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String tension from monopoles in SU(2) lattice gauge theory
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We calculate the heavy quark potential from the magnetic current due to monopoles in four-
dimensional SU(2) lattice gauge theory. The magnetic current is located in configurations generated
in a conventional Wilson action simulation on a 16 lattice. The conSgurations are projected with
high accuracy into the maximum Abelian gauge. The magnetic current is then extracted and the
monopole contribution to the potential is calculated. The resulting string tension is in excellent
agreement with the SU(2) string tension obtained by conventional means from the configurations.
A comparison is made with the U(1) case, with emphasis on the differing periodicity properties of
SU(2) and U(1) lattice gauge theories. The properties of the maximum Abelian gauge are discussed.

PACS number(s): 11.15.Ha, 12.38.Gc, 14.80.Hv

I. INTRODUCTION

In this paper, we report on our calculations of the
SU(2) string tension using monopoles. The monopoles
were located in SU(2) lattice gauge theory configurations
after the configurations were projected with high accu-
racy into the maximum Abelian gauge. These lattice cal-
culations were motivated by an approach to continuum
confinement outlined by 't Hooft some time ago [1]. In
't Hooft's &amework, the first step is a partial gauge
fixing, applied only to those gauge fields which are
"charged, " or have oH-'diagonal generators in the Lie al-
gebra of the gauge group. The central idea is that the
monopoles associated with the Abelian gauge invariance
left after partial gauge fixing will control nonperturba-
tive phenomena. This Abelian gauge invariance is associ-
ated with the fields whose generators are diagonal, called
"photons. " For an SU(2) gauge group with the generator
Tq diagonal, the gauge field A„ is the Abelian field or
photon, and gauge fixing is done only on A„,a = 1,2, or
equivalently the charged fields

W„' = (A„'+ iA„').
1

P

For the particular choice of the gauge-fixing condition
known as the maximum Abelian gauge, the continuum
functional

G. =——) f (4„')*+(A„*)' d'2;

where g is the SU(2) gauge coupling. In the remainder
of this section, we discuss how this is turned into a spe-
cific calculational scheme on the lattice. Our results are
described in Sec. II. Section III contains a discussion of
the maximum Abelian gauge and our conclusions.

A. Lattice gauge Sxing

The SU(2) lattice gauge theory is built out of link
variables U„(z),

where a = tr j2 are the generators of SU(2) in the funda-
mental representation, and a is the lattice spacing. On
the lattice, the maximum Abelian gauge is obtained by
maximizing the lattice functional

Gt = ) —U„(z)asU„(z)os (2)

over all SU(2) gauge transformations [2]. It is easy to
show that, in the continuum limit, maximizing G~ is
equivalent to minimizing G, .

At the maximum, G~ will be stationary under gauge
transformations. The demand that Gt be stationary with
respect to a gauge transformation at an arbitrary site y
leads to the requirement that

&(y) —= ). U~(y) ~3Ut(y) + U„'(y —v) ~SU(y —
t )

is minimized over all SU(2) gauge transformations, lead-
ing to the conditions

(8„+i gA„)W+ = ((9„—igA„)W„= Q,

be diagonal. This can be a.ccomplished by a gauge trans-
formation O(y). However, the value of X at the nearest
neighbors of y is affected by O(y), so the diagonalization
of X over the whole lattice must be done iteratively.

After gauge fixing, there is still manifest U(1) gauge
invariance, and it is useful to factor a U(1) link vari-
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able &om U„(z), writing U„(z) = u„(z)w„(z), where

u„(z) = exp(iP„~s), and v)„(z) = exp(ie„~), with
Hs—:O. The U(1) gauge transformation properties of u„
and u)„ follow upon applying an Abelian transformation
As = exp[tel(z)rs] to U~.'

