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Goldstone pion and other mesons using a scalar confining interaction
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A covariant wave equation for qq interactions with an interaction kernel composed of the sum
of constant vector and linear scalar confining interactions is solved for states with two quarks with
identical mass. The model includes a Nambu —Jona-Lasinio —like mechanism which links the dynam-
ical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance
of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the
small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and
hence breaks chiraL symmetry Solu. tions for mesons composed of light quarks (s, p, and low lying
excited states) and heavy quarks (rL„J/4,and low lying excited states) are presented and discussed.

PACS number(s): 12.39.—x, 11.10.St, 11.30.Rd, 14.40.—n

I. INTRODUCTION

In two previous papers [1,2] we have presented a covari-
ant Nambu —Jona-Lasinio —like [3] model which is mani-
festly covariant and which includes confinment [4]. The
quark-antiquark (qq) interaction is a relativistic general-
ization of a potential consisting of a constant plus a lin-
ear confining term, and has two functions: (i) it dynam-
ically generates quark mass through a Dyson equation
for the quark self-energy, and (ii) it binds qq pairs into
mesons (and can be extended to include the description
of baryons as three quark states, but this extension has
not yet been developed) . As in the original Nambu —Jona-
Lasinio (NJL) model (which, however, does not include
confinement), our model guarantees that the dynamical
generation of quark mass in the limit when the "bare, "
or undressed, quark mass is exactly zero (which we will
refer to as the chiral limit) must be accompanied by the
existence of a pseudoscalar bound state of zero mass (the
pion). This occurs because the Dyson equation for the
dynamical generation. of quark mass and the equation
for a pseudoscalar bound state of zero mass are identical
in the limit when the current quark mass is zero, and
hence the existence of a solution for one implies a solu-
tion for the other. In our previous papers we described
in considerable detail how the relativistic confining inter-
action is defined, and how the relativistic equations are
constructed in the general case. The equations are co-
variant, two-body equations with two channels: one with
the quark restricted to its positive energy mass shell, and
one with the antiquark restricted to its negative energy
mass shell. The equations and model will be reviewed as
needed below, but for an introductory discussion of all of
these ideas the reader is referred to Refs. [1,2].

In our original work, we assumed that the entire Dirac

structure of the relativistic kernel which described the qq
interaction was invariant under transformations of the
chiral U(1) group. Later, in Ref. [2] we realized that,
because of the constraint given in Eq. (1.3) below, it was
not necessary for the purely linear part of the confining
interaction to be chirally invariant, permitting us to use
this model to explain the small mass of the pion even
cohen the linear potential is a scalar interaction in Dirac
space, and hence breaks chiral symmetry. It is the pur-
pose of this paper to explore this attractive possibility
further. As part of this exploration, we present numeri-
cal solutions for the first few bound states of both light
and heavy mesons, which encourage the belief that, after
the addition of the one-gluon-exchange mechanism (not
discussed here), this model will both (i) provide a natural
explanation of how the mass of the pion approaches zero
in the chiral limit, and (ii) explain the entire spectrum
of the "normal" mesons. A detailed discussion of the
entire meson spectrum is postponed until the one-gluon-
exchange mechanism has been added to the model.

In the rest of this section we will brieHy describe the
new model we are proposing. In Sec. II we discuss the dy-
namical generation of quark mass and in Sec. III present
the exact form of the bound-state equations and wave
functions for pseudoscalar and vector meson states. In
Sec. IV, we discuss a family of pionlike solutions (includ-
ing the physical pion state) and in Sec. V present solu-
tions for the other "normal" mesons. Section VI presents
our conclusions and includes a discussion of the relation
of this work to other recent work, and some details are
given in the Appendix.

