite volume

I I I I

0.5

0.0 —-
S

iX

version of this is

2N 1 ~.m~+ rm(p)

m~ —mp LsLg - g(p, m~)
P

(61)

At point 1 of Fig. 11(a) m~ is very large and positive.
As mq decreases, crosses zero, and tends to very large
negative values, we transverse the whole solid line &om
1 to 2 to 3 .-. to 12 where mq is very large and nega-
tive. The "prongs" of this figure, points 3, 5, 7, 9, and
11, extend all the way to Pi ——oo where they correspond
to mq ——0, —2, —4, —6, and —8, respectively. This singu-
lar behavior originates &om the terms of the momentum
sum in Eq. (61) that correspond to the origins of the
"Brillouin zones" of the 16 species (see Table I). When
these terms are neglected from the calculation (the con-
tribution of these terms disappears in the infinite volume
limit) we obtain the dotted line of Fig. 11(a).

To see more clearly how this behavior develops as we

increase the vol»~e we concentrate, as an example, on
the "prong" that corresponds to mq ——0 since it is this
"prong" that is most interesting in the recovery of con-
tinuum physics. A blown-up picture of this "prong" is

I I I I I

0.4 0.6 0.8

I I I I

3

I I I I I I I I I I I I I I I I

0.5 =.-.
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0.0 —-
IX I 11

I I

—0.5—
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I I I I I I I I I I I I I I I I

0.3 0.4 0.5 0.6 0,7
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FIG. 10. (a)r =O, ma=0, N=2, L =16, Lq ——16. The
solid lines are the real part of the inverse n propagator for ex-
ternal four-momentum q = (im, 0, 0, 0) at large N with the
zero modes included. From left to right they correspond to
Pz = 2.3, 2.25, 2.2 or equivalently to o', = 0.278, 0.323, 0.366.
The functions have discontinuities that are denoted with the
dotted lines. The star denotes the relevant zero for the
Pq

——2.2 line. (b) r = 0, mo = 0, N = 2, Pq ——2.3. The
lines are the real part of the inverse cr propagator for exter-
nal four-momentum q = (im, 0, 0, 0) at large ¹ The dotted
line is for L = 16, L~ ——16 with the zero mode included,
the solid line for L = 32, Lg ——32 with the zero mode in-
cluded, the dot-dash line is for L = 16, L~ ——16 with the
zero mode excluded, and the dashed line is the in6nite vol-
ume result from the asymptotic expansion. The stars denote
the relevant zeros.

—3.0
0.2 0.4

FIG. 11. (a) r = 1, N = 2, L = 8, Lq ——16. The solid line
denotes the m = 0 line. (b) Detail around the prong" that
corresponds to m~ = 0 ["prong" 3 of Fig. 11(a)j.
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plotted in Fig. 11(b). The outer solid lines correspond
to the L = 8, Lq ——16 lattice. Moving inward the solid
lines correspond to an L = 16, Lq ——16 lattice and an
L = 32, Lq ——32 lattice. The dashed line corresponds
to the L = 8, Lq ——16 lattice but with the singular
terms removed. The dotted line is the in6nite vob~me
result of Fig. 2(a) for —0.1 ( m~ & 0.1. Because the
singularities are only quadratic they have disappeared in
the in6nite volume limit. The circle corresponds to the
in6nite volume mq ——O, m~ = 0 point. As the volume
increases the whole "prong" is slowly mapped down to
the in6nite volume result of the dotted line. It is also
very interesting to notice how close the infinite volume
result is to the L = 8, Lq ——16 lattice result with the
singular terms removed. Similar behavior is expected for
the other "prongs" as well.

In [10] it was shown that the m = 0 line is the phase
line that separates the parity-Havor symmetric phase
((~n ~)

= 0) with the spontaneously broken parity-fiavor
symmetry phase ((~n'~) g 0). We have confirmed that
this is also the case on the 6nite lattice. The region in-
side the octopuslike graph of Fig. 11(a) has ((~n ~) g 0).

Finally, notice that the numerical results for m of Fig.
7(a) indicate that on a finite lattice m can be made quite
small. The place where this happens is predicted by large
N quite well and it corresponds to a point on "prong" 3
that is quite far &om where the corresponding point of
the infinite volume would be (somewhere on the dotted
line on the "inside" of the "prong").

V. CONCLUSION AND SUMMARY

In this paper we have found that the lattice version
of the NJL model is an excellent toy model to investi-
gate issues related to lattice /CD. We have used the
large Napproxi-mation to leading order in 1/N to obtain
nonperturbative analytical results over almost the whole
parameter range. By using numerical simulations of the
model we estimated that for most of the quantities we
considered the 1/N corrections are small.

The main results of our investigation are listed below.
(1) With Wilson fermions we obtain at large N analyt-

ical expressions of the pion mass (m ) and quark mass
(m~) in lattice units as functions of the bare parameters
of the model. We are then able to make exact state-
ments regarding the approach to the continuum chiral
limit. The "phase diagram" is presented in Fig. 2. This
may provide an insight on how the retrieval of the con-
tinuum chiral limit is achieved in /CD.