3

U„= U„+i ) U„" og
A:=1

(4)

then Ps = 2 arctan(U„/U„).
The maximum Abelian gauge globally suppresses ~e„~,

or equivalently, tries to force ti)„ to the identity matrix.
Even so, it is nontrivial to expect that long-range ef-

fects associated with confinement are totally isolated in

u„. The first concrete calculations to test this were per-
formed by Suzuki and Yotsuyanagi [3]. In Wilson loops,
they replaced each SU(2) link variable by the U(1) link

variable u„, and found that full SU(2) results were ob-

tained for Creutz ratios. This did not work for forms
of partial gauge fixing other than the maximum Abelian

gauge.

B. Monopoles in U(1)

In the U(1) lattice gauge theory, the usual form of a
Wilson loop involves a line integral of the U(1) link vari-

able P„(z) taken around a path specified by an integer-
valued current J„(z):

u„(z) ~ Ost(z+ p)u„(z)Os(z),

~~(z) ~ ~la(z)~~(z)~s(z)

so m„ transforms as a charged chiral field at x. The
angle Ps can be extracted &om the matrix elements of
U„by expanding the gauge-fixed SU(2) link U„ in Pauli
matrices, writing

A„(z) = ) v(z —y)m„(y), (8)

and m„ is the integer-valued, conserved magnetic cur-
rent.

In Ref. [3], results characteristic of confinement in

SU(2) were obtained by replacing the full Wilson loop
by a U(1) loop expressed in terms of the link variable Ps.
Since confinement in U(1) lattice gauge theory itself is
via monopoles, this raises the possibility of a monopole
explanation of confinement in SU(2).

C. Periodicity in SU(2)

Before applying Eqs. (7) and (8) to SU(2), account
must be taken of the diH'erence in periodicity for the
standard U(1) and SU(2) actions. The above discus-
sion was for a U(1) action periodic in link angles with
period 2m. The SU(2) action is periodic in the U(l) link
angle (()s with period 4m. This follows Rom the formula

u„(z) = exp(iP„rs), where vs ——os/2 Alter.natively, the
process of temporarily setting m„ to the identity on every
link transforms the SU(2) action into a U(l) action with
period 4':

(w, ) = (exp ) D„„(z)F'„)z)I, )7)

where () denotes the sum over configurations of mag-
netic current. The sheet variable D„ is not unique. For
the usual case of an A x T loop with

~
J„~ = 1, a useful

choice is to set D„„=1 on the plaquettes of the Bat rect-
angle with boundary J„, and D„„=0 on all other pla-

quettes. In Eq. (7), F„*„is the dual of the field strength

due to the magnetic current: F„*„(z)= ze„pF p(z).
The Geld strength itself is derived &om a magnetic vec-

tor potential A„, F„=o)„A„—o)„A„,where

(WU(, )) = (Wpi, &) (W ) . (6)

An explicit formula for {W „) in U(l) is obtained by
writing J„as the curl of a Dirac sheet variable [6]; J„=
0 D~„, where O„denotes a discrete derivative. Then
(W „) is given by

Equation (6) can be derived as an exact formula only for
the Villain form of the U(1) action. However, in Ref. [4], it
was shown to work for other forms of the action, provided a
coupling constant mapping was used to calculate (W~h )).

where angular brackets denote the expectation value over
the ensemble of U(1) configurations. In addition, it is well

established that confinement in U(1) is via monopoles [4,
5]. A Wilson loop originally expressed as in Eq. (5) can
be factored into a perturbative term arising from one
photon exchange, times a nonperturbative term arising
Rom monopoles:

(9)

where P3 = 0„(g —c)„Ps.
While Eq. (9) is not intended as an approximation

to the full SU(2) action, it does correctly reveal the
monopole charges which will occur in SU(2). A Dirac
string occurs when the plaquette angle P„„ is an inte-

ger multiple of 4', rather than 2', so the magnetic cur-
rent m~ here is an even integer, or in other words the
Abelian monopoles which occur in SU(2) are Schwinger
monopoles [1,7].