In this paper the kernel which describes the interac-
tion of a quark q with momentum pi ——p + 2P and an
antiquark q with momentum p2 ——p —2P, as illustrated
in Fig. 1, is written in the form
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Using the specific form of VL, given in Sec. III, and tak-
ing the limit m ~ oo, the kernel (1.1) can be understood
to be a relativistic, momentum space generalization of a
coordinate space potential of the form

V(r) = —C+ 0 r. (1.4)

The change of sign in the constant term can be traced to
the fact that the vector and scalar matrix elements for
the antiquark have opposite sign:

FIG. 1. Diagrammatic representation of the coupled chan-
nel bound state equations with the momenta and channel
numbers labeled. The particle which is on shell is marked
with an x, and for channel 1 it is the quark and for channel
2 the antiquark. The wide shaded line connecting the two
quarks represents the interaction kernel, which is a sum of
constant plus linear terms.

3I, E„
V(p, k) = Fi F2 — (2ir) h(p —k) " C pi p2„4 [ m

+Vr(V k)lil.g),

where m is the mass of the on-shell quark (or antiquark),
E„=gm2 + p2, C is a constant, p" are the Dirac p ma-
trices, and F = 2A are the SU(3) color matrices. The
kernels V and VL, are functions of the relative four mo-
menta (p and k) with energy components which depend
on which quark is on shell, as discussed in Eq. (3.3). Note
that both the relative four momentum and the magnitude
of the relative three momentum will be denoted by p; the
distinction should be clear &om the context. The sub-
scripts 1 and 2 on the Dirac matrices p" and on the 4 x 4
unit matrix 1 label the particle on which the matrices
act. On color singlet states, with the color flowing in the
directions labeled in Fig. 1 the color operator Fq F2 has
the value

~( P2) ~( P2) 1~ +( P2) '7 +( P2) m

II. DYNAMICAL GENERATION OF QUARK
MASS

Quark mass is dynamically generated by the interac-
tion given in Eq. (1.1). The equation for the quark self-

energy predicted by this interaction can be obtained by
starting with the four-dimensional Dyson equation:

d4k Vo (p, k)
m. —P+ Z(k) —i.

t

mp —P+ Z(k) —ie
(2.1)

and the fact that the effective sign of the interaction is
determined by the sign of the scalar matrix elements.

The specific model (1.1) has many features already
common to the models previously discussed in [1,2]. One
new feature is that the linear and constant parts have a
different Dirac structure. The linear part is a pure Dirac
scalar, as suggested by lattice gauge calculations [5] and
previous phenomenological fits to the meson spectrum
[6]. The constant part is a pure vector, and is chirally in-

variant. Note also that both terms are multiplied by the
color operator Fq .F2 and hence only colorless qq states
will be confined [6].

4
Fg F2 ———.3' (1.2)

The function VL, (p, k) is the momentum space represen-
tation for the linear, confining potential and is discussed
in detail in Section III. For now it is sufBcient to note
that it satisfies the constraint

where Vc (p, k) is the (undefined) four-dimensional analog
of (2x) h(p —k) ~ C, and mp is the current quark mass,
equal to zero in the chiral limit. Note that the color factor
has been eliminated using (1.2).

Using the general form of the self-energy,

f dsk
Vi, (p, k) = 0.

Z(p) =P Zv(p') + Zs(p'),
1.3

Eq. (2.1) can be reduced to

(2.2)

Z(p) . d k V~(p, k)[4m(k2) —2 P] —Vl, (p, k)[m(k2)+ P]
1 —Zv(p2) (2x)4 [1 —Zv(p )] [1 —Zv(k )] [m(k)2 —k2 —je]

(2.3)



3334 FRANZ GROSS AND JOSEPH MII.ANA 50

where the effective mass is

mp + Zs(k2)mk
1 —Zi (k2)

(2.4)

Our equation for the self-energy with the on-shell
quark (or antiquark) constraint is obtained from (2.3)
by integrating over dko and retaining only the contribu-
tion &om the positive energy quark pole. In this case
k2 = m, and the quantities E~ ——Z& and Zp become
constants. Renormalizing the constants C, 0., and the
current quark mass mo by

(1 —Z )2' (1 —E )2 ' 1 —E

(2 5)

and setting p = m gives the following equations:

zo [2' (p, k) —VL, (p, k)],
V

d3k
m —mp~ = m [4' (p, k) —Vr, (p, k)],

27l 2@(
(2.6)

where we used the identity

dk = dk (2.7)

