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We derive a generalized form of Altarelli-Parisi equations to describe the time evolution of parton
distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we
obtain a set of coupled integro-differential equations for the parton distribution functions and equa-
tions for the virtuality (“age”) distribution of partons. In addition to parton branching processes,
we take into account fusion and scattering processes that are specific to QCD in medium. A detailed
balance between gain and loss terms in the resulting evolution equations correctly accounts for both
real and virtual contributions which yields a natural cancellation of infrared divergences.
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I. INTRODUCTION

The future ultrarelativistic heavy ion collider experi-
ments at the BNL Relativistic Heavy Ion Collider (RHIC)
and the CERN Large Hadron Collider (LHC) are ex-
pected to exhibit new phenomena associated with “QCD
in medium,” i.e., with the microscopic dynamics of
quarks and gluons in the hot, ultradense environment
that may be created in the central collision region of
these reactions [1,2]. Recently, considerable progress has
been made in a better understanding of the space-time
structure of parton interactions during the early stage of
these reactions [3-5]. The conclusion emerging from dif-
ferent independent investigations [6-9] is that, for RHIC
energies and beyond, most of the entropy and transverse
energy is presumably produced already during very early
times (within the first 2 fm after the nuclear contact)
by frequent, mostly inelastic, semihard parton collisions
involving typical momentum transfers of only a few GeV.

The underlying notion is that the early stage of nu-
clear collisions at sufficiently high energies can well be
described in terms of the space-time evolution of many in-
ternetted parton cascades [10], based on renormalization
group improved perturbative QCD [11] and relativistic
kinetic theory [12]. This physical picture is motivated by
the successful “semihard QCD” description of high en-
ergy hadronic interactions [13]. The application to ultra-
relativistic nuclear collisions, in particular heavy ion re-
actions [14-16], assumes that the colliding nuclei may
be viewed as two coherent clouds of spacelike partons
with small virtualities that materialize into “real” exci-
tations due to primary parton-parton scatterings. This
primary parton production is expected to result in a large
initial particle and energy density in the central colli-
sion region, which increases further by subsequent in-
tense gluon bremsstrahlung, secondary scatterings, and
rescatterings.

At some point, however, when the parton density be-
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comes so large that the quanta begin to overlap in phase
space, recombination (fusion) processes become relevant
and the density must saturate towards its limiting value.
It is realized that these semihard processes play the ma-
jor role for the nuclear dynamics at collider energies. The
copiously produced minijets [17] cannot be considered as
isolated rare events, but are embedded in complicated
multiple cascade-type processes, as has been discussed
more recently in a number of works [6,5,18]. At the same
time it is found [19,20] that color correlations among the
initial partons randomize so rapidly as the beam particles
interpenetrate, that the long range color field effectively
vanishes on a space-time scale of a small fraction of a fm.
Thus the short range character of the interactions implies
that perturbative QCD can and must be used and that,
for example, the string picture does not apply anymore.

However, one is still far from a complete and detailed
picture, as is reflected by the considerable theoretical
uncertainty in perturbative QCD predictions for global
observables in nucleus-nucleus (AA) collisions at collider
energies, such as particle multiplicities and transverse en-
ergy production. The inability to extrapolate accurately
from of pp (pp) data to heavy ion AA collisions is due to
the current lack of better knowledge about the details of
important nuclear and dense medium effects. It is nei-
ther surprising nor satisfying that numerical simulations
with QCD based Monte Carlo models such as HIJING [21],
DTUJET [22], or the parton cascade model (PCM) [5,23]
agree very well in describing pp collisions at collider en-
ergies, but differ in their predictions, for, e.g., charged
particle multiplicities, in heavy ion AA collisions by a
factor of 2 or more.

The central question is therefore the following: How
is “QCD in medium” modified as compared to “QCD in
vacuum”? In trying to gain a more quantitative knowl-
edge about the microscopic parton dynamics in medium,
the most urgent questions concern (i) the initial condi-
tions regarding the parton substructure of large nuclei,
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in particular the small z region and the magnitude of
nuclear shadowing effects; (ii) the role of color screen-
ing and color diffusion; (iii) the impact of the Landau-
Pomeranchuk-Migdal effect; and (iv) the space-time de-
pendence of parton interactions with regard to the in-
fluence of the characteristic interaction times of parton
scatterings and the formation times for gluons emitted in
bremsstrahlung processes.

Understanding “QCD in medium” is also one of the
most interesting experimental challenges for RHIC and
LHC. We hope that this can be achieved by analyzing the
characteristic space-time structure of parton interactions
during the very early stage in pA and AA collisions, e.g.,
by measuring the production of particles emerging from
these early times, such as dileptons, direct photons, and
strange and charmed particles.

Recently it was pointed out by McLerran and Venu-
gopalan [24] that a consistent perturbative calculation of
parton structure functions at small values of the Bjorken
variable z becomes possible when one considers the limit
of a very thick nuclear target. A projectile propagating
at high energy through such a target “sees” a very large
area density of valence quarks and hence experiences an
effective screening of color interactions in the transverse
direction. The condition for the applicability of pertur-
bative QCD then is that the screening distance is much
shorter than the confinement scale A~1. This is satisfied
for a sufficiently thick target at sufficiently small z.

In this paper we want to make use of this insight to
explore the evolution of a parton cascade inside nuclear
matter under conditions where perturbative QCD applies
because medium-induced effects, such as color screening
and rescattering, provide dynamical cutoffs on a scale
short compared to A~!. In principle, our approach ap-
plies to the propagation of fast partons in any kind of
dense medium, be it a thermalized quark-gluon plasma
or ground state nuclear matter. The equations derived
here can therefore be applied to jet quenching in a QCD
plasma [25] as well as to the fragmentation cascade of a
quark after deep-inelastic scattering in an infinitely large
nucleus [26]. To keep the discussion specific, we will con-
sider the following idealized problem. Beginning with a
prescribed initial distribution of fast partons injected into
infinitely extended nuclear matter by some highly local-
ized process of space-time extent, (Q2)™'/? <« A7!, we
want to follow the evolution of the parton distribution in
laboratory time as it propagates through the medium.

Our plan is to introduce a simplified version of the
parton cascade approach of Refs. [4,5], which we propose
as a supplementary diagnostic tool for a more transpar-
ent analysis of the aforementioned aspects of QCD in
medium. We will reduce the complex space-time struc-
ture of multiple connected parton cascades to the prob-
lem of the diffusion of quarks and gluons in dense nuclear
matter, for which we can apply an analytical treatment.
Our rationale is to ignore all processes irrelevant in the
present context; therefore we will neglect here the quan-
titatively important effects of color screening, long range
color correlations, parton shadowing, etc. Those aspects
may be incorporated in a future extension of this work.

Let us describe in some more detail the essence of

this work. We attempt to etablish a connection between
the semiclassical probabilistic picture of parton evolution
in the leading logarithmic approximation (LLA) [27-29]
and the time development of parton cascades in six-
dimensional phase space within the framework of non-
equilibrium kinetic theory [4,5]. To do so, we need to
clarify two fundamental issues: First we need to relate
the Altarelli-Parisi-Lipatov (APL) evolution equations
[30,31], which determine the change of the parton number
densities under variation of the variables rapidity y and
transverse momentum k, , or z ~ exp(y) and Q% ~ k?,
with the Boltzmann equation, which controls the time
evolution of the phase-space densities in both momen-
tum and coordinate space. Second, we must relate the
experimentally accessible number densities g;, ¢;, and g
(quarks and antiquarks of flavor i, and gluons) with the
single-particle phase-space densities F , Fy,, and Fy, re-
spectively.

The first point, the connection between the APL evo-
lution equations and the Boltzmann equation, has been
previously suggested, tentatively by Durand and Putikka
[32] and explicitly by Collins and Qiu [33], however, in the
formal context of hadron structure which is rather differ-
ent from our considerations of parton cascades in nuclear
matter. Although both these authors succeeded in a re-
derivation of the APL equations on the basis of a com-
plete probabilistic picture, they stopped short in actually
establishing the correspondence between QCD evolution
and the space-time development of the parton distribu-
tions. Nevertheless, the alternative approach of Refs.
[32,33] showed that the APL equations can be derived in
a statistical manner similar to the Boltzmann equation,
by taking into account both the gain and the loss of par-
tons due to successive 1 — 2 branchings in (z,Q?) space.
This self-contained detailed balance eliminates the neces-
sity of calculating vertex and wave function renormaliza-
tion explicitly because the loss terms naturally take over
this role. As a consequence, the resulting evolution equa-
tions are free of divergences and satisfy the constraints
imposed by momentum and quark number conservation
automatically.

Concerning the second point, we note that the mea-
sured parton number densities ay(z,@?), where a =
qi,d:, g, give the probability for finding a quark, anti-
quark, or gluon, inside a nucleon with fraction z = k, /P
of the longitudinal nucleon momentum P and with virtu-
ality Q?, or transverse momentum ki Here Q2 ~ ki sets
the scale of hardness that is identified with the momen-
tum transfer of an interaction of the parton with a weakly
interacting probe (e.g., a virtual photon) that measures
the nucleon substructure. At present, the parton number
densities are experimentally accessible only in a space-
time integrated way and therefore must be interpreted as
instantaneous distributions of partons inside a nucleon.
This interpretation, however, has a justified operational
meaning only in a reference frame in which the nucleon
moves close to the speed of light, because in such a frame
time dilation slows the internal motion of the partons
such that the statistical picture can be applied [34]. On
the other hand, in statistical many-particle systems the
phase-space distribution F,(E,k;r,t) is the probability
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density for finding a parton of species a in a phase-space
element d3kd3r at time t. Evidently F, contains explicit
additional information about the space-time structure of
the initial state nucleons or nuclei, which is only present
in an averaged way in the measured parton number den-
sities.