The replacement of m& by the identity in the action
as in Eq. (9) is never actually done. The configurations
are generated using full SU(2) dynamics. However, after
projecting the configurations into the maximum Abelian

gauge, the n~ are set to the identity on every link in the
calculation of Wilson loops. Only the U(l) link variable

u„(z) is retained, so that the SU(2) Wilson loop becomes
a U(1) loop:
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~SU(2) exp i ) P„J„
2 ( )

+ exp —i) (10)

where the conserved line current J„has
I J„I = —.Since

in this approximation, the Wilson loop is built out of U(1)
variables which involve only Ps, perturbative exchange of
gluons coupled to 7z and v2 has clearly been suppressed.
By analogy with the situation in U(1), perturbative ex-
change of the neutral gluon or "photon" coupled to 73
is still allowed, but is expected to reside in the SU(2)
analogue of the (W~h i) factor of Eq. (6), whereas the
confining part of the potential is expected to reside in
the factor (W ). That the confining potential resides
solely in (W „) is a postulate which will be justified by
our results.

Since IJ„I = 2, the calculation of (W ) for SU(2)
involves a Dirac sheet variable with ID„„I = 2, along
with a magnetic current m„which is an even integer.
Both of these arose from the 4z periodicity of SU(2) in
the link angle Ps. It is straightforward to transform back
to the fainiliar case of 2z' periodicity. Define Ps = Ps/2 =
arctan(Us/Uo), and require ps E (—z, z']. The location
of the magnetic current starts with plaquette angles Ps„
constructed from P„:

1
mp —

2 6&vap~v&ap (13)

We now simply use m„ in Eq. (8) to obtain 2„,and from
it, F„'„Finally (W. „) for SU(2) is obtained from Eq.
(7) where the Dirac sheet variable now has ID„„I= 1. We
have in effect used the Dirac condition [9] on the prod-
uct of electric and magnetic charge to transform &om 4'
to 2m periodicity. In the interaction of a distribution of
magnetic current with a single electric charge, if the mag-
netic current is halved and the electric current is doubled,
the same result is obtained, since the interaction only de-
pends on the quantized product of electric and magnetic
charge.

The plaquette angle Ps„ is resolved into a Dirac string
contribution, plus a Buctuating part:

P„„=2mn„„+ P„„,

where ps„E (—vr, z] and n„„ is an integer [8]. The
integer-valued magnetic current m„= m„/2 is deter-
mined by the net Bux of Dirac strings into an elementary
cube:

II. MONOPOLE CALCULATIONS

A. Simulation and gauge fixing

Our simulations were done on a 16 lattice, using the
standard Wilson form of the SU(2) action. Three P val-
ues were used; P = 2.40, 2.45, and 2.50. At each P, af-
ter equilibration, 500 configurations were saved. Saved
configurations were separated by 20 updates of the lat-
tice, where a lattice update consisted of one heat bath
sweep [12], plus one or two overrelaxation sweeps [13].
Each of these configurations was then projected into
the maximum Abelian gauge using the overrelaxation
method of Mandula and Ogilvie, with their parameter
ur = 1.70 [14]. The overrelaxation process was stopped
after the off-diagonal elements of X(2:) of Eq. (3) were
sufficiently small. Expanding X(x) in Pauli matrices,

X=X'( )+ ) X"( ) (14)

cubes were used, so a magnetic charge is located at the
center of a spacial one-cube, likewise for other compo-
nents of the magnetic current. This is done mainly for
practical reasons; if (say) two-cubes were used instead,
the efFective lattice size would become 84 instead of 164.