The first of Eqs. (2.6) will enable us to evaluate the renor-
malization constant

y g The second gives a relation
V

between the dynamical mass m, the renormalized current
quark mass mph, and the (renormalized) strength of the
constant potential, C. Using the constraint (1.3), this
equation becomes simply

1
C = —(m —mph)

2
(2.8)

showing that C —+ 2m in the chill limit. In Sec. IV, we
will use this equation and the value of C which emerges
&om our 6t to the pion state to estimate the current
quark mass.

scribes the linear, con6ning part of the interaction. This
kernel is obtained by taking the appropriate matrix ele-
ments of the kernel given in (1.1).

For both pseudoscalar and vector states the wave func-
tion vector @(p,P) can be constructed from the following
four rest-&arne matrix elements of the qq vertex function
r(

-(p„A,)r(p('), P).(-p. , A, )

2' —m~

m u(pi, Ai)r(p", P)u(p2 A2)
lb P )E„m~

v( Pl Al)r(p P)&(P2 A2)

E 2'+ mph'

m u(pi, Ai)I'(p, P)u(p2, A2)
2b P ?

Ep mg
(3.2)

p
' = (Ep —2m~, p), p(') = (E, + —,'m, p) .

(3.3)

The structure and dimensionality of the wave function
vector 4, aad of the matrix operators G i(p), C(p),
and V(p, k; P), are different for pseudoscalar and vec-
tor states. For pseudoscalar states, the matrix elements
ia Eq. (3.2) can each be expressed in terms of a single
scalar function of the magnitude of the relative three-
momentum. The expansions are

where u(p, A) and v(p, A) are quark spinors, JV is a nor-
malization constant, and m~ is the mass of the bound
state. The matrix elements pi b are associated with
channel 1, in which the quark is restricted to its posi-
tive energy mass shell, while P2 b are associated with
channel 2, in which the antiquark is restricted to its neg-
ative energy mass shell. The energy component of the
relative four momentum, p, is restricted in each of these
channels, and we denote the relative four momentum in
channel 1 by p~ ~ and in channel 2 by p~ ~. In the center
of mass (c.m. ) system, these restricted relative momenta
are

III. THE EXACT BOUND-STATE EQUATIONS
&'-(p) = u" (p) (l) &*b(p) = v" (p) (l~ i I)

(3.4)

d k V(p, k;P)
(2~) (1 + p2) (1 + k2)

(3.1)

where p = p/(E~ + m) (with E~ = gm2 + p2), and
C (p) is the inverse of the two-body Green's func-
tion, C(p) is the constant part of the interaction, and
V(p, k; P) is the kernel of the integral operator which de-

The coupled equations which describe a bound state of
four-momentum P coupled to a quark q with momentum

pq ——p+ 2P and an antiquark q with momentum p2 ——

p —2P, as illustrated in Fig. 1, can be written in the
following form:

[C '(p) —C(p)j 4(p, P)

C(p, P) =

„(i)(p)
v(i) (p)
v (p)
„(2)(p)

(3.5)

For vector states, the matrix elements (3.2) require tivo

scalar functions for their complete description:

where u~'~ are S-state wave functions, v~'~ are P-state
wave functions, p is the unit vector in the direction of
p, and the matrix elements in the two-component spin
spa«»e (I) = (Ai]A2& aad (lo' ' pl& = (Ail~ PIA2).
The wave function vector 4'(p, P) is thea defined to be
the four-component vector constructed &om the u and v

wave functions
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4a(X ) = v."(p) ~3 (I(.i I)

—v,
'

(p) (I[~ .(~ . i —4 . i ] I), (3.6)

where ( is the spin-one polarization vector of the state,
u(') and m(') are S- and L)-state wave functions (re-

spectively), and v(') and vI') are singlet and triplet P
state wave functions. For vector states the wave function
4'(p, P) is therefore an eight dimensional vector:

C(p, P) =

u(~) (p)
~(~) (p)
„(i)(p)
„(~)(p)„()( )„()( )
„(2)(p)
~(2) (p)

(3.7)