On the basis of this knowledge, we will here extend the
probabilistic approach to the space-time evolution of par-
tons in nuclear matter. To do so, we will first relate the
Q? evolution to the development with time ¢, and second,
we will include not only the 1 — 2 branching processes,
but also the reverse 2 — 1 fusion processes and in addi-
tion 2 — 2 scattering processes. The latter two types of
processes indirectly also give rise to additional stimulated
branchings. Stimulated emission, fusion, and scattering
processes are naturally absent in vacuum, but in medium
they are indispensible ingredients for obtaining a com-
plete set of transition amplitudes and a self-consistent
parton evolution.

The remainder of this paper is organized as follows. In
Sec. II we set up the physical scenario of parton cascade
evolution inside nuclear matter and introduce the frame-
work of kinetic description including a consistent treat-
ment of off-shell propagation of partons. We will relate
the quark and gluon number densities, as measured by
the structure functions, with the time-dependent phase-
space distributions of off-shell partons and will translate
the QCD evolution of the parton number densities into
the space-time development of parton cascades. On the
basis of this connection, the rates for branching, fusion,
and scattering processes of the partons interacting with
the medium are derived. In Sec. III we generalize the
considerations and obtain a set of coupled equations for
the space-time evolution of quarks, antiquarks, and glu-
ons. Finally, in Sec. IV we summarize our results and
give some possible future perspectives.

II. DESCRIPTION OF PARTON SHOWERS
IN NUCLEAR MATTER

A. Physical picture of parton showers in medium

The physical situation that we have in mind is illus-
trated in Fig. 1. We consider a parton cascade initiated
by a high energy timelike quark or gluon that has been
produced at some point of time ¢ inside a heavy nu-
cleus due to an external interaction: for instance, by a
collision of a proton with the nucleus, in which case the
parton is produced by a scattering with another parton
of the incoming proton and is provided with a timelike
virtuality Q2 ~ p%, where p? is determined by the mo-
mentum transfer in the scattering; or by deep inelastic
scattering, where the parton is struck by a spacelike vir-
tual photon with invariant mass squared ¢? < 0 and it
acquires a timelike virtuality Q% =~ |¢%|. In any case,
this primary parton then propagates through the par-
tonic matter of the nucleus and initiates of a shower of
secondary partons. The attractive feature of such a sce-
nario is that it provides good control of the initial condi-
tions: the primary parton is produced with a well defined
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FIG. 1. Visualization of a parton cascade evolving in the
quark-gluon matter of a nucleus. A primary parton that has
been produced at some point of time to with a timelike virtu-
ality Qo2 initiates a shower of secondary partons by gluon
bremsstrahlung and multiple interactions with the nuclear
medium.

four-momentum, determined by the momentum transfer
of the triggering interaction with the external particle.
This is to be contrasted with a nucleus-nucleus collision,
in which case there are many comoving nucleons and the
initial state contains a rather complicated mixture of ini-
tially produced partons with a rather broad momentum
distribution.

To set a definite physical situation we will, from now
on, consider a proton-nucleus (pA) collision [35]. In order
to apply the parton picture one has to go into a frame
where both the projectile proton and the target nucleus
are moving very fast, so that both the proton and the
nucleons in the nucleus can be resolved into individual
partons [36]. The description of a nucleon as an instan-
taneous distribution of partons at any time requires prob-
ing the nucleon over time durations and spatial distances
small on the scale of internal motions of the partons.
This condition is satisfied in any frame of reference in
which the nucleon moves almost with the speed of light,
because the time dilation effect slows the internal mo-
tions such that the nucleon can be described as a simple
quantum-mechanical ensemble of quasireal partons that
do not mix with vacuum fluctuations (except for the slow-
est gluons and sea quarks). It is convenient to choose the
nucleon-nucleon center-of-mass frame (c.m.yn) in which
each nucleon has the same value of longitudinal momen-
tum P (see Fig. 2),

P® = +P, P = —4P, PP =P =0, (1)
so that
Vs = J4AP? + MZ(1+ A?) (2)
and
SNN = 2P, 3)

where A is the nuclear mass number, My is the nucleon
mass, and P/Mpy > 1 is assumed, a requirement which
is certainly satisfied at the colliding beam accelerators
RHIC and LHC. For example, at RHIC, the maximum
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FIG. 2. Illustration of a pA collision in the c.m.yn frame.
The incident proton “sees” the nucleus as a Lorentz con-
tracted ensemble of virtual gluons and quarks [5,35]. Sim-
ilarly, because of the symmetry of the reference frame, the
proton itself appears to the nucleus as an incident distribu-
tion of individual partons, smeared out along the longitudinal
direction. The longitudinal momenta of the partons from the
proton are taken as p, = P and the nuclear partons have
p, = —z'P.

P is 250 GeV for p+p, 125 GeV for p+160, and 100 GeV
for p + 97Au [37]. At LHC one has generally a factor of
30 larger energy available [38].

We assume that the primary quark or gluon originates
from the proton structure function, carrying longitudinal
momentum k.o = zoP, and is provided with an initial
timelike virtuality Q2 > 0 by a hard scattering with one
of the nuclear partons. Hence this primary parton is so
to say injected into the nucleus and probes the nuclear
environment. It will subsequently produce a number of
secondary partons by various interactions with the nu-
clear background matter: The incident primary parton
can either (i) radiate bremsstrahlung gluons, (ii) collide
with partons of the nuclear background matter, or (iii)
absorb these nuclear partons. The so produced secondary
partons will subsequently undergo the same type of in-
teractions. That is, they themselves will lose energy mo-
mentum either by exciting partons bound in the nucleus
off which they scatter on their way or by radiating gluon
bremsstrahlung, or, in the case of gluons, materializing
through quark-antiquark pair production. At every new
step the number of particles increases and their aver-
age energy and longitudinal momentum decrease until
the growing density enhances reverse absorption (fusion)
processes that may yield a detailed balance or until even-
tually all the energy momentum of the primary particle
can be considered as completely dissipated. We will re-
fer to this event as a parton shower or parton cascade.
We emphasize that we will explicitly distinguish between
the shower partons, on the one hand, and the nuclear
partons, on the other hand, which are coherently bound
in the wave function of the nucleus. Furthermore, it
should be clear from the above selection of processes (i)
(iii) that we consider here only interactions between the
shower partons and the nuclear partons, and not among
the shower partons or the nuclear partons themselves.
In other words, we consider here the evolution of a sin-

gle cascade and therefore only account for interactions
of the cascade with the medium but neglect interactions
between possible simultaneous cascades (we will briefly
consider a self-interacting cascade at the end of Sec. III).

We will describe the longitudinal evolution of the par-
ton shower along the shower axis (z axis), which we define
parallel to the direction of momentum of the initiating
primary parton. It is convenient to parametrize the four-
momenta k = k* = (E,k,, k) of the shower partons
such that, for the primary parton,

ko = {xoP + Q% zoP, 0 (4)
0 0 21‘0P, oL 3 \
whereas for the jth secondary parton,
QF + ki, ‘

where k3, < Q7 < Qf < P? is assumed and all rest
masses are neglected. It is important to realize that en-
ergy and momentum are independent variables since we
are dealing with off-shell particles of virtuality Q2 with
a continuous mass spectrum.

The evolution of a many parton system is described by
the change of parton number densities of quarks ¢; and
antiquarks g; of flavor ¢, or gluons g, which are defined
as

et dN,(t)
2 2.4) = ’2 a
a(makJ_,Q 3 ) /0 dQ dl)dkidQ/Z

(a = qiaqivg) ’ (6)

where

Na(t) = /dsr/d‘*kFa(E,k;t,r) = /d‘*kfa(E,k;t)
(7)

is the number of partons of type a present at time ¢t with
F, denoting the corresponding phase-space density of off-
shell partons in the volume d%*kd3r around k* = (E,k)
and r, and f, in the second line representing the spa-
tially integrated energy-momentum distribution. Note
that we introduced an explicit time dependence in the
parton number densities (6) and also treat @* and k2 as
independent variables, in contrast to the usual identifi-
cation Q% =~ k2. Furthermore we stress that virtuality
Q? and time t are actually correlated variables, as we will
show. Therefore the parton densities are in fact functions
of Q2 as well as t, and we have to describe their Q2 evo-
lution as well as their time development. On the other
hand, the experimentally accessible parton densities are
related to the functions (6) by

an(z,Q?) = /;00 dt/:o dk? a(z,k2,Q%t) . (8)

Consequently the invariant mass spectrum in Q* mea-
sures the degree of excitation of the shower particles,
which will be related to their “age” in the cascade,
whereas the variable z = k,/P measures the change of
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the longitudinal momenta of the cascade partons, and
the transverse momentum distribution in k3 reflects the
diffusion perpendicular to this axis. According to our
chosen geometry, the primary parton has no transverse
momentum at all, ko = 0, but its mass is off shell by
an initial virtuality Q2. As the parton shower develops
in space-time due to branching, fusion, and scattering
processes, the distribution in = will shift to smaller val-
ues, the distribution in k2 will broaden, and in the av-
erage the virtuality Q2 of the secondary partons will de-
crease. How fast such a cascade evolves will depend on
the medium properties, which will be reflected in the age
distribution of shower particles. The denser the medium
the slower the aging process. In Sec. IIC we will derive
a quantitative formulation of this evolution; however, as
a motivation let us already here draw a qualitative pic-
ture. Consider for the moment the evolution of a cas-
cade in vacuum, i.e., in the absence of a surrounding
medium, so that scattering and fusion processes will not
be present. In this case, the cascade evolves solely by suc-
cessive branchings. In the LLA the evolution of timelike
virtualities Q2 is subject to the ordering condition

Q> Q1> ...>»QF >»Q%, >...> ud, (9

where o sets an invariant mass scale at which the per-
turbative description of the branching cascade fails. This
strongly ordered decrease of virtualities is valid in the
kinematic region where pfj = (z;P)? > sz > kij, as
we already assumed after Eq. (5). It eliminates compli-
cated quantum-mechanical interference effects in succes-
sive branchings. In a certain intermediate branching in
the cascade kj_; = k; + k:_f,-, the four-momentum k;_, is
given by (5) and energy-momentum conservation at the
vertex uniquely relates the momenta of the daughters k;
and k. In particular, conservation of longitudinal mo-
mentum implies

Tj1 = Tj + 3 ( 10)
transverse momentum conservation requires

kij=z2;kij_1 + p1j,
(11)

k'=(1-2)kij-1 — PLj
and energy conservation yields

pij ~ zi(l—zj) Q?_l —(l_zj)QJz'—sz;'Z ’ (12)

where z; = z;/x;-1 and pﬁ_j is the squared intrinsic
transverse momentum generated with respect to the k;_;
direction. For simplicity, we assumed here a symmetric
distribution in azimuthal angle. Hence both the longi-
tudinal and (on average) the squared transverse momen-
tum are additive, and the value of kij with respect to
the shower axis is determined by the virtualities and the
ratios of longitudinal momenta of mother and daughters.
Each branching generates a p; kick, so that the cascade
evolves as a random walk of partons in k; space [13]
and at the same time the partons in the cascade become
increasingly slower and closer to the mass shell.