Although this practical reason was dominant in our cal-
culations, it is worth pointing out that there is no confiict
between monopoles being extended objects, and using
one-cubes to locate them. The monopole location pro-
cedure finds a monopole by locating the end of a Dirac
string. Therefore, we must be in a gauge where there
are Dirac strings attached to monopoles. Consider for
the moment the case of a 't Hooft —Polyakov monopole
in the continuum [10]. The gauge where a Dirac string
is present is usually described as having the Higgs field
along the isotopic three-axis. A completely equivalent
description is that the gauge fields are in the maximum
Abelian gauge. In this gauge, the photon field As takes
the form appropriate for an elementary point monopole.
The extended structure of the monopole involves only
the charged gauge fields, W+ [11].In a gauge with these
properties, the center of the monopole may be located by
finding the end of its Dirac string, using the finest spacial
scale available.

In calculating the sects of monopoles on heavy
quarks, the assumption is made that despite their finite
size, only the long-range Coulombic fields produced by
monopoles contribute to the confining potential. This
produces a clear calculational procedure for computing
(W,„),which as will be seen in the next section, works
very well. However, further theoretical understanding of
this assumption is certainly needed.

D. Monopole location in one-cubes

To summarize, we use Eq. (7) to calculate (W „)
for SU(2), after extracting the magnetic current m„
&om SU(2) configurations projected into the maximum
Abelian gauge. In the identification of m„, elementary

we used

(15)

as a measure of the average size of the og-'diagonal matrix
elements of X over the lattice, and required (IX'"I ) (
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10 . This condition was reached in approximately 1000
overrelaxation sweeps.

From each gauge-fixed SU(2) link, the U(l) link angle
Ps was extracted using the formula P„=arctan(U„/U„),
as described in Sec. I. Then, making use of the pla-
quette angles Ps„, the magnetic current m„(x) was
found. Although the values m„= 0 6 1 6 2 are allowed
by Eqs. (12) and (13), the overwhelming fraction of links
carrying current had [m„~ = 1; [m„~ = 2 rarely occurred.
Only a few percent of the links actually carried current.
We define f as the number of links with nonzero cur-
rent, divided by the total number of links, 4L4. Our
results for f are recorded in Table I, and agree well
with those in the literature [15, 16].

O.G

0.4

O.B

0.2

B. The quark potential from monopoles

With the magnetic current m„ in hand, the monopole
Wilson loops for SU(2) are completely determined. Ap-
plying Eqs. (7) and (8), for P = 2.40 and 2.50 all
B x T loops up to 7 x 10 were measured and averaged
over configurations. For P = 2.45, the maximum size
was increased to 8 x 12. From the monopole Wilson
loops, monopole contributions to the potential, denoted
by V (R), were extracted by performing straight line
fits to ln((W(R, T)~ „)) vs T. The fits for R & 2 were
over the interval T = B+ 1 to T ~, except for R
where T = R to T~ was used. Finally, the monopole
contribution to the string tension 0. was extracted by fit-
ting V (R) to the form V (R) = n/R+OR+Vo, over
the interval B = 2 to B = R „. The results are shown
in Fig. 1, and tabulated in Table II.

As a glance at either Table II or Fig. 1 shows, the
monopole potentials are essentially linear at all values of
B, with negligible Coulomb terms. This is expected on
the basis of the discussion of Sec. I. The steps of first
setting m„= 1 on each link of the Wilson loop, and
then calculating only the monopole factor (W ) of the
resulting U(l) loop, effectively suppresses the Coulomb
terms arising from single gluon exchange.

The crucial question for the present paper is whether
or not the monopole string tensions agree with those
for full SU(2). Of the various ways of determining the
SU(2) string tension, the "torelon" method of Michael
and Teper is perhaps the best comparison. The torelon
method involves the temporal correlation between loops
which are wrapped around the entire lattice in the spa-
cial direction. The method determines the string ten-
sion directly, without the need to separate linear &om
Coulomb terms. For i/0, Michael and Teper give 0.258(2)
at P = 2.4 on a 164 lattice and 0.185(2) at P = 2.5 on

0.0

FIG. 1. The potentials extracted from monopole |A'ilson

loops at P = 2.40 (circles), 2.45 (squares), and 2.50 (trian-
gles). The solid lines are the linear-plus-Coulomb fits to each
potential.