The operators G ~(p), C(p), and V(p, k; P) which en-
ter Eqs. (3.1) are therefore 4 x 4 matrices for pseudoscalar
states and 8 x 8 matrices for vector states. The Green's
function G ~(p) can be written

(2E„—mg) 1

G '(p) =
mB1

7AB 1
(3.8)

(2E„+mg)1

where 1 is unity for pseudoscalar states and the 2 x 2 unit matrix for vector states. Similarly, the "constant" part of
the interaction can be written

B @ B T @ 1+3 E b

C(p) = (
Ep

(3.9)

where ( is a constant, 1 was defined above, T = —3(+1) for pseudoscalar (vector) states, and a, b, and c are all
unity for pseudoscalar states and 2 x 2 matrices for the vector states:

1 1

~3 V~
1 ~2 1 1 ~2

~2 2 '
~3 ~2 —1

(3.iO)

The linear, con6ning kernel can be written in the following block matrix form:

V{p,k;P) =

A

21
E~+(k, p)

r
e g

E~+(k, p)

E+(p, k)

—D

—D

E (p, k)

Vi.2

V

E+(» k)

—D

—D

E (p, k)

E~(k, p)

E~(k, p)

{3.ii)

where V~ are the elementary kernels for the momentum space linear potentials (first worked out in Ref. [1] and given
below); A, B, D, and E are simple functions of p and k for pseudoscalars, and 2 x 2 matrix functions of p and k for
vectors. For pseudoscalars [where E~ = E~(p, k)]

A = 1 —2pkz+ p'k', B = — p'+ k'+ 2pkz, D = z —2@k+p'k'z, E+ ——k 1 —p' + pz 1 —k' . (3.12)

In these expressions, z is the cosine of the angle between p and k. For vector states
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(1 —2Pkz+ P k2 —jsP2k2(l —zz) Vz zj 2(i 2)

—
~sP2k2 (1 —zz)

P, (z) —2pkz + p'k'
--Pkz(1 —z') )

1
f —(p'+ k'+ 2pkz)

8 =—
3

(2~2(k P (zz)+p +2pkz)

2v2 (p Pz(z) + k + 2pkz) )

(k' + p') P, (z) + 2pkz

(z(i —2pkz+ p'k')

z(1 —2pkz + p k ) —pk(1 —z ) )

~
k (1 —p') +Pz(i —k')

+2P k(1 —z2)

~2[Pz(i —2Pkz —k')
+k(l + p) P2(z)]

p~2(k + pz)(1 —pkz)

+[pz(l —k') —p'k(1+ z')
+k(l + p) P2(z) 1

(3.13)

where Pz(z) = (3z2 —1)/2 is the Legendre polynomial of order 2.
Finally, the elementary kernels Vz, which describe how the linear potential connects the two channels, can be

obtained &om the generic kernel in Eq. (1.1) by substituting the appropriate momenta

V;, (p, k) = V, (p('l, ki&i), (3.i4)
being careful to include the treatment of singularities appropriate to each combination of momenta. Explicitly,

d3k'
V;;(p, k) = V~(p', ki*') —Ekb(p —k) V„(p('~,kf('~), i =1,2

&I

V2g(p, k) = ) 0

Vj2(p, k) = ( 0

d3k'
V~(pi2l, ki'l) —Ej,b(((p)k p —k) V~(p~'~, k'i'&) if k & k

k'&k
ifk &k&k+

dsk'
V~(pi'&, k('l) —Ej,b(ksp —k) V~(pi'~, k'('l) if k+ & k

lkf) jk+

3 I

V~(pi l, ki l) —E~h(((k)p k —p) Vpk(p'~'~, k~ ~) if p & p
p(p Ep

&fr—&p&p+
3 I

V~(pi'l, ki l) —Epb(p+k —p) V~(p'i'~2k' ~) if p+ & p,p + E

(3.i5)

where the integration regions for Vq2 and V2q are bounded
by

xf (k,') f (k,')

V~ (p 'i, k '
) = —82ro f (pi) f (p2) q4 A4+ q4

(3.18)

m~(2' + mg)
2(E„yp+ m~)

(with p ~ k for the quantities p+), and

Ii ifzzz (I zzd p& 2+
—1 otherwise .

