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General nonpertnrbative estimate of the energy density of lattice Hamiltonians
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Employing a theorem on lower bounds on the zeros of orthogonal polynomials, the plaquette expan-
sion to order 1/N~ of the tridiagonal Lanczos matrix elements is solved for the ground-state energy den-

sity in the infinite lattice limit. The resulting nonperturbative expression for the estimate of the energy
density in terms of the connected coefficients to order (H &, is completely general. This expression is

applied to various Hamiltonian systems —the Heisenberg model in D dimensions and SU(2) and SU(3)
lattice gauge theory in 3+1 dimensions. In all cases the analytic estimate to the energy density is not
only a significant improvement on the trial state, but is typically accurate to a few percent. The energy
density of the D-dimensional Heisenberg model is predicted to approach 80(Weel) —

8 for large D. In the

case of SU(2) and SU(3) the specific heat derived from the energy density peaks at the correct strong- to
weak-coupling transition.

PACS number(s): 05.50.+q, 11.15.Ha, 11.15.Pg

I. INTRODUCTION

A straightforward technique to find the eigenstates of
many-body systems is to transform the Hamiltonian
iteratively using the Lanczos method into tridiagonal
form, from which the eigenstates can be computed nu-
merically. The tridiagonal basis is constructed with
respect to some well-chosen starting state lv, ) in the ap-
propriate sector of the Hilbert space, according to the
Lanczos recursion:

1 [(I—ct„)}Iv„,&
—p, —plv„~ &],

n —1

where a„=(u„lHlu„) and p„=(u„+&lHlv„). At the
nth iteration of this recursion the Hamiltonian takes the
form

H~T„= pp
0 . a„,

n —
& &n

Diagonalization of the tridiagonal matrices T„gives
eigenstates which rapidly converge to the low-lying states
of the original Hamiltonian (up to an orthogonal trans-
formation}.

In the calculation of the Lanczos coeiftcients a„and P„
one is limited to either a numeric computation of a large
number of iterations for small bases or an analytic calcu-
lation for only the first few iterations. The many-body
limit can only be reached by extrapolation. However, it
is now known [1,2] that these matrix elements for a Ham-
iltonian defined on a lattice of X plaquettes admits a
cluster expansion:

2
C2C4 —C3

P„=nczN&+ ,'n (n —1}—+,'n (n —1—)(n—2)
C2

—12c3+21c2c3C4
—4C 2C4 6c2c3c5+c2c6

4 2 2 2 2 3

2C2

i C3 , 3c3 4C2C3C4+C2C53

a„=N c&+(n —1) + —,'(n —1)(n —2)
C2 C2

1 + 0 ~ ~

(3)

where the c„are given by the connected [3] Hamiltonian
moments (H"),=c„N~ with respec—t to the trial state
l u

&
). The above plaquette expansions for a„and p„have

been used to numerically calculate the energy density of
various models [1,4] in the inffnite lattice limit for in-
creasing orders in 1/N . In contrast with most methods
in many-body systems these calculations work directly in
the large lattice limit —in the process of Lanczos itera-

tion a fraction of order 1 of the X sites is coupled by the
modified interaction determined by the maximum order
of connected Hamiltonian moments. The Hamiltonian
matrix is diagonalized numerically and the infinite lattice
limit taken. The only approximation is the initial trunca-
tion of the plaquette expansion.

There are many remarkable properties of this sym-
metric tridiagonal form yet to be investigated analytical-
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II. FIRST-ORDER SYSTEM

Before we consider the specific case of the 0 (1/N~ ) ex-
pansion we will outline the connection between the Lanc-
zos tridiagonal form of the Hamiltonian and the associat-
ed system of orthogonal polynomials. The characteristic
polynomial D„(x)=det( T„xI„)of th—e Lanczos tridiag-
onal matrix satisfies the recursion relation

D„(x)=(a„—x)D„,(x)—P„,D„(z)x, (4)

which in turn defines ( —1}"D„(x}as an orthogonal poly-
nomial. There are many useful properties of orthogonal
polynomials and powerful theorems on the zeros. For
the orthogonal polynomial P„(x)=—( —1)"D„(x)satisfying
the recursion relation

P„(x)=(x —a„)P„,(x)—P„,P„2(x), (5)

we use a theorem by van Doom [5] on the lower bound
on the lowest zero which has been generalized by Ismail
and Li [6] to include an upper bound to the largest zero.