a 204 lattice [17]. Both numbers are in excellent agree-
ment with the monopole results of Table II. As an addi-
tional check that full SU(2) results were being obtained,
we performed linear-plus-Coulomb fits to our own SU(2)
Wilson loops, which were obtained from the same set
of coxdigurations using an analytic form of the multihit
method [18], along with the smearing method [19], as
noise reduction techniques. The resulting string tension
is presented in Table III, and again there is agreement
with the monopole string tension to within statistical er-
rors. Statistical errors were estimated using standard
jack-knife methods Sim. ilar results for the SU(2) string
tension using monopoles have recently been obtained by
Sbiba and Suzuki [20]. The Coulomb terms coming &om
the monopoles and full SU(2) naturally difFer, as ex-
plained above. No attempt to calculate the SU(2) analog
of the factor (W~i, i) is made in this paper.

C. The string tension and magnetic current loop size

To further investigate con6nement via monopoles, the
magnetic current was resolved into individual loops, each
of which separately conserves current. Not all sizes of
loops are expected to contribute to the con6ning poten-
tial. For example in the U(l) lattice gauge theory, it is
possible to show analytically that a random distribution

TABLE I. The fraction of links carrying magnetic current
at each value of P.

TABLE II. The string tension and Coulomb coeKcient
obtained from Bts to the potentials calculated using the
monopole Wilson loops at each P.

2.40
2.45
2.50

2.75(6) x 10
1.95(l) x 10
1.36(1) x 10

2.40
2.45
2.50

0.068(2)
o.o51(1)
O.034(1)

0.01(1)
0.02(l)
0.01(1)
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TABLE III. The string tension and Coulomb coefBcient
for the full SU(2) potential at each P.

TABLE V. The monopole string tension from all current

loops with & 50, 100, and 200 links.

2.40
2.45
2.50

0.072(3)
0.049(1)
0.033(2)

-0.2s(2)
-0.29(1)
-0.29(1)

2.40
2.45
2.50

~(& 5o)
0.068(3)
0.050(3)
0.035(2)

o(& 100)
o.o66(3)
0.049(3)
0.034(2)

o(& 200)
0.063(3)
0.044(3)
o.o29(2)

TABLE IV. The fraction of total magnetic current con-
tained in loops with ( 10, 20, 50, and 100 links.

2.40
2.45
2.50

10
0.33
0.38
0.43

Max loop size
20

0.41
0.46
0.51

50
0.46
0.51
0.56

100
0.48
0.54
0.59

of loops much smaller in size than the Wilson loop un-

der consideration does not affect the long-range potential,
but only renormalizes the Coulomb term. At the opposite
extreme, again in U(1), it is known that the string tension
can be calculated accurately using only the contribution
coming &om very large loops of magnetic current [21].

For the present case of SV(2), we first obtained a rough
measure of how the current is distributed over loops of
various size. This was done by counting the number of
current-carrying links residing in loops of size up to and
including 10,20, 50, and 100 links. In Table IV, the re-
sults are shown as a fraction of the total current. As can
be seen Rom the last column of the table, including all

loops of magnetic current with up to 100 links accounts
for approximately half of the current-carrying links at
each coupling. The remainder of the current consists of
a small number ( 3) of loops, each containing typically
several hundred links.

To study how the string tension depends on magnetic
current loop size, we computed (W „) with a cut on
loop size. Since experience with U(1) shows that large
loops are what is important in confinement, in comput-
ing (W ) Rom Eq. (7), only those loops of magnetic
current with more than n,„t links were included. The
results for the string tension with n, „t, ——50, 100, and 200
are shown in Table V. For n,„„, = 50 the answers are
within statistical errors of the full string tension for all
couplings. However, as n,„t is increased the string ten-
sion decreases steadily so that by n, „&