The function V~ can be written

(3.16)

(3.17)

where A is cutoff mass, q is the square of the momentum
transferred by the quark, f is a quark form factor

(A,' —m') '
f(p') =

(A —m )2+ (m —p )

2

(3.19)

and the values of pq, p2, kq, and k2 depend on the choice
of channel. For channel (1), the quark (with momentum

pq) is on shell, while for channel (2) the antiquark (with
momentum pz) is on shell. Hence, in the rest system of
the bound state we have
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pi = m, p2
——(pi —P) = m + mB —2E„mB,

f(pi)f(p2) = f(rn + rriB 2EprnB),
(3.20)

p2 ——m, pi ——(p2+ P) = m + mB + 2E~mB,
f(pi)f(p2) = f(r)i'+ rnB + 2EprriB) .

Similarily, while the momentum transferred by the quark
is q = (pi —ki), its specific form depends on the channel
assignments:

for Vjq or V22 q' = (E~ —Ei)' —(p —k)'

for Vg2 q' = (E, —Ei —~B) (p k)

for V2g q2 = (E~ —Ei, + mB) —(p —k)
(3.21)

d k V~(p, k) = 0, fori & j

d p Vi2(p) k) = 0.
p

(3.22)

In the nonrelativistic limit (i.e., when m -+ oo) the con-
straints on the diagonal kernels reduce to

The physics behind the construction of the V~ was
discussed in detail in Refs. [1, 2], so here we will only
comment brieBy on several features of the result.

(i) The potentials are Hermitian. This means that
V~(p, k) = V~;(k, p). The diagonal elements are there-
fore symmetric under interchange of p and k, while the
off-diagonal elements map into each other under this in-
terchange.

(ii) The singularties of the kernels are regularized by
the constraints

final state, as given in Eq. (3.20). When the bound-state
mass m~ ——0, the mass of the off-shell quark approaches
m and the form factors become unity. Introduction of
quark form factors was found to be necessary [2] in order
to ensure that integrals over the kernels approach zero as
the external momenta approach in6nity.

(iv) The ofF-diagonal kernels are equal to the diagonal
ones when the bound state mass m~ ——0. This is a nat-
ural feature of the de6nitions and essential for recovery
of the chiral limit. However, when mB is large (in com-
parison with the mean internal momentum of the bound
state), the kernel Vii is much larger than the ofF-diagonal
kernels (because the efFective q transferred by the quark
is then much larger in Vi2 and V2i than in Vii), and
also much larger than the kernel V2z (because of the mB
dependence of the quark form factors).

This concludes our review of the full set of coupled
equations implied by our model. In applications we will
reduce these equations to a smaller set by making approx-
imations appropriate to the sector under consideration.
In practice there are two sectors of interest. In the 6rst
sector (the pion), the bound-state mass mB = y, is small
compared to the quark mass m, and also small compared
to the mean internal momentum po of the bound quarks.
In this sector the off-diagonal kernels are nearly as large
as the diagonal kernels, and cannot be neglected, but
other approximations are possible. This sector is exam-
ined in Sec. IV. In the second sector (all other states
considered in this paper), the bound-state mass mB is
comparable to twice the quark mass, and large compared
to the mean internal momentum po of the bound quarks.
For these states we may safely neglect the coupling to
the second channel. The validity of this approximation
(which is excellent) was studied for the case of the (un-
realistic) chiral confining interaction in Ref. [1]. This
approximation will be used in Sec. V in our discussion of
the light quark vector mesons (the excited pion and the
p and its excited states) and the heavy quark states (the
cc states).

d k V(P —k) = fd V V(P —k) = 0, (3.23)
IV. THE PION

which is the momentum space form of the statement that
a purely linear nonrelativistic potential V(r) = dr r is zero
at r = 0. The constraints on the off-diagonal kernels
are extensions of those for the diagonal kernels, and are
consistent with the Hermiticity requirement.