(2) At large N and for Wilson fermions the o parti-
cle has mass proportional to the cutofF. Our analysis
traces this fact to two related reasons. First, although
the Wilson term has raised the masses of the doublers
to the cutofF, it has not decoupled them &om the theory.
Through vacuum polarization these contribute to the cr

self-energy and raise its mass. Second, although the Wil-
son term has not altered the low &equency behavior of
the propagating quark, it has however altered its high
&equency behavior. Again through vacuum polarization
the high frequency modes contribute to the 0 self-energy

and also raise its mass. Such a phenomenon may also
be responsible for the difficulty in observing a cr particle
in numerical simulations of /CD with dynamical Wilson
fermions.

(3) The numerical simulation is performed on finite lat-
tices. For naive fermions one would expect to be able to
see some indication of the chiral phase transition as well
as a o particle. However, by simply looking at the graph
of the vacuum expectation value vs the coupling (see Fig.
8) on an 8s x 16 lattice one cannot see any indication of
a phase transition. Also the 0 particle in a 164 lattice
is either nonexistent or too heavy to be measured. Both
of these unexpected results can be explained at large N.
The reason is traced to the existence of zero quark mo-
mentum modes that on a finite lattice are not sufficiently
suppressed. The zero modes besides obscuring some of
the physics are also probably partially responsible for the
large inversion times in the HMC algorithm. To leading
order at large N the smallest eigenvalue of the matrix
that has to be inverted is m and corresponds to the zero
quark momentum mode. For small mq, the condition
number of the inatrix is 4/m2 for r = 0 and 64r2/m2 for
r = 1. An important observation can be made by notic-
ing the dependence of the condition number on r. This
suggests that performing the simulation with smaller r
will yield a quite faster inversion. It is possible that this
may also be the case for /CD.

(4) The observables measured in the numerical simula-
tion (chiral condensate, vacuum expectation value, pion
wave function renormalization constant, pion mass) have
values that are in good agreement with leading order
large-N. This provides a quantitative prediction for the
size of the 1/N corrections. In agreement with the large-
N predictions discussed in (2) and (3) above, the o mass
was very heavy to give a good signal and was not mea-
sured. Also, measurements of the sigma width were not
performed, but, as it will be discussed in (5) below, we
expect the 1/N corrections to the width to be large.

(5) For naive fermions we calculate at large N and
with M„= 140 MeV the o mass (M ), the o width
(I' ) and the quark mass (M~)in physical units as func-
tions of the cutofF. By setting Mq ——310 MeV we find
M = 726 MeV, I' = 135 MeV, and A = m/a
1150 MeV. M is consistent with phenomenological ex-
pectations and A is consistent with the expectation that
the cutoff should be close and below the mass of the light-
est glueball (1550 MeV). The width however is underes-
timated. The reason is traced to the fact that to leading
order in large N the width receives contributions only
&om the quark bubble and not &om the pion bubble be-
cause the pion bubble is of order 1/N. Because the phase
space available for the 0. to decay to two quarks is much
smaller than the phase space to decay to two pions the
pion loop contribution although of order 1/N is probably
more important than the quark loop contribution.

(6) The above result can also be used to make an in-
teresting observation. If the Higgs boson sector is the
low energy e8ective 6eld theory of a NJL model with
exactly the same parameters as the low energy /CD
except for M = 0 and F = 246 GeV, then we find
M = 1915 GeV. This corresponds to m = 2 where one
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would expect very large deviations kom the low energy
behavior of scattering cross sections. Although we have
not calculated these deviations the value of the width
serves as an indication of their size. In a way, departure
from low energy behavior will be signaled by an increas-
ing width of the o to two quark decay. At m = 2 the
width is already fairly large.

There are some interesting issues relevant to lattice
work that have not been considered in this paper. It
would be important to calculate the three and four point
vertices and therefore be able to calculate scattering am-
plitudes and their departure &om low energy behavior as
well as the 1/N corrections to the width. It would also be
interesting to study the NJL model at finite temperature
and investigate the finite temperature transition in con-
nection with the approach to the continuum chiral limit.
Finally it would be important to include vector meson
couplings (see, for example, [8,11]) and confirm that for
the case of Wilson fermions the vector meson masses scale
appropriately and do not become of the order cutoff as
the 0. particle does.

&p, y = 0.0854,
+y, y ——0.2347,
f1~,2 ——0.0260,
~2, 2 ——0.0597,
~2,3 ——0.0086,
~3,3 ——0.0165,

Sy

= —0.0119,
1

16m2

B3 ———0.0016,
a4 4 ——0.0050,

a4 3 ——0.0470,
a6 4

——0.0388,

(A2)

Although they were never used, we have also calculated
the constant Bs defined in Eq. (50) and also few more of
the a„,~'s:
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ap g
——0.5373,

ag g ——2.0721,
ay, 2 ——1.3881,
a2 2 ——5.8935,

(A3)

APPENDIX

Below we give the lattice constants, defined in Eqs.
(38) and (39), that appeared in our analysis of Wilson
fermions:

a2 3 —6.1127,
a3 3

——25.633,
r g

———0.3818,
1

16' 2

The asymptotic expansions of the integrals Jo i(m )
and Ji i(ms) defined in Eq. (37) to order m2 are

Je i(m~) = ao i —2mvrai 2+ m [4r a23+ ri + si + silnm ] + O(m ),
Ji i(ms) = ai, i —2m~ra2 2+ m [4r as s —ai 2] + O(m ) .

The leading order term of the asymptotic expansion of Jo 2(mv) defined in Eq. (37) is

Jo 2(ms) = ri —si —s—ilnm +O(mq). (A5)
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