In the presence of nuclear matter this simple evolution
is modified by scattering and fusion processes. However,
the effect of these interactions with the medium can be
incorporated in a rather straightforward manner: In be-
tween scatterings or fusions, the successive branchings
still determine the evolution of the cascade, but instead
of evolving undisturbed all the way down to p2 [cf (7)], at
each vertex of interaction with the medium the branch-
ing cascade is terminated prematurely and the interacted
parton acquires a new virtuality. This sets a new starting
point from which the parton continues to branch until the
next scattering or fusion, or until it eventually reaches the
minimum virtuality u2. We will show that this modified
evolution can be cast in terms of a rejuvenation of the
cascade, in the sense that each interaction of shower par-
tons with the medium “resets the clock” by an amount
that depends on the hardness of the interaction. We will
describe this mechanism by introducing the concept of
the age of the cascading partons.

At this point we would like to comment on some pecu-
liar kinematic properties associated with our choice of the
c.m.yy frame for the description of parton cascades. We
adopt the convention that the momentum along the beam
direction of a shower parton is k, = P, while that of a
nuclear parton in the target nucleus is k, = z'P = —|z'|P
(Fig. 2). Neglecting nuclear shadowing, the initial struc-
ture functions of the target nucleus are (z' < 0)

A
FY\QY) = 2 FV(1Q%) . (13)
wRY
where the index 7 labels the type of parton, and the func-

tions

FM(@,Q%) = ellz0:(2,Q°) + 25(2,Q%)]  (14)

denote the nucleon structure functions with
1
Y [ @ Ml = 1 (15)
— Jo

One must keep in mind that all nuclear partons have
negative momenta along the z axis and hence their z’
values are negative. In the c.m.yy frame we have the
interesting feature that, although the distribution of the
parton shower particles is, initially (at ¢t = 0)

Fi(z,Q%) = z §(z —x0) 6(Q* — Q3) biiy (z0 > 0) ,

(16)

if we assume a specific primary parton of type io with z,
and @2, the distribution F;(x,Q?,t) will, with progress-
ing time, eventually take on nonzero values not only in
the range 0 < z < z, but also for negative values of z.
This simply means that, in the chosen frame of reference,
the parton cascade initiated by the projectile parton is
stopped, and finally swept to the left by the bulk matter
of the target.

There are three different types of processes contribut-
ing to the momentum degradation of the showering par-
tons. A branching of a parton results in two partons
that carry smaller momentum fractions z; = zz and
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z2 = (1 — z)z. Note that z; and z have the same sign
as z, i.e., the direction of propagation of partons in the
c.m.yn frame is never reversed by branching processes.
A scattering between two partons (z;,Q?) and (z2,Q2)
can occur only between partons propagating in opposite
directions, i.e., if zjz; < 0. Neglecting the transverse
momentum, the partonic center-of-mass energy squared
is

§ = 2(|z1z2| — T122) P? 4+ Q% M
|1 |
1|+ |x
+qzloal £l
|2
> Az lP (17)

For partons moving in the same direction, the contribu-
tion proportional to P? vanishes and hence their center-
of-mass energy is too small to allow application of the
parton picture of perturbative QCD interactions. On the
other hand, two partons moving in the same direction in
the c.m.yn frame may undergo fusion. The invariant
mass of the composed parton is given by the same ex-
pression as above, except that now z;z; > 0 and hence

M? =3 =Q? (1+3> + Q2 (1+ﬂ) . (18)
T T2

For partons moving in opposite directions, the virtual-
ity of the fused state would be comparable to its energy
and momentum in the c.m.yy frame, violating the ba-
sic assumptions underlying the probabilistic parton pic-
ture [Q? < (zP)?]. If we neglect interactions among
cascading partons, as we will do in the following, we
therefore have three types of events: (i) a shower par-
ton (x,Q?) can branch, with zz;,zz, > 0; (ii) a shower
parton (z,Q?) can scatter off a parton from the medium,
if z > 0; and (iii) a shower parton (z,Q?) can fuse with
a medium parton, if z < 0.

The visualization of the multiplication of particles as a
parton shower developing inside the nuclear matter of the
target nucleus that we sketched in this section is closely
related to the picture of the parton cascade evolution that
underlies the PCM [5]. However, the PCM is much more
ambitious and complex, but considerably less transpar-
ent, as it takes into account all kinds of mutual interac-
tions, as well as various nuclear and medium effects. In
the present paper we shall instead make a number of sim-
plifications and approximations in order to illuminate the
essentials of the space-time structure of parton evolution
in nuclear matter.

B. Time evolution versus Q? evolution

As stated, our next step is to find the connection be-
tween the time evolution of the parton number densi-
ties a(z,k?,Q%t), Eq. (6), and the well known Q?
evolution of the experimentally observable parton den-
sities in a nucleon ay(z,Q?), Eq. (8). Originally, the
Q? dependence of the structure functions was investi-
gated using the method of operator-product expansion.

Later Altarelli and Parisi [30], and independently Lipatov
[31], derived a set of integro-differential equations for the
Q? evolution in the leading logarithmic approximation
of QCD. These equations are formulated in momentum
space with no reference to the space-time structure of the
parton evolution. Altarelli and Parisi determined the Q2
evolution in momentum space by using “old fashioned”
perturbation theory that involved squared S-matrix el-
ements with asymptotic free states integrated over all
space and time up to the infinite future. This is reason-
able for the evolution in vacuum, where a parton cascade
simply develops by successive branchings, undisturbed
by external fields. However, our objective is to extend
this approach to the evolution of such parton showers
in medium, i.e., inside nuclear matter where, in addition
to branchings, the shower particles are likely to undergo
multiple interactions with the nuclear partons, so that
the integration cannot be extended beyond previous and
future interaction points.

To state our goal clearly, we want to derive from
elementary principles a kinetic equation for the time-
dependent parton number densities (6) that (i) relates
the space-time evolution of parton cascades to the Q?
evolution of virtualities, i.e., the evolution of off shell
particles in time; (ii) accounts for conventional branch-
ing processes (QCD in vacuum), as well as for stimulated
branchings, fusions, and scatterings in nuclear matter
(QCD in medium); and (iii) correctly balances the gain
and loss of partons in phase space for each of the branch-
ing, fusion, and scattering subprocesses.

Having set up the problem, we first need to ask the
question of how the transition amplitudes or probabilities
of intermediate parton states change if they are restricted
to finite time intervals. Let us start by illustrating with
rather general considerations how the time dependence in
the LLA parton evolution is connected with the change of
the parton virtualities, without making use of the specific
form of the interaction matrix elements. We will, for the
moment, consider only the branching gluons since they
form the dominant component of the parton shower [8].
A detailed derivation, including quarks and antiquarks,
as well as the effect of fusion processes and scattering
processes that are characteristic for the medium, will be
addressed in the following subsections.

The issue of time-dependent interaction amplitudes is
most conveniently addressed by using time-dependent
perturbation theory in the interaction picture [41], where
the transition amplitudes are given by the matrix ele-
ments of the time evolution operator. We start with the
first order transition amplitude w(® (¢) for a gluon in the
initial state |¢) to be scattered into the state |f) by an
external interaction and assume that the final state be-
comes real, i.e., gets on mass shell, without further decay
[see Fig. 3(a)]:

t

w(o)(t): (—Z) / dtg Vo eiwf'to
t;=0

- Y (1—e"“f"‘) , (19)

Weq
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where wy; = Ef — E;. Note that the invariant matrix

element Vo = (f|V]i), which causes the production of
the state |f) at time to, has no explicit dependence on
time.

Now we consider the second order process [see Fig.
3(b)], where the triggering interaction V, at to produces
a certain intermediate virtual state |a) that subsequently
decays (branches) into the two-gluon final state | f) = |bc)
at time ¢, according to the decay matrix element V;(E,).
The transition amplitude w(!)(E,,t) depends therefore
on the energy of the intermediate state and is given by:

w(t) = /dEa wM (E,,t)

t

w(Ba,t) = (—i)? / dty Vy(Ea)e™ret

t;=0

t1
X / dtoVoeiw"ito. (20)
t;=0

We are interested in the total transition probability, ir-
respective of the energy of the intermediate virtual state
|a). Hence we need to integrate over the continuous spec-
trum dE,. In doing so we define 7 = t; — to to be the
lifetime of the virtual state and use T and t¢ as variables
in the integration

t t—71
= (—i)? f dE, / dr Vi(E,) €7 / dto Vp eiwtito
0 0

=1

w

t
Vo /dEa Vi(E,) / dr e™feT (1 - ei‘”f‘(t_f)) . (21)
fi 0

Note that the last term in parentheses does not depend on E,. Now we divide (21) by (19) to obtain the relative
amplitude of the decay of the virtual state and to get information about its average lifetime:

w(l) (t) t . 1 _ eiw,;(t—'r)
— — WeaT _ .
t) 2O (7) z/dEaVl(Ea)A dre (——-———1 — o ) (22)

a) Vo(to)

a
§O00000000> >

li>
1 R
} >
0 to t
b) Vo(to) Vy(ty)
|
|
I
1
| a b
1f>
c
li>
'l -
0 to t t

FIG. 3. (a) Diagram of the first order transition amplitude
w(®)(¢) for an initial gluon state |i) to be converted into a state
|f) by means of an external interaction Vo(to) with the final
gluon being on mass shell. (b) Diagram of the amplitude
w()(t) for the second order process where an intermediate
virtual state |a) is produced that subsequently decays into
the two-gluon final state |f) = |bc) at time t; according to
the decay matrix element V;(E,).