(iii) The quark form factors (discussed in Ref. [2]) are
unity when the quark (or antiquark) is on shell, and hence
there is always only one form factor for the initial and

In this section we discuss the solutions for the pion,
which is the only meson which has a very small mass
mB = p. As discussed in Refs. [1,2], the equations have
been designed to give a natural explanation for the emer-
gence of a zero mass Goldstone boson in the chiral limit,
and our focus here is to show how this feature is pre-
served even when the linear potential is a scalar, which
breaks chiral symmetry.
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A. Solutions

In the limit when p, u 0, the coupled equations (3.1) reduce to only three independent equations,

( 2C') dsk
2&p

~

1 —
~

& (p) =—,Vo(p, k)ii (k),m ) (22r)'

2E„+ 2C
I

24(+)(p) + 2C v(+)(p) =-
@p) Fj, 22r s (1+p2)(1+ k2)

x (1 —ji)(1 —k) —4Pkz v1+1(k) 4- k(1 —p') + pz(l —kz) v1+I(k) ),
d3k

C u(+)(p) —C—v(+)(p) =—
(2 )' (1 + P2)(1 + k )

l

x k(1 —ji ) +jiz(1 —k ) v1+1(k) — z —2@k+ k p z v1+I(k)I, (4.1)

where the (+) and (—) combinations are

'+'(p) = "'(p) + "'(p)

and

1 1
V0(p, k) = —87rcr

q4 +4+ q4

(4.2)

(4.3)

gave a reasonable mass for both the pion and the p, and
all of our light quark solutions use this mass. With this
mass foced, we solved the coupled two channel S-state
equations for "pions" with three diferent masses: 139.7,

1.0

0.5

with q2 given in Eq. (3.21) (all three definitions are iden-
tical when p = 0). Note that there is no equation for
vi )(p); it must be fixed by other considerations. The
basic definitions (3.2) and (3.4) show that, if vii)(p) and
v~2) (p) are finite in the limit y, ~ 0, then v~ )(p) = 0 in
this limit. We are assured that the first of the Eqs. (4.1)
has the nontrivial solution

-05—

-1.0
0.0

mg = 0.2397, C = 0.4974
I I

0.5 1.0 1.
p (GeV)

ui-)(p) E„ (4.4)
1.0

because this forxn satisfies the constraint (3.22), ensuring
that the RHS of the equation is zero, and in the chiral
limit | m zm, ensuring that the LHS is also zero. How-

ever, no such special conditions hold for the last two of
the Eqs. (4.1), and we therefore conclude that they are
only solved by the "trivial" solution ui+) (p) = vi+) (p) =
0. The pion wave function vector (3.5) therefore reduces,
in the chiral limit, to

-0.5-

-1.0
0.0

1.0

m&
——0.205, C = 0,4942

I I

0.5 1.0
p (GeV)

1.5

~(p o) = E„o (4.5) O.S

This discussion leads to the conclusion that the P
states should also be very small for the physical pion. Ini-
tial attempts to obtain n»merical solutions to the equa-
tion with all four channels lead to difBculties, which we
believe are associated with the fact that the equations
reduce to only three independent equations in the p ~ 0
limit. Hence we decided to approximate the equations
by setting the P states to zero, and to obtain numerical
solutions only for the two large S-state channels. It was
found that a light quark mass of m = m„=325 MeV

-0.5—

-1.0
0.0

mg ——0.237, C = 0.4927
I I 4

0.5 2.0
p (GeV)

FIG. 2. Solutions for three pionlike states with masses

mph' ——0.1397, 0.205, and 0.237 Gev. In each curve the solid
line is u~, the dashed line is u, and the dotted line is
u + u . In the top figure, the dot-dash line is the integral
Eq. (4.8), discussed in Sec. IVB.
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a=1 —2—C
7YL~

0.0052 0.0116 0.0166

TABLE I. Properties of the family of pionlike solutions
discussed in the text. The quantities marked arith an asterisk
are obtained &om the estimates given in Sec. IV B. The units
of p, and po are in GeV.