——200, there is a
statistically significant deviation from the full string ten-
sion. This shows that in SU(2) lattice gauge theory, the
string tension cannot be explained by retaining only the
very largest loops of current, unhke the situation in U(l).
To make this point quantitatively, we compare the SU(2)
results with our work in U(1) lattice gauge theory on a
24 lattice. In Ref. [21], we considered a U(1) coupling
corresponding to a string tension of o = 0.058(2), inter-
mediate between the SU(2) string tension at P = 2.40
and P = 2.45. For this case and other nearby couplings,
the U(l) string tension is stable under an increase of n,„,
to at least n,„t ——1000, whereas deviations are already
significant in SU(2) for n, „t, = 200. Admittedly, two dif-
ferent lattice sizes are being compared here, but since our

164 SU(2) string tension is within statistical errors of the
244 SU(2) numbers, it is reasonable to assume that the

distribution of loops we found on 164 would be similar to
that on a 244 lattice.

Small loops of magnetic current play no role in confine-
ment for either SU(2) or U(1). In the present work, we

performed additional calculations of (W,„) with a cut
on loop size, but this time including only loops of current
with less than n, „t, links. The string tension was statisti-
cally zero for n, „t ——50 and 100 for all three values of P.
The Coulomb terms were small, of magnitude = 10'Fo of
the Coulomb term for full SU(2), and attractive in sign.
For n, „& ——200, a very small contribution to the string
tension was seen for P = 2.5.

We may summarize our investigation of current loops
by saying that for SU(2), somewhat more than half the
magnetic current plays a role in the confining potential.
The string tension can be explained by retaining all mag-
netic current loops of intermediate size ( 50 links) and
larger. A reasonable guess for how large a loop must
be to play a role in the confining potential would be a
physical extent O(li~o) or greater. For U(1), there is a
class of huge magnetic current loops present only in the
confined phase, and the string tension can be explained
with a restriction only to these very large loops.

D. Abelian —Wilson loops

Another possible route to the string tension is Eq. (].0),
which expresses the assumption that after partial gauge
fixing, the physics of confinement is contained in the U(l)
link variable P„. So far, we have concentrated on the
extraction of the string tension f'rom (W, ), which is
based on the further assumption that the U(1) approxi-
mation to the full SU(2) Wilson loop, Eq. (10), can be
factored into a photon part (W~i, t), times a monopole
part (W,„).The physical motivation for this was to in-

vestigate the monopole confinement mechanism, but the
method also has clear computational advantages. The
noise level in the monopole Wilson loops is much lower
than in the full SU(2) loops, and the string tension is
easier to identify, due to the very small Coulomb terms
in the monopole contribution to the potentiaL For com-
pleteness, we have returned to Eq. (10) to calculate the
U(l) approximation to the SU(2) Wilson loops directly
in terms of the link variable Ps, and extracted the string
tension and Coulomb term. The statistical accuracy of
these results is poor compared to those obtained &om
the full SU(2) Wilson loops, due to the absence of the
multihit technique. Partial gauge 6xing produces a se-
quence of U(1) configurations, but the U(1) action that
would produce these configurations is unknown. Lacking
the usual noise reduction techniques, we perform a simple
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1.0

0.8

0.6

0.4.

FIG. 2. Comparison of the monopole potentials (circles),
the U(1) approximation to full SU(2) potentials (squares) and
the full SU(2) potentials (triangles) at P = 2.45.

average over these U(1) configurations to obtain Wilson
loops, and extract the string tension and Coulomb term
from the resulting potential. The Coulomb term is now
significant, but still less than that for full SU(2). This
is expected since exchange of neutral gluons or photons
is allowed in Eq. (10). The string tension is consistent
with the full SU(2) string tension as well as that extracted
Rom (W „) [22]. In Fig. 2, we show the potentials de-
rived from the full SU(2) loops, from the monopole loops,
and from Eq. (10), for P = 2.45. A constant has been
added to the monopole and U(1) potentials for the pur-
pose of comparing the R dependence of the three poten-
tials in Fig. 2. The shift of the potentials by a constant
is not physically relevant in that it does not affect the
functional dependence on R of the potentials. The plots
for P = 2.40 and 2.50 are similar.