In the limit ¢t — oo we have Ef — E; or wy; — 0, and
hence, for 7 < t (i.e., if the virtual state lives a short
time compared to the overall observation time),

R(t) — R =i / dE, Vi(E.) / dr ereT | (23)
t—o0 0

because exp(iwg;7) — 1 in this limit. In order to analyze
the 7 dependence let us define the function p(7) through

R =3 /0‘°°d7_ o(t) , (24)

so that
o(r) = / de Vi(E; +¢) et | (25)

where € = —wy, = E, — E characterizes the magnitude
of virtuality of the intermediate state. Let us assume
that V3 limits the virtuality to a range || <&o. In fact,
this case corresponds to the ordering of virtualities (9)
in the LLA, which implies, for a timelike parton cascade,
strongly decreasing virtualities of subsequent intermedi-
ate states, where for a given intermediate state an upper
limit of virtuality is constrained by the kinematics (12)
at the vertex of production of this virtual state. For the
purpose of lucidity, we make a simple Lorentzian ansatz

14

Vi(E,) = —————
1( ) 1+52/E§,

(26)
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with constant V. Then we get, from (24),

—1ieT
€

plr) = V/umdE U+ e?/ed

As a result the probability

= mVege T . (27)

lo(r)|* = 7% ef V|2 e 27 (28)

expresses that the average lifetime 7 of the virtual state
|a) with virtuality € in Fig. 3(b) is determined by the
typical virtuality 9. In general it is impossible to assign
a lifetime to a particular virtuality € because these am-
plitudes interfere coherently in the Fourier integral (25).

If we parametrize the four-momenta k* = (E;k,, k)
of the particles a, b, and c in Fig. 3(b) as in (4) and (5),

QZ
b= ((2aP + i 2P, 0)
2 2
+
kb: (l'bP+ 9’3&})&7 IbP7 PL) 3
2 2
kc = (:L.CP"" QSI:—+£L—1 (EbP, “PJ.) ) (29)

with z, = zp + z. and P denoting the longitudinal mo-
mentum defined in (1) and p? the relative transverse
momentum squared generated in the branching, then

QZ
2|z |P

€ = E€q =

(30)

sets the upper limit for the virtualities of the daughter
partons with Q% and Q2 determined as in Eq. (12).
Hence Eq. (28) implies that the transition probability
|o(7)|? is appreciable only for those final states |f) = |bc)
that satisfy

_ |za| P

1
700~ Q2 (31)

TS Te =

C. Derivation of the time dependence
of fragmenting parton cascades

Let us extend these considerations to the evolution of
a parton cascade in the LLA with many intermediate vir-
tual states. Recall the situation that we sketched in Sec.
II A in which the cascade is initiated by a primary parton,
say a gluon, with virtuality Q2 at time ¢o. By successive
gluon emissions (branchings) the cascade evolves with
strongly ordered decreasing virtualities Q7 > Q? ; from
Q2 down to u2 [cf. Eq. (9)], so that interference terms
can be neglected in this approximation. This is illus-
trated in Fig. 4(a). Consequently, each branching occurs
in the average at a certain time ¢;(Q3), with t; < tj41,
and the evolution stops at t7(u2). In analogy to (31) the
average lifetime of the jth gluon g; is given by

_ l=mlP

FIG. 4. (a) Evolution of a gluon cascade in terms of suc-
cessive branchings the LLA with many intermediate virtual
states. The cascade is initiated by a primary gluon with vir-
tuality Q2 at time to and develops downwards with strongly
ordered decreasing virtualities Q7 > QZ,; from Q3 to p?, cor-
responding to the time evolution from to to ty with t; < t:4,
and t¢(pd). (b) Corresponding longitudinal and lateral spread
of the multigluon wave function as time progresses. The dif-
fusion in r direction results in a linear (with time) growing
cross section of the cascade when evolving in a medium, as
inside a nucleus.

Over this time the two gluons g; and g; separate by

ki 1
I‘U_LjTj:ﬁ<4, (33)

QR T Q;

where Vi; = k_Lj/Ej ~ kL]'/(:EjP) and k_l_j = |kJ_1|.
These expressions are in agreement with the uncertainty
principle. Thus, after n gluon emissions the typical
passed time is t = Z?:1 7; =~ |z,|P/Q% (where Q% <
Q2_,), and consequently the mean squared transverse
spread is approximately 72 (t) = [Ar, /2]? =~ 2t/P. From
this simple consideration we can conclude that such a
parton cascade, when embedded inside nuclear matter,
develops a transverse cross section 772 (t) that grows lin-
early with time, as illustrated in Fig. 4(b). That is,
with progressing time the interaction with the surround-
ing medium becomes increasingly probable, so that scat-
tering and fusion processes need to be taken into account.
In this case, the sequence of successive branchings is ter-
minated naturally when the nth gluon collides or fuses
with another parton of the medium. The gluon is then
reexcited by the momentum transfer of the interaction
and it can subsequently start a new cascade sequence of
branchings, and the game repeats.

We proceed now by deriving a quantitative formula-
tion of this picture. At first we will consider the time

Ari_j
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evolution in @2 and z; the lateral shower development
with respect to the transverse momentum k2 will be dis-
cussed subsequently. We will study the evolution of the
gluon longitudinal momentum distribution

o(z,t) = / dk? g(z, k2 1) (34)

that is, the zeroth moment in k2 of the full gluon dis-
tribution g(z,k2,t), defined by Eq. (6). Now let us
introduce the integrated timelike Sudakov factor, or non-
branching probability,

T(t) = T(Q3 k5;tot) (35)

which is the probability that no branching occurs what-
soever between Q2 and p2 within the time span between
to and to + t. Note that the Sudakov factor represents
a rectangle in the (¢, Q%) plane, so there are in principle
infinitely many possibilities to reach the point (to,Q3)
to the point (¢,u2). However, it is not clear how to
incorporate this property in a probabilistic description
[42]; therefore we assume that the propagator property
T(Q(z)a /J'g; to, t) = T(ng %; to, tl)T( %7 l-l'g; t1, t)a corre-
sponding to a “classical path,” holds on the average. This
propagator property, which we will denote in shorthand
as T(t) = T(t1)T(t — t1), will be used in the following.
We will set the clock at to = 0, so that the time de-
pendence resides solely in ¢t. In a diagrammatic analysis
of the branching cascade, the Sudakov factor arises from
loop diagrams which restore unitarity [33].

The probability that a branching of a parton actually
does occur between Q2 and Q% + dQ? and between t and
t + dt is given by

¥(z, Q? t)dz dQ?*dt = Yoz, Q2)dz dQ? P (t) dt. (36)
Here the distribution in Q?,

2 2 a,(Q?) 2
Yo(z,Q%)dzdQ* = mQZ dQ® Yasbe(z)dz, (37)
is the usual Altarelli-Parisi branching kernel [30] in which
Ya—be(2) is the longitudinal momentum distribution of
the two daughter partons b and c, characteristic for the
type of branching,

e = 3 (322 )

Teosa(s) = § (FEEEE)

Yo-sa9(2) = 6 (1fz - +z(1—z)) :
Tomaa(@) = 3 [+ 1= 2)7 (38)

and the running QCD coupling strength in one-loop order
is, as usual,
127

(@) = G2 merAT

(39)

where A is the QCD renormalization scale and f is the
number of quark flavors that can be probed at scale Q2.

The time of branching is distributed according to a
normalized distribution

2 QZ
w(t)dt = 2 f(l—ml—Pt) gt | (40)
where Q?/(|z|P) represents the lifetime of the gluon due
to its virtuality in the laboratory frame and the normal-
ization is such that [°d¢f(¢) = 1. For example, for
exponential decay, we have

Q? Q?