2C)p' = ai
I

1—
m~)

(4.6)

where ai = 3.75 GeV2. When combined with Eq. (2.8)
for the dynamical generation of quark mass, this leads to
a Gell Mann, Oakes, and Renner relation [7]

po

po

0.1397
0.1396

1.26
1.26

0.205
0.207

0.84
0.84

0.237
0.249

0.73
0.71

p = 4ag (4.7)
m~

which gives a (renormalized) current quark mass of mo =
1.7 MeV, in qualitative agreement with current thinking.

f+/f
(f+/f )- 0.059

0.076
0.120
0.131

0.142
0.159

B. Stability of the pion

205, and 237 MeV. The 8-state wave functions for each
of these pions is given in Fig. 2. Key properties of these
solutions are summarized in Table I. This table gives the
mass p, of each state, the values of the small parameter
e = 1 —2 from which the "eigenvalue" C can be ex-
tracted, the mean momentum po of each state, and the
ratio f+/f discussed in Sec. IVB below.

In each figure the solid line is the u(i& solution (ar-
bitrarily normalized to unity at p = 0), the dashed
line is the u( ) solution, and the dotted line is the sum
u(+) = u( ) + u( ). Note that all of the wave functions
have long "tails" which extend to several GeV, but that
the sum u(+) falls ofF much more rapidly. Except for some
structure at small momentum, u( ) = —u( ), as suggested
by the solution (4.5), and this relation holds to a better
approximation as the pion mass p, decreases.

The values of 100 x p2 (in GeV2) and 1/p2s (in GeV )
are plotted as a function of the (small) parameter e =
1—2 in Fig. 3. Note that the first few solutions satisfy
the relation (the dashed line in the figure)

7.0

6.0

In this section we will show how the constant and lin-
ear parts of the potential cooperate to produce a stable,
low mass pion state, and that the relativistic nature of
the equations is an essential aspect of the description.
Our discussion is a generalization of Feynman's famous
argument which uses the uncertainty principle to show
that the hydrogen atom is stable [8].

In order to develop the argument we use the fact that
the primary feature of the exact solution shown in Fig. 2
is the long, smooth "tail" which falls ofI' slowly with mo-
mentum. The large solution u( ) also has a distinctive,
rapidly varying low momentum structure. By comparing
u( ) + u( ) with the integral

I&2 —— Vi2 u (~) (4.8)

both of which are shown in Fig. 2 for the p, = 0.1397
solution, we conclude that this structure comes from the
ofF-diagonal linear potential, and arises &om the way in
which we have removed the singularities of Vj2. We will
assume that this is not an "essential" feature of the so-
lution, and that the average properties of the pion can
be understood by ignoring this detail. In this case the
two components of the pion wave function, u(i) and u(2),
have essentially the same shape with an average momen-
tum which is much larger than the quark mass.

In order to understand these solutions, it is convenient
to consider the equations for the coupled amplitudes u(+)
introduced in Eq. (4.1). These equations are

5.0

4.0

3.0

2.0

1.0

0.0
0.005

100p

0.01 0.015 0.02

2s & —
l

a' ' —pu'+'= —J
f 2Ci

m)

—y. ~( ) +
~

28 +
~

~(+f = —f( 2Cm)

(2z)s

(2m)s

(2z.)s

d'I „(+)
( )3 ++ 'I

(4.9)

FIG. 3. The values of 100@ (open diamonds) and 1/ps
(solid diamonds), in GeV units, plotted against the "eigen-
value" e = 1 —2—for the three solutions discussed in the
text. The dashed line is Eq. (4.6) with az ——3.75 and the
solid line is Eq. (4.24) with 1/a2 ——121.1.

where the potential kernels are

1 (V» + pp'V») A + (p' V» + p V») B
PP (1+p')(1+ A.")