If x~" and xz ' are the smallest and largest zeros, re-
spectively, of Pz(x) then they are bounded by the inter-
val ( A, B) where

A =min[x„:1 &n &N],
B =max[x„+:1&n &N],

and the bound sequence is given by

4x„*=—,
' (a„+a„+,)6 (a„—a„+i) + p„

an

' 1/2

(6)

In the above expression for x„*, [a„]i is a chain se-
quence. That is, there exists a parameter sequence [g„jo
for which we have the factorization of a„:

a„=g„(1—g„ i), 0&n &N, 0&go&1, ()

ly. One of the most important properties is that the
characteristic polynomial of the matrix T„ is an orthogo-
nal polynomial —the particular form of the plaquette ex-
pansion to a given order defines a system of orthogonal
polynomials. Hence the plaquette expansion reduces the
problem of calculating the spectrum by diagonalization
to that of calculating (possibly analytically) the zeros of a
system of orthogonal polynomials. It is important to
realize that the plaquette expansion is completely general
and the system of orthogonal polynomials relevant to this
problem is the same for all Hamiltonians.

In this paper we consider the plaquette expansion of
the Hamiltonian density to order 1/N and demonstrate
that using theorems on the properties of the extreme
zeros of orthogonal polynomials an analytic solution for
the energy density in the N~ ~~ limit can be found for
this order. To demonstrate the power of this analytic es-
timate we use this solution to compute the ground-state
energy density of the D-dimensional Heisenberg model
and of SU{2) and SU(3) lattice gauge theories in 3+1 di-
mensions.

~ n+ n(n —1)
cN +a

2N

where we are now working with the Hamiltonian density
H/N~ and have set c, to zero without loss of generality
(since c, only defines the zero of energy}. The reason for
the above choice of parametrization will become ap-
parent. The minimum value of the bound function can be
found quite simply and the limit N —+~ taken. One
finds

lim A= 1

N —+ uo 2a
P

ac
a„

' 1/2

(10)

This value of A represents a set of lower bounds, de-
pending on the value of the chain parameter a„, on the
zeros of the characteristic polynomials in the N~~~
limit.

We find that using the maximum value of a constant
chain sequence [6], a„=—,', the upper and lower bounds

correspond exactly to the actual largest and smallest
zeros of the 0(l/N ) system. In other words the solu-
tion of the ground-state energy density Co from the
0 (1/N~ ) plaquette expansion is

Co = [ b+ +b ~—4ac ] . —1
(11)

2a

This expression is valid for all a &0 and for a )0 when
b2 4ac &0. —For the case where a &0 the spectrum is
bounded above by

[ b +b 4tt—c—] . —1
max (12)

However, for the case a &0 (with b 4ac &0}, rath—er
than the ground-state solution changing to the other
root, the expression for 8 is no longer valid, however,
the ground-state energy density is still given by Eq. {12}.

In terms of the connected coemcients the solution to
the 0 ( I /N~ ) plaquette expansion gives an estimate to the
energy density of the original Hamiltonian,

2
C2 2

2 [+3c3—2czc4 —c3],
C2C4 C3

(13)Co=c, +

with the condition

L=3c3—2C2C4&0 . (14)

That the lower bound, Eq. (12), is the actual ground
state of the 0 (1/Nz ) system can be proved by consider-
ing an alternative upper bound to the lowest zero:

x„"'& v'I
I &.Uk II', (15)

The lower bound is improved by choosing a maximal
chain sequence.

This bound can be applied immediately to the pla-
quette expansion with startling results. First, in order to
simplify the notation, the 0(1/N~) plaquette expansion
is rewritten as

b n —1
aa



3384 LLOYD C. L. HOLLENSERG AND N. S. VGI lE 50

~here vk is a normalized vector with zero in the first
n —k positions and unity in the remainder [6]. This
upper bound on the lowest zero coincides with the lower
bound equation (12) when the limits n ~ ao and k ~~
are suitably taken together with N ~ ao.

It may be possible to carry out this bound analysis for
higher orders in the plaquette expansion and obtain sys-
tematically more accurate expressions for the ground-
state energy density. In the interim we will show with a
few examples that the solution of the 0 (1/N ) plaquette
expansion is typically accurate to a few percent.