() = o= (-ap) - “
We will now derive an evolution equation for the gluon
number density that correlates the virtualities of the par-
tons in the cascade with the times of branching by cal-
culating the Sudakov factor. In order not to burden
the discussion unnecessarily in this section, we restrict
the cascade to containing gluons only and we solely con-
sider interactions with gluons in the nuclear medium. We
therefore have to evolve a single function, the gluon dis-
tribution g(z,t). To do so, we expand the evolution of

g(z,t) into an infinite sum of contributions,

g(m,t) = Z g(")(m,t) ) (42)

n=0

represented by Feynman diagrams for n successive
branchings at Q2% and t,, as depicted in Fig. 5. The
initial gluon distribution at Q% and to = 0 is denoted as
go(x)-

(i) If no branching occurs between Q2 and u2 during a
time ¢, the only change is that the probability of finding
gluons that have not branched at all decreases; this is
expressed by the Sudakov factor (34), such that (cf. Fig.
5)

99(z,t) = T(t) go(2) (43)

(ii) The probability that a single branching occurs
somewhere between Q2 and p2, within the time inter-
val t, is given by the probability that no branching oc-
curs between Q2 and Q? up to t; [denoted as T'(t;) =
T(Q2,Q%;0,t,)], times the probability for a branching at
Q? and t; [i.e., ¥(21,Q%;t1)] convoluted with the gluon
distribution go, times the probability that no further
branching occurs between Q% and 2, in the time interval
between ¢, and ¢t [denoted as T'(t —t;) = T(Q3?, pd; t1,t)].
This has to be integrated over all possible intermediate
Q@? and t; (cf. Fig. 5). Accordingly we have

1o=0 t =0 t, t =0 t; t, t
o - R .
&‘ : o N\Ze, *
@ (x,1) aMx @ (x,1)

FIG. 5. Graphic representation of the time evolution of the
gluon distribution in terms of an infinite sum of contributions
involving n successive branchings g(z,t) = ) g™ (x, t).
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t Q32 1
g(l)(z,t):A dt, /2 dQ? T(t,) /Odzl U(z1,Q%ty) (t—t1)~g0(:1)

— 2 as(Qz) 1& ) (i) ZIQ% (ZlQl
=T(t) / 1) 00 - /Odtlf ’ ]Pt) ,

27TQ2 0 1 |(B IP
where z; = x;/x. We observe that the effect of the time integral is to limit the range of Q% values which contribute to
g(1). For large values of Q?, the time integral yields unity (all branchings have occurred), whereas for Q? small, the
time integral tends to zero. In order to make progress, we simplify the expression by replacing the integrated decay

rate by a step function:
dzl T 21Q?
0 t—1
/ ’Yg—*gg(zl)go (Zl) (| IP

This is certainly a crude approximation, but it correctly embodies the uncertainty relation between time and virtuality,
that is, t > 71 = 1/Q1, where the Lorentz factor is y; = |z|P/Q1. Now we differentiate and perform the integration

346

dQ7

(44)

dQZ (15 )

Q3
et = 1) [0t 5

u3

(45)

over the virtuality Q%:

£) = t@‘—’(—”(f—)’t)+T(t) /Q°d

8
= L)
ta9 @ 5t T(

0

Il

(@3) /1 T\ t 2Q},
2w o 421 %-9(21) 90 21 |:1c|P(S [:clPt

!

(tg—tlnT(t)> 5;<1)(:c,t)+/01-z—1~

where in the last step we used Eq. (43) to absorb the
Sudakov factor in front of the second term. The time
scale of the branching is set by t = |z|P/(z1Q%), where
T = T; = 2z1T9 and zo denotes the initial value corre-
sponding to Q2 at to. We see that the first order (single-
branching) contribution gV is determined by the zeroth
order (no-branching) contribution g9,

(iii) The same arguments hold when we calculate the
diagram containing n branchings in the LLA. One ob-
tains ¢g(™ as an integral over the branching of g(®~1),
with the result

3] 7]
Z g - - (n)
tatg (z,t) (t 5 lnT(t)) g'™ (z,t)

z|P
Ldz a,( zt ) |z| P 2
+ [ = 6 — K
0o 2 27 zt 0
[z
X’Yg—my(z)g(n Y (;’t) . (47)

Evidently, the time scale of the whole branching chain

is given by t = Y7 |t Yo 1zP/QY >
zoP/(2122 - 2,Q2) with ¢ = &, = 2122 - - - 2,20 and ini-

tial o at the beginning of the branching chain at Q2 and
to. Thus the nth branching that follows n — 1 strongly
ordered preceding branchings sets the time scale because
Q2 < Qi , << Q%cf Eq. (9)]. Itisimportant
to realize that here g(® is completely determined by the
cumulative effect of n — 1 preceding branchings contained
in g(»~ 1. This preserves the “locality property” inherent
to the probabilistic parton cascade picture of the LLA,
in which a branching only depends on the immediate an-
cestor.

(iv) According to Eq. (42), the total gluon distribution
g(z,t) at time ¢t can now be obtained by summing all

Yo—rge(z1) 9 (3,t> . (46)

21

contributions g(™)(z, ), yielding the differential equation

t % g(z,t) = (t 582 In T(t)) g(z,t)

z|P
bdz s l_zlt_ z|P
+ — 0 — ul
0 2 2 zt °
z
XYg—g9(2)g (;vt) .

This equation has the same form as the APL equation
for the gluon distribution, except that Q2 is everywhere
replaced by the variable EEL and, since that variable de-
pends on the ratio z = z,/z, the coupling a,(Q?) cannot
be taken outside of the z integral.

(v) Next we need to calculate the unitary restoring
Sudakov factor T'(t). It describes the loss of probabil-
ity for having no gluon branchings at all up to time t.
Thus we have to accumulate the probability for having
no branching, one branching, two branchings, etc., and
then determine T'(t) from the condition that the total
probability remains unity at all times:

1= P(t) = i w™ ()
n=0

Here w(™) (t) denotes the probability for having n branch-
ings up to time ¢. The probability for no branching at all
is evidently

(48)

(49)

fol dz g\ (z,1)
fol dz go(z)

where go in the denominator is the initial gluon distri-
bution at to = 0 and Q2. The probability for one single
branching is

w((t) T() (50)
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fol dz gV (z,t)

1 1
'w( )(t) - '2_ f01 d:cgo(:z)

) (51)

! Q% +(Q? dz
[) dz 9(1)($’t) =T(t) /u?, dQ? azﬂ_gz)/ Yg—gg Z)/ dz 90
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where the factor 1/2 in front arises because g!)(z,t)
counts every branching twice, since it counts the num-
ber of gluons (two per branching). Using (47), we find,
for the integral in the numerator,

2 (fre )

% 2 as(Qz)
—10) [ a0 %) [aznyne) [(dvaew o (G -1) (52)
ud 2rQ
where we have set y = /2. Now we again differentiate with respect to t and carry out the Q? integration:
1 1
t% (/0 dz g(l)(m,t)) = (t 82 lnT(t)) /{: dz gV (z,t)
(%)  /yp
s \ 7%
+ [dmrgmte) [ay (yT - 1) a0lw) TC) (53)
Hence, using (43) and (50) and renaming the integration variable, we find
Qg |_|3‘£ T
0 e (12 mre) wiie sl g ) foldx—i—lo(l_ﬂi )g(O)(zt) "
t— = — s
500 = (1 0T0)) 00O+ 5 [ v a0 w0 (
We can generalize this result easily to the case of n branchings:
an! L"Jﬁ ) F 3 n—
£ 9w t 2 e ™) (t) + & 1d fo d= = G(Ltg_“g) 9V (@) (n-1)(¢
50”0 = (15 1mT0) 0O+ 5 [ d ) T W),
0 ’
(55)
where the generalization of (51) is
1
n 1 dz g™ (z,t)
w )(t) = o f0_1— . (56)
Jo dz go(z)
This equation can be summed over all n, assuming that the average running coupling
o Jodman (ER) 0 (EE - ) g (e,)
@ (tiug) = (57)

does not depend on the number of branchings. Since
a,(Q?) is a slowly varying function of @2, this should
be a reasonable approximation. Then we have, with Eq.
(49),

o=t§1tp(t) - (t—a—lnT(t)> P(t)
/dZ’Yg—+gg (tﬂ_”’o) P(t)
(58)
or
2 t a, (t; pl
te InT(t) = - % /0 d2 7y 09 (2) % . (59)

fol dz g1 (z,t)

r

(vi) This result is now reinserted into the equation (48)
for g(z,t), using the z averaged coupling (57) also in the
second term on the right hand side, which is necessary
to ensure momentum conservation [43]. This yields the
final formula

a 1/t
tag(%t) = ‘5/0 dZ'Yg—*yg(z)

dz @z (t)
+/0 —Yg—g9(2)—5—— o g

()

9(z,t)

(z’t) ’
(60)

where now, instead of (57), the z averaged running cou-
pling strength of gluons is given by
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Jy dz o (152) 6 (=2 - 13) 9@t

ag(t) = T
) Jo dz g(z, 1)

(61)

We emphasize three important properties of the evolu-
tion equation (60). First, the probabilistic method used
here to derive the evolution of the gluon distribution au-
tomatically yields both the contributions of loss and gain
of gluons that modify g(x,t) [the first, and second terms,
respectively, in (60)]. Second, we note that for asymp-
totic times t — oo, the evolution equation recovers the
time independent APL equation for the gluon number
density. In this limit all the partons have evolved down
to virtuality p2, so that the total gluon number density
depends only on the scale p2. Third, the apparent sin-
gularity at t = 0 in the argument of a, in (60) and (61)
causes no problem because ¢t = 0 never occurs since the
earliest point of time is associated with the very first
branching of the initial gluons with virtuality Q2, which
can occur only after the finite time ¢t = |z|P/Q2 > 0.

(vii) For cascading quarks and antiquarks, allowing

j

only for the process ¢ — gg (the full equations will be
derived in Sec. III), we have a similar equation, except
for the lack of the factor 1/2 in the loss term:

9 ! a(t)
ta‘l(fat) = _/0 dZ'Yq—vqg(z)?