III. CONCLUSIONS AND SUMMARY

The present work was done entirely in the maximum
Abelian gauge, stimulated by the pioneering work of
Suzuki and Yotsuyanagi [3]. In an average way over the
lattice, the maximum Abelian gauge forces the Huctua-
tions in the charged sector to be as small as possible. This
gauge also has a variational formulation [Eqs. (1) and
(2)], and is renormalizable in the continuum limit [23].
While these are desirable features, it should be possible
to capture the physics of confinement with other forms
of partial gauge 6xing. That this has not been possible
so far in lattice calculations may have something to do
with the monopole location procedure. As mentioned in
Sec. ID, the location procedure 6nds a monopole by lo-
cating the end of its Dirac string, so if monopoles are
to be correctly located using the Abelian Aux over one-
cubes, the gauge which is used must attach a string to

a monopole at distance scales right down to the lattice
spacing. For a 't Hooft —Polyakov monopole in the con-
tinuum, the requirement that the string go all the way
to the center of the monopole singles out the maximum
Abelian gauge. It is easy to check that another gauge dis-
cussed by 't Hooft [1], where the charged field strength
G y 2 is set to zero, does not have this property. Starting
from the "hedgehog" form of the monopole solution, go-
ing to the gauge where G12: 0 will be accomplished by
the same gauge transformation as going to the maximum
Abelian gauge cn the region far &om the monopole, there-
fore, here there is no distinction between the two gauges.
However, inside the extended structure of the monopole,
the two begin to deviate and only the maximum Abelian
gauge has a Dirac string extending to the origin of the
monopole. 2 Assuming a similar phenomenon occurs on
the lattice, a calculation which uses one-cubes to locate
the monopoles in the lattice version of the gauge Gi2 ——0
may then locate the monopoles incorrectly. This inter-
pretation of the difFerence between the maximum Abelian
gauge and other forms of partial gauge fixing is supported
by work on three-dimensional SU(2) lattice gauge theory
by Trottier et at. [24]. They show that the density of
monopoles as found in the maximum Abelian gauge has
the correct scaling law as a function of coupling, using
one-cubes to locate the monopoles. However, for other
forms of partial gauge fixing such as Gi2 ——0, the correct
scaling law is obtained only after the size of the cube used
to locate the monopoles is increased considerably. This
would say that while other forms of partial gauge 6xing
are in principle equivalent, for practical reasons having to
do with lattice size the maximum Abelian gauge is likely
to continue to be favored in calculations with monopoles.

We have presented evidence in favor of 't Hooft's pic-
ture of con6nement. Although our lattice size and num-
ber of con6gurations is moderate, the numbers obtained
from monopoles for the string tension are in excellent
agreement with full SU(2) numbers on larger lattices with
higher statistics. It would be of interest to repeat the
present work on a larger lattice with several thousand
configurations, in order to search for any possible sys-
tematic difference between the full SU(2) string tension
and the string tension deduced from monopoles. A larger
lattice would also allow a move toward weaker coupling
and a smaller string tension. As the correlation length
defined by the string tension grows, so presumably must
the physical size of monopoles which has been ignored
in the present work. An interesting issue is whether the
string tension will continue to be dominated by the long
range Coulombic fields of the monopoles. Study of the
gluon propagator offers a different line of attack on this
question. We are presently calculating both charged and
neutral gluon propagators kom our 16 configurations,
after a final gauge fixing which puts the photon link vari-
able P„ in the lattice Landau gauge [25]. A detailed
report will be presented elsewhere, but our preliminary

At the center of the monopole, the hedgehog solution al-
ready satisfies GI2 = 0.
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calculations show that the neutral gluon or photon prop-
agator is intrinsically larger and of longer range than the

charged gluon propagator.
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