-0.50-

III. ANTIFERROMAGNETIC HEISENBERG MODEL
IN D DIMENSIONS

The Heisenberg model a lattice of N spins is defined by
the Hamiltonian

-1.00-

H= gS;S
(i,j)

(16)

c4(D) =—(8D —10D + 1),D

with b,(D) )0 for all D.
The first-order plaquette expansion estimate to the en-

ergy density from Eq. (14) is

2D 3D 2D+—4D 2D—+2-
8D +4 (18)

which has the interesting limit Co(D)=Co(Neel) —
—, as

D~00 as shown in Fig. 1. Values of the estimate for
small D are given in Table I. The exact results for D =1
and D =2 indicate the accuracy of the estimate. For
D =3 the energy density is not as accurately known and
so we give a range of values from the literature [12] for
comparison.

where the summation is over nearest neighbors and
periodic boundary conditions are adopted (N~ =N) We.
have calculated the connected coeScients for the D-
dimensional hypercubic lattice with respect to the Neel
state to be

D
c (D)= ——

4

D
c (D)=—2 4

c3(D)=—(2D —1),D

I

2
Dimension, D

IV. SU(2) LATTICE GAUGE THEORY

The Kogut-Susskind SU(2) lattice Hamiltonian in 3+1
dimensions is given by [7]

2H = Q E1+ g (2 trUp), — (19)

where EI is the color electric flux operator corresponding
to the link l, trU is the magnetic flux operator corre-
sponding to the plaquette p, and g is the coupling con-
stant. The connected moments have been calculated in
the vacuum sector by Mathews, Snyderman, and Bloom
[8] with respect to the strong-coupling state:

c& =Zy,

C2 =y

C3 =3y

C4 =9

FIG. 1. Analytic estimate Co(D) for the D-dimensional anti-
ferromagnetic Heisenberg model. Also shown is the Neel ener-

gy density for each dimension. The crosses are the exact results
for D =1 and D =2. For D =3 the exact result is not well
known and so we give a range of values found in the literature
[12].

TABLE I. Analytic approximation @0(D) for the D-dimensional Heisenberg model and comparison
with numeric results for low dimensions.

@0(D)

—
—,2

= —0.4166

Comparison

—0.44315 Exact

(1—2&14)/10= —0.6483

3(3—8&2)/28 = —0.8908

—0.66934(3)

—0.9028~—0.9785

(Monte Carlo [11])

(Various [12])
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@o(y)=—[2y +3—&9+2y4] .1

y
(21)

In Fig. 2 we plot this approximation to the energy den-
sity of pure SU(2) gauge theory together with the
"specific heat" C„—:—B 8o/By . As expected, the ener-

gy density derived from the strong-coupling state
matches the strong-coupling limit precisely, but becomes

4.0

with y =2/g and h(y) )0 for ally.
The energy density estimate for the vacuum takes the

form

V. SU(3) LATTICE GAUGE THEORY

In analogous notation to the SU(2} case, the Kogut-
Susskind SU(3) lattice Hamiltonian in 3+ 1 dimensions is

2
H= gE~+ g(6—trU t—rU ) .

p p
p

(22)

From the strong-coupling state in the vacuum sector the
connected Hamiltonian moments are [10]

less accurate at weak coupling where the specific heat be-
comes negative. However, even this first-order estimate
is accurate enough to predict the strong to weak transi-
tion as is evident from the peaking behavior of C„at
y = 1 which agrees with the t-expansion analysis [9].

3.5-

3.0-

2.5-

2.0-

1.5-

1.0-

SU(2) c) =3y
2

c —y
2 2

y'+ gy
3 4 3

gy
2 1283+9

where again we have y =2/g and b, (y) )0 for all y.
For SU(3} the energy density estimate becomes

(23)

0.5-

-0.5
1.0 2.0

y = 2/g

I

3.0 4.0 5.0

@0(y)= [6y'+32 —V 1024—192y'+27y~) . (24)=1
3y

We plot the energy density and the specific heat for SU(3}
in Fig. 2. The quality of the results is similar to the SU(2}
case with the specific-heat peaking in the strong- to
weak-coupling transition region, again in agreement with
the t-expansion analysis [10].

VI. CONCLUSION

7.0-

6.0-

5.0-

4.0-

3.0-

2.0-

1.0-

-1.0

SU(3)

I

1.0 2.0 3.0
y = 2~g

40 5.0

In this work we have solved the first-order plaquette
expansion of many-body systems in general. The result-
ing analytic estimate of the energy density on the bulk
limit is quite powerful as it relies on only calculating the
Hamiltonian moments up to fourth order and yet appears
to be accurate in the nontrivial systems considered here.

The energy density estimate presented here is not just
of use in the vacuum sector. By using a trial state in a
different sector of Hilbert space one obtains the lowest
energy state in that sector. Subtraction of the vacuum
energy gives an estimate to the mass gap of that sector.

Furthermore, this energy estimate can be used as a
basis for a higher order variational technique when used
in conjunction with a variational trial state.

The success of the first-order plaquette expansion solu-
tion leads one to ask whether the next order can be
solved analytically. Given the simple form of the bound
function this may indeed be the case. Work in this direc-
tion is in progress.
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