Ydz ai(t) sz
+A _Z—’YQ“’QQ(Z) q (_7t) s

27 z

-

‘I(:Ev t)

(62)

where in this case the average coupling is determined by
the quark density

fol dz a, (Jﬁlﬁ) 0 (JthE - p(z,) q(z,t)
fol dz q(z,t) .

at) =

(63)
Note that not only is the branching function 74,44 differ-
ent from the gluon branching case, but also @, depends
implicitly on the quark number density instead of the
gluon distribution. The conservation of quark number is
derived by integrating the equation over z:

t% [ dzq(e,t) = -/ dzyq__,qg(z)a_;i_t) /(;lqu(a:,t)—i—/olEdz—z/o‘ldzfyq_,qg(z)g_;—g—)q(z,t). (64)

1
0

Introducing the new integration variable y = z/z in the
second term, one immediately finds that it equals the
first term, but with positive sign, so that

o 1
t({%/o dr gq(z,t) = 0 . (65)

D. Scattering and fusion processes

As pointed out in Sec. II A, scattering and fusion pro-
cesses rejuvenate the fragmentation cascade. Let us first
consider elastic scatterings between two partons. If a
parton (gluon) in an evolving cascade scatters on its way
with some other parton from the nuclear medium involv-
ing a transverse momentum exchange p? , then its maxi-
mal virtuality is reset to Q2 = p%. Since we have related
the virtuality Q2 to the evolution of laboratory time t
via the relation

— |z |z|P
t =Y T~ o, (66)
i=1 QJ Q
with
T= Tpn = 2122 " " *2nT0,
(67)

Q=Q2<Qi < xQf,

we therefore need to “reset the clock” for a parton after

l

each scattering process, if the momentum transfer pi is
larger than the present virtuality of the parton. This is
illustrated in Fig. 6. To keep track of these repeated
rejuvenations, we introduce a new independent variable

’
/

7=t ’

/
(vacuum),”
/

T< t
(medium)

FIG. 6. Connection between the “age” T of a cascade par-
ton and the time t. In vacuum where the particle evolves
(in the LLA) solely by successive branchings with decreas-
ing virtualities Q?, the age of a parton is measured in time
via t = |¢|P/Q?. In medium, however, scattering and fusion
processes modify the age by rejuvenating the parton in each
interaction with the medium. That is, a parton ages slower
because it is shifted back to larger virtuality, corresponding to
the transverse momentum squared exchanged in the scatter-
ing, or to the invariant mass of the compound state in fusions,
respectively.
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T to denote the age of a parton. In analogy to (66) we

define
T = 1(z,t) = (l—gTP)t , (68)

which introduces an additional time scale that reflects the
external influence of the medium on the time evolution of
the parton cascade. Since the scatterings and fusion pro-
cesses in a medium occur stochastically, the connection
between laboratory time ¢ and the age 7 cannot be deter-
ministic, but must rather have the nature of a probability
distribution A(7,t,z). Here the distribution A denotes
that a parton with longitudinal momentum fraction z
has age 7 at the laboratory time ¢t. As will become clear
below, the age distribution will differ for different values
of z. It is, however, much easier to derive an evolution
equation for the quantity

g(z,7,t) = A(7,t,z) g(z,t) (69)

rather than for the age distribution itself. The function
g(z,7,t) describes the number of gluons that have longi-
tudinal momentum zP and virtuality Q2 = |z|P/7. Of
course, if g(z, 7,t) is known, the age distribution is easily
recovered as

g9(z,7,t)
f0°° dr g(z,T,t) ’ (70)

The age distribution evolves in parallel with labora-
tory time ¢ in between scatterings and is set back to the
age 7(p%) = |z|P/p? , corresponding to the maximal vir-
tuality p2 acquired in the collision. The resetting of the
clock occurs only if 7(p% ) is younger than the present age
of the parton, because otherwise the present scattering
process cannot be separated from the previous interac-
tion that kicked the parton off mass shell. For simplicity,
let us here consider only gluon partons in the cascade
and in the medium. The time development of g(z,7,t)
is governed by four different contributions: (i) a “free-
streaming” term describing that 7 evolves parallel with
t, if the parton does not interact, i.e., the parton “ages
naturally”; (ii) a term describing that a branching parton
transmits its virtuality to its daughter partons, i.e., these
acquire a new age z7 according to the branching fraction
z, so that the variable Q% = |z|P/7 remains unchanged;
(iii) a term describing the rejuvenation of partons in two-
body scattering processes; and (iv) a term describing the
change in the virtuality of a parton by fusion with a par-
ton from the nuclear medium. Hence

7] _ (og 99
52 g(z’ o t) - ( ot ) free * < ot )branch

g Og
* (E)scatt * (E>fus' (71)

(i) The free-streaming term is easily obtained from the
condition that 7 and t evolve in this case parallel, requir-
ing that

g9(z,7,t)= g(z, 7 + d7,t + dt)

A(rt,z) =

_ 99 dg
=g(z,7,t) + or dt + n dt (72)

in the absence of other interactions. Hence

g _ 7]
(E>fl‘ee T é;g(z,‘r’t) . (73)

(ii) The branching term is obtained simply from Eq.
(60) after division by t, if one notes that the variable ¢ in

the expression a, (J_ilﬁ) is related to the virtuality Q2

zt
of the parent parton and should therefore be replaced by
the age variable 7 = Jzi(g—l:. This immediately yields

dg 1 Looa(r)
(§>branch T 5 ~/0 4 27!'—1' 79"’99(2) g(m, n t)

: Ldz @, (7) T
O GO
(74)

(iii) The scattering term is somewhat more compli-
cated. We begin by noting that the momentum fractions
of two partons before (z1, ;) and after (z},z}) scatter-
ing are related by

T1+ T2 (z1 — z2)? P}
T = Ty i\/—r— - (™M
or
2
’ y
n=a (2} — z2) P2’
’ Pi

Since only gluons with opposite directions of propagation
are allowed to scatter in the parton picture (cf. discussion
in Sec. IT A), the total scattering rate of cascading gluons
is given by

1 oo 1]
w=/ dm1/ d‘rl/ dzo
0 0 -1

N dé
x [ et glar,m,t) allaal)on 25252,
Pl
where py is the nucleon density in the medium. The

loss term due to the scattering of a cascading gluon is
therefore

@ (loss) B
at scatt -

(77)

0
- / des / dp? g(z,71) §(|])
-1

469999
X —"5—= PN. 78

dpﬁ_ PN ( )
In the gain term we have to distinguish between “soft”
and “hard” collisions, as compared with the virtuality of
the incoming cascading gluon Q% = z,P/7,. If Q% > p?,
the scattering parton will keep its virtuality because the
collision cannot be resolved from the previous interaction
that originally kicked the parton mass off shell. If Q% <
p?, the scattered parton will acquire maximum virtuality
p3, corresponding to an age 7 = |z|P/p?. The gluon
scattered out of the nuclear medium, however, always
acquires maximum virtuality p‘j’_ because it was spacelike
before the interaction. Therefore,
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(gain)
( ) scatt

. dé
.—_/ de/ dﬁ/ d:czfdpj‘ g(z1,71,t) §(|z2]) i
-1
X {6 (T-—— [mLP) [1 + 0 (pi
Py

Woaoas y b(a} — )

zIP) T—n)o(f’—;—e—pi)} . (79)

For the first term in the curly brackets we can perform the p? integration, for the second term, the 7; integration;

the z; integration collapses, yielding

according to Eq. (76). This leaves us with

ag) & 0 ImIP d6gg—,
vy - d 99—99
( ot )scatt -/—1 2 g('zZI) dp_L

/ de / 403 glan,1) dlaal) L2578 5y

Note that since ; itself depends on p? (for fixed z and
x2), the step function in the last term really imposes the
integration limit

_ 2
TCSF ECEES

2
(z —z2)PT -1 pl) - (82)
(Of course, the integration range is also limited by the
condition z; > 0.)

(iv) Finally we turn to the fusion processes, where
the invariant mass M?2 of the produced off-shell parton
replaces the momentum transfer p'i as virtuality scale.
Since only those gluons that have reversed their direction
of propagation, i.e., with z < 0, can fuse with medium
gluons (cf. discussion in Sec. IT A), the total gluon fusion
rate is given by

0 oo 0
TB:/ dwl/ d'rl/ dxag(ze,7m1,t) 9(|z2])
—1 o —1

Ao, (M?)

M2 ’
where the fusion probability gy, is related to the
branching functions v,—,5c by [39]

XpN Lggg(T1, 2, T1 + 22) (83)

$1-T2 T
Fab—bc(zlam27 11:3)_ Cab—sc 5 .’13 Ya—be | —

G _p;;)Pz , (80)

oC x
PN / dTl g(J:laTht) [1+9(—"_ l):l
pi:u?p o T |z

(%ﬁ —1&) : (81)

where 3 = x;+ 3, and the factors in front of v,_, arise
from the difference of phase-space and flux factors for
fusions compared to branchings. The color factors cqp_;c
are cgg,g = 1/8, and cgg—,q = 1/8, and cgq-,4 = 8/9.
Hence we have

Lggmg(x1, 22,21 + 2)

T1To Ty
=172 85
8(z1 + -732)279-)99 ($1 + wz) , (89)

and the invariant mass, neglecting the virtuality of the
medium parton [see Eq. (18)], is

M2:M(1+$2>

T1 Ty

_ l:l:l +$2| P

= (86)

Here z; < 0 and 7; denote the momentum fraction
and virtuality of the shower parton fusing with a parton
from the nuclear medium, which has momentum fraction
z2 < 0. Since the virtuality of the cascading gluon be-
fore fusion was Q2 = |z;|P/T1, we see that the same age
71 describes its virtuality correctly before and after fu-

3 zs3 sion. In other words, the variable 7 remains unchanged
—c T1T2 T2 (84) by fusion processes. The loss and gain term from fusion
= Cabme z2 Ya—reb z3 /)’ processes are, therefore,
|
dg 0 ) 4o, (M?)
(5) == [ de2a(@m0) dlaa)) o Tagog (a0, + 00) 2200
fus -1 M2=|z+z|P/T

0
+/ dzz 9z~ 22,7,) §(122) PN Tggg(@ = 22,22,2) o
—|=z|

4ma,(M?) (87)

M?2=|z|P/T

Note that if we would not explicitly distinguish between cascading and nuclear partons, the second term would be
supplemented by a factor 1/2 due to the indistinguishability of the two incoming gluons.