(4.10)

with A and B defined in Eq. (3.12), and p and p' can both
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be either + or —.If we then integrate these coupled equa-
tions for u~+~ over the external momentum p, we are led
to the following simple coupled equations for the mean
values of the wave functions f~ = jdpu~+l = (u~+l):

1
~11 o 1 b11)

2

1
&21 = -o2 b21)

2

1
~12 — o2 b21

2

1
~22 — +1 b22 )

2
(4.16)

2@a
I

~ —
I f —uf+ = —(f&--~' ')( 2Ci

m) +

V u~+~

Vf—+-I 2&o+
& I

f+= — &+-u( 2Cmb
( )

&o )

V u(+)

(4.11)

where Eo is the mean value of the energy E~. If po is the
mean momentum, we will assume that, for any function
F, (F(p) ) F(pp), so that Ep = gmz + p2o. The matrix
elements of the linear potential have the form

V u~P~ dp dkV p, k u~P~ k

= ((&~~ )) f~ (4.12)

A m2 + HEI, —pkz

(1 +p')(1 + k')

B
(1 +p')(1 + k')

m2 —E Eg —pkzp = —1+A.
2EpEI,

(4.13)

In the Appendix, we show that the integrals are dom-
inated by values of these functions where p and k are
much greater than the quark mass m, and where p = k
and z = 1, so that, for the purposes of this simple esti-
mate, we may approximate A by

where the repeated p' indicies are not summed.
The next step in the argument is to express the mean

values of the linear potential matrix elements in terms of
pp, p, and fy To this e.nd we note that

where, if all units are in GeV,

b11 ——1.31, 622 ——1.66, b21 ——2.94 . (4.17)

The arguments leading to these estimates are presented
in some detail in the Appendix, but will also be summa-
rized here.

The o/pp term in each expression is a direct conse-
quence of the uncertainty principle, which implies that
the mean momentum po of a confined system is inversely
proportional to its size (r) so that the average value of
the linear confining term goes as cr(r) o/po. When
the momentum is larger than the quark mass relativistic
effects modify this simple result, but the modification is
cancelled by the m2/p2 term in A and B, so that the
simple estimate is correct in both the nonrelativistic and
ultrarelativistic limits. The kernels also depend explic-
itly on the pion mass through (i) the quark form factors,
Eq. (3.20), (ii) the retardation factors in the off-diagonal
kernels, Eq. (3.21), (iii) the limits of integration in the
off-diagonal kernels, Eq. (3.16), and (iv) the "—1" term in
B. The first three of these mass dependences can be com-
bined into functions which multiply each of the "leading"
0'/pp terins. These functions can be approximated by lin-
ear relations of the form c,~ [1—b;~ pp p], where the b,~

's can
be estimated [cf. Eq. (4.17)],and the constants c;~ (which
are harder to estimate reliably) absorbed into the defini-
tion of the u s. It turns out that c11 ——c22 & c12 ——c21,
which explains why u11 ——cr22 ——o1 & o12 ——o21 ——o2.
Finally, the mass dependence associated with the "—1"
term in B could contribute to both of the ofF-diagonal
kernels, but because of the condition Eq. (3.22) and the
fact that the actual solutions are very close to 1/E, this
additional contribution to the V21 kernel is very small
(and is taken to be zero). The size of the "—1" contri-
bution to the V12 kernel is hard to estimate, but since it
goes to zero as p —+ 0, it is approximated by 2Ap, with A

an unknown constant.
Using the estimates (4.15), the V~~ kernels are

m'(p+ k)' m'

(2pk)z p2
(4.14) PO

((&—+)) =

Using this expression we show in the Appendix that the
moments of the potentials can be approximated by [recall
Eq. (4.12)]:

((&++)) =
PO

((&+-)) =-~. ~

(4.18)

((&v~)) = "—»v~
PO

(4.15)
where

where 8 is either A or B, and the o.;~ and A;~ are con-
stants. It is a good approximation to take o11 ——o 22

——o1
and o.12

——o.21
——o.2, and then the remaining constants

can be expressed in terms of these two, and one other
constant A, as follows:

~pp' ~11 + PP ~22 + P ~12 + P~21 ~

Then Eqs. (4.11) become

(4.19)
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2po&f -—pf+= —
i

—& p ~f -+&,sf+,

( 2m') (o', + ~,
pf -+

~

2po+ ~f+=& pf ——
~

—& p if+po )
(4.20)

2pps+ —A p, f = 0. (4.22)
Pp

Hence the pion mass, as a function of its mean internal
momentum, pp, is