We remark that in Egs. (78), (82

), and (87) the absolute value of 3 in the argument in the nuclear gluon distribution
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3(|z2|) accounts for the fact that the measured nucleon structure functions are defined for positive arguments only.
However, one has to keep in mind that the nuclear partons are moving in the negative z direction (cf. Sec. IIA).
We finally combine all our results to write down the full evolution equation for the off-shell gluon distribution:

9 9 1 [t
H9@nt) = = gra@nt =g [ dz ()

o dé
—/ dzz §(|z2|) /dpi —
-1

dp?%

|z| P /0 . dG 4999
+ — dxr T —==_=2
T2 ), 2 4(|=:)) dp?

@(7)

8
2nT

1 —
y dz a(r) [z
g(m,T,t) + A '? 79—)gg(z) 2’7'_7_ g (;,Tv t)

PN g(xa T, t)

pi=|z|P/T

e T1 T
X dry g(z1,71,t) |1 + 0 ————)]
PN/0 1 9(z1,71,1) [ (‘r 2]

0 P/t d& N
+/ dwz@(lzzl)/ dp?. 9299 [, oz 7 1)

-1

(1]
- / daz 3((aal) 0(e,7.) pn Togmg(w 20, +22) 3

0
+ / dzz §(|72]) 9(2 — 22,7,t) i Tgqrg (@ — 2,2, 7)
—|z|

Note that the modified equation no longer is a differential
equation in the variable (Int), but rather in ¢ directly,
because the presence of interactions with the medium
defines a characteristic time scale (op)~!, the mean free
time between scatterings, which breaks the scale invari-
ance of the fragmentation cascade.

E. Transverse momentum spread

In order to investigate the development of lateral
spread perpendicular to the parton shower axis, one has
to study the transverse momentum dependence of the
gluon distribution. Recall that the distributrion g(z, 7, t)
is the zeroth moment of the full gluon phase-space dis-
tribution g(z,k2,7,t) [cf. Eq. (34)]:

g(@mt) = / dk? gz, k2 ,7,t) . (89)

Instead of keeping the transverse momentum k; as an
independent variable in the gluon distribution function,
here we will only follow its average growth due to branch-
ing, scattering, and fusion processes. In order to do this,
we introduce the mean squared transverse momentum
distribution my(z,7,t) of gluons as the first moment in
k2, ie.,

ng(z,7,t) = / A2 K2 g(o, k3, mt) . (90)

The evolution equation for my(z,7,t) is easily derived
in analogy to the equation (88) for the gluon distribu-
tion function g(x,7,t). Each loss and gain term is to be
weighted with the transverse momentum squared k2 as
it changes by accumulating a certain p? generated in the
branching, scattering, or fusion processes. Since the loss

dp%

dra,(M?)

M2=|z+z;|P/T
A, (M?)

. (88)

M2=|z|P/T

r

terms in (88) generally also represent the loss of partons
out of a range between k? and k% + dk3, one has sim-
ply to replace g(x, 7,t) by mg(x,7,t) in these terms. The
gain terms, on the other hand, receive different contribu-
tions associated with the different kinematics of branch-
ing, scattering, and fusion.

(i) For a branching process k;_; — k; + k7, using (11)
and (12) and assuming Q2,Q”? < Q?_,, one finds

kf_j ~ z? kf_j_l + z;(1 - z;) Q?_l ,

K2~ (1-2)%k 0 + z(1-2) Q% . (91)

(ii) For a scattering process between a shower par-
ton with k;_; and a nuclear parton, involving a squared
transverse momentum exchange of p? ;» with the two cor-
responding outgoing partons carrying k; and k;, respec-
tively, we have

ki; = kij1 + Pij , ;= —pLi, (92)

since the nuclear parton initially has no transverse mo-
mentum, and

pl; = ki; — ki, = kY. (93)

(iii) For a fusion process between a cascade parton with
k;j—1 and a parton from the nuclear medium yielding the
compound state with k;, the condition is k1 ; = k1,
because as in the scattering case, the nuclear parton ini-
tially carries only longitudinal but no transverse momen-
tum; hence

kij = kij—l : (94)

Using these kinematic conditions on the change of
transverse momentum in the interactions, we find the
evolution equation for the first moment in k% of the off-
shell gluon distribution:
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III. THE COUPLED EVOLUTION EQUATIONS
FOR QUARKS, ANTIQUARKS, AND GLUONS

In this section we will extend the previous derivation
of the gluon evolution to the coupled system of gluons
g, quarks ¢;, and antiquarks ¢; with flavors i = 1,..., f.
The only essential difference to the purely gluonic case
is that now the parton cascade evolves via a number of
different branching, fusion, and scattering subprocesses
which couple the gluons with the quarks and antiquarks.
Let us denote the rates for the various interactions of
the cascading partons due to 1 — 2 branchings, 2 — 1
fusions, and 2 — 2 scatterings by (a = ¢;, 4§, 9)

! 8
R™™™) (g, 7,t) = (; a:a(:z:,‘r,t)) ,
ot processesm—m/'

(96)

i.e., as the change of the = weighted parton densities,
integrated over k2,

z a(z,7,t) = /dkixa(m,kﬁ_,r,t) . (97)

1
[aeen () o (2 g
0 T T

To evaluate the interaction rates Rf,m_’m')(m,v’, t), we
use the well known lowest order perturbative QCD ex-
pressions for the branching amplitudes [30,33], fusion
amplitudes [39,44], and the parton-parton cross sections
[45-47], respectively, and implement those in the formal-
ism described in the preceding section. The correspond-
ing Feynman diagrams are depicted in Figs. 7-9.

For the following we introduce the parton momentum
densities Q; (Q;) and G:

Qi(z, T, t)==z /dkﬁ_ q,‘(:l:,ki,T,t),G(.’E,'T, t),
(98)

=z /dki g(w,ki,‘r,t),

i.e., the parton number densities g; (¢;) and g weighted
with the longitudinal momentum fraction z, where 7 =
1,...,f denotes the quark flavors. Furthermore, for
brevity we define the following functions that represent
the effective coupling in branching and fusion processes
in terms of the running QCD coupling strength o, (Q?),
Eq. (39):

) g(z,7,t) + Z[qj(m,r,t) + g;(z,7,1)]

a, (1) =
A dz g(szvt) + Z[qj(x’Tvt) +q_j(z’77t)]
_a(T) dra,(M?)
{= e BT = T M2=[z|P/r
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Finally we recall that 7 = |z|P/Q? denotes the lifetime
of a parton with longitudinal momentum fraction =z and
virtuality Q2, which according to (68) sets the typical
time scale for producing a parton at z and Q2 in a parton
cascade as it evolves through the nuclear medium, and
which reduces to Eq. (66) in vacuum. Furthermore, the
variable z = z/z’ is the fraction of z values of daughter
to mother partons in branchings and fusions, M? is the
invariant mass squared of two fusing partons, p? refers to
the relative transverse momentum squared exchanged in
parton-parton scatterings, and py is the nucleon density
characterizing the nuclear medium.

A. Branching processes

The net change of the quark number densities due to
the branching processes shown in Fig. 7(a) is obtained
by adding up the gain term due to quarks of momentum
fraction z; > z having radiated a gluon of momentum
fraction z; — z, the loss term, identifying all those quarks
that had momentum fractions x before radiating a gluon
of momentum fraction less than z, and the additional
gain term that arises from gluons with momentum frac-
tion z; > z decaying in a ¢;§; pair with momentum frac-
tions =z and z; — z, respectively. Correspondingly, the
net change of the antiquark number distributions due to
branchings is given by replacing ¢; by g;.

The result for the branching rates of quarks (and anal-
ogous for antiquarks) is

RI™V(z,7,t) = — AQ; + BG (100)
where
1
- AQi= —/0 dz [Qi(w,‘r,t) - Q; (E,T,t)]
X&(T) Yq—qq(2)
N 1 -
BG= /0 42 G (2,7,8) €1) voaaz) - (101)

The branching functions v,_,5.(z) are given by (38).

The change of the gluon distributions is similarly ob-
tained by adding the contributions of Fig. 7(b), namely,
the gain of gluons with momentum fraction z due to
gluon emission by gluons with momentum fraction =, >
z; the loss term due to gluon emission by gluons with mo-
mentum fraction z; the loss term due to gluon decay into
¢id;, summed over all quark flavors i; and the gain term
due to radiation of gluons with momentum fraction z by
quarks and antiquarks with momentum fractions z; > .
We then obtain, for the branching rates of gluons,

Rél‘*z)(w,‘r,t) =-CG - DG
f
+Z(EQJ‘ +EQ:‘)a (102)
j=1

where

(+) =) (+)

X=2X4 Xp=2X X=2X4
X X X4
a) Ee— — TTTTTTT>
(1-2)x4 {(1-z)x (1-2)x,
(+) -) )
X=2ZX4 Xp=2X Xp=2ZX
X4 i: X i X
b) OTTTTTO
(1-z)x4 (1-z)x {(1-z)x
(+) (+)
X=2ZX4 X=2X,
X4 X4
(1-2)x4 (1-2)x4

FIG. 7. Feynman diagrams associated with the gain and
loss of (a) quarks (antiquarks) and (b) gluons due to ele-
mentary branching processes. The parton with momentum
fraction z is the “observed” particle.

. 1 1 z
—CG——/(; dz [EG(w,T,t)—G(;,T,t):I

x€(T) Yg—gg(2) »

. 1
DG =— fG(z,mt) /0 dz £(T) Yomraa(2) »
1
5= [ 4205 (2.7t) £0) veoan(@)

1
EQ;= /0 dz Q; (2,7t) €(7) Yamrag(2) - (103)

B. Fusion processes

The parton-parton fusion processes manifestly alter
the parton number densities in a similar manner as the
branching processes, provided the quark and gluon densi-
ties of the nuclear medium (labeled with a caret) are suf-
ficiently dense and the probability for a parton to absorb
one of the nuclear partons becomes significant. Recall
that we do not consider here fusions among the shower
partons or among the nuclear partons themselves. To
obtain the fusion rates, we use the expressions for the
fusion probabilities I'yp—,. given in (84) in terms of the
branching functions yg—pc.

The net change of the quark number distributions due
to fusions with partons in the nuclear medium (labeled
by a caret) is balanced by the gain and loss of quarks with
momentum fraction z due to the processes shown in Fig.
8(a). These are the gain of quarks through fusions of a
quark with z; < z and a gluon with £3 < = such that
T, + 2 = z, the loss of quarks with longitudinal mo-
mentum fraction = due to fusions with gluons of x5, and
the loss of quarks with fraction z due to ¢;g; annihilation
into gluons. The corresponding change in the antiquark
number distributions is obtained by interchanging ¢; and
qi-
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The result for the fusion rates of quarks or antiquarks ~ where, in contrast to A and B in (101), the integral oper-
is ators A’ and B’ are functionals of the densities of quarks

Q (Q) and gluons G of the nuclear medium in which the

o . cascading particles evolve. The integral operators A’ and
R((I?_’l)(:z,r, t) = — A'[G]Q; — B'[Q;]Q; , (104) B’ are obtained as

J

- A(GQi=— L on /Oldz |:Q,~(a:,7',t)é (“%ﬁ) ¢(2.7) = Qi(e2,7,0) Glo(1 = )] € (27| Yasao 2),

-B10Ie= o [ Qe (25 pptor¢ (Sr) (105

The gluon number distributions receive modifications from the fusion processes depicted in Fig. 8(b). There is the
gain of gluons with momentum fraction = from fusions of two gluons with ¢; < ¢ and z2 < z such that z; + z, = «,
the loss of gluons with  due to fusions with other gluons from the medium, the gain of gluons with fraction = due
to ¢;¢; annihilation, and the loss of gluons with fraction z due to absorption by quarks or antiquarks. We obtain the
following result for the fusion rates of gluons:

f . f R L
R (z,mt) = = €616 - Y (D116 + D'[Q;16) + Y (E'1Q;1Qs + E'1Q:]Q;), (106)

ji=1 Jj=1

where

—é'[é]Gz—gpN/dz[Gu n)6 (252 ¢(2r) - Glennt) Gloti -2 (e 7] tomssla)

- D'[Q;]G = - %PN G(z,T,1) /0 dz Q; (x(l—z_z—)> Ya—ga(2) ¢ (;T) ;

- 51016 =~ Low Glemd) [ 42 () e (B1r)

B(Q;1Q; = gon [ d2Q5(a%) Qs el = 2)] Ygmaal2) (2,7

on / dz Q; (2) 0; [2(1 = )] Yooaa(2) ¢ (2.7) - (107)

0

O W~

E'Q;1Q; =

C. Scattering processes

Finally, the collision rates for elastic scatterings of the cascading partons with the partons in the nuclear background
medium with nuclear density py receive various contributions which are diagrammatically shown in Fig. 9. Again,
we only account for interactions of the parton cascade with the medium, i.e., those parton collisions that involve a
shower parton and a nuclear parton, the latter of which after the scattering becomes a timelike excitation and is
added to the cascade. To compress the expressions for the scattering rates, we introduce the function

A a d d6absa B(z,T,t z|P [° dz, - dGab—a
sab{A}Bs—/ D2 ilal) [t Latpst py BET T [ 222 ) Lot

d2 T T2

_ -1 T2 dpﬁ_ p? =l=IP
x ,DN/ dry —————B(m;’lﬁ’t) [1 +6 (? - %)]
b [ 2 e [T gy Patr , Blennd) (108)
-1 Pl 1
[

where A, B = G, Q;, Qj and the caret labels as before the uated is, according to Eq. (80), z; = :B+p'j’_/[(13~$2)P2]~
nuclear parton distributions A, whereas the distributions The values of z, are negative, according to our choice of
B without a caret refer to the cascading partons. The frame, Sec. IT A. Since the nuclear parton densities, when
value of z; at which the function B(z,,7,t) is to be eval- represented in terms of the measured nucleon structure
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FIG. 8. Feynman diagrams contributing to the gain and
loss of (a) quarks (antiquarks) and (b) gluons by fusions with
nuclear partons. The parton of interest is the one with mo-
mentum fraction z and the nuclear parton from the nucleus
structure function has momentum fraction z-.

functions, are defined for positive values only, we take
here the absolute value, but keep in mind that the par-
tons of the nucleus move in the negative 2z direction.
For the quarks (and similar antiquarks) we have the
processes ¢;g — ¢ig, ¢iq; — ¢i¢j, and ¢;§; — ¢:g;. Hence

R (z,7,1)

= 5.4lQ:) G i(%a@@+&aom0-

(109)

On the other hand, for gluons the contributing pro-
cesses are gg — 49, 99; — 99;, and 9q; — 9q;- Conse-
quently,

2552
Rg_’ )(z,T,t)

= $,,[G1G + zf:( Sgaq; [G] 1Q; + qu, (] Q’) )

(110)

The parton-parton cross sections that enter the expres-
sions Sab[A] B, Eq. (108), i.e., d64p—cd/dp? , for massless

(% )Q,(x‘rt)——(fi—{-

! f
+ 25«[@] Q; + ZSqq[Qi] Qj ,
Jj=1

j=1

a6 + B'1QJ) @

[sl}

i

G Q]
& 9 &;

i Q; Q;
G Q; qQ;
/
b)
M X X X
G G é G G G

FIG. 9. Diagrams of elementary scattering processes that
increase of the number of (a) quarks (antiquarks) and (b)
gluons with momentum fraction z due to the liberation of a
virtual nuclear parton (labeled by a caret) out of the wave
function of the nucleus by an interaction with a cascade par-
ton.

partons are related to the squared scattering amplitudes
[ Mab—ca|?, averaged over initial spin and color states and
summed over the final states, by

da’ab—)cd(gapri) =D bD y Uye (pJ_) IM b dl
—dpi a C ab—rc

(111)

Here the variables §,, @ are the kinematic invariants of
the parton-parton scattering with § + £ + @ = 0, and
P2 = ti/5 for massless particles. The degeneracy fac-
tors Dgp = (1 + 845) ! account for the identical particle
effect in the initial state if @ and b are truly indistinguish-
able, and correspondingly D4 is the statistical factor for
the final state. However, since we explicitly distinguish
between nuclear and shower partons, Dy, = 1 always.
The squared matrix elements for the diagrams in Fig. 9
are standard literature and can be found in, e.g., [45].
For massive quarks the corresponding scattering matrix-
elements can be found in Refs. [46,47].

D. The evolution equations
for the parton shower functions

Adding all the interaction rates R(!72), R(22>1) and
R(222) to the free-streaming term (72), we obtain the
following set of evolution equations for the parton den-
sities Q; of quarks, Q; of antiquarks, and G of gluons,
respectively:

+ (B + 5,000) @

(112)
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ot

(113)
(LE) Ga,mt)=— [ C + D + C'[G] + i{mo] + D'[Q,1} - 5,lG| G
at " or = ~ ’ I 9
f . f
(B4 EQ) + 806) Qi+ (B + BIQ) + Sul€))
) (114)

Note that this set of equations actually describes the time
evolution of the parton (longitudinal) momentum distri-
butions Q = zq, Q = z§, and G = zg rather than of the
parton number densities ¢, g, and g. Similarly, one can
write down, in the full evolution equations, for the first

moments in k3,
o (@rt) = [ did i oao ko)

Oy(z,7,t) = /dki k2 zg(z, k3, 71,t), (115)

in a straightforward generalization of Eq. (95).

Finally we stress that the evolution Egs. (112)—(114)
can immediately be generalized to treat the cascading
partons and the partons of the nuclear medium on the
same footing, by dropping our bookkeeping distinction
among those two particle sources. This would then de-
scribe a dynamically coupled system in which the parton
cascade evolution feeds back on the nuclear parton distri-
bution. The only differences to Egs. (112)—(114) are that
the nuclear parton densities also become time dependent,
ie., a(z) — a(z,t), where a = g;,q;,g, and in the gain
term of gg — g fusion, as well as in the gg scattering
rates, an additional factor of 1/2 would be needed be-
cause the two interacting gluons, a cascade parton and a
nuclear parton, cannot be distinguished anymore. How-
ever, the response of the nuclear density to the penetrat-
ing parton shower is naturally delayed and only locally
effective, so that the parton cascade, to a good approx-
imation, can be viewed as being unaffected by this time
variation of the nuclear medium. Of course this approxi-
mation does not apply anymore when there are multiple
cascades evolving simultaneously close to each other in
phase space, as, e.g., in a nucleus-nucleus collision. In
such a case the full space-time history of both the cas-
cading partons as well as the nuclear partons certainly
needs to be taken into account.

IV. SUMMARY

To summarize the essence of this work, let us list what
we believe are the most important points.

(i) We have derived integro-differential equations for
the evolution of a parton cascade in an infinite, homo-
geneous nuclear medium, describing the parton distribu-
tions in terms of the Bjorken variable  and virtuality Q>
(or “age” T).

(ii) The Lorentz invariant evolution equations have the
character of transport equations in momentum space, fa-
miliar from nonequilibrium kinetic theory; however, they
include effects of off-shell propagation in addition to col-
lision terms.

(iii) In the absence of a medium the equations reduce
to the Altarelli-Parisi-Lipatov equations for the Q2 evo-
lution of the parton number densities in vacuum.

(iv) Possible immediate applications of the evolution
equations are, for example, to the fragmentation of par-
tons in heavy nuclei and to hard QCD probes of a quark-
gluon plasma.

(v) The equations can be easily generalized to pro-
vide a description of parton transport in ultrarelativistic
heavy ion collisions by treating the shower partons and
the nuclear partons on the same footing.

(vi) Since our derivation was partially based on heuris-
tic arguments, it would be desirable to obtain a for-
mal justification from fundamental principles of quantum
field theory by Green’s function methods.

We hope to address these issues in future publications
[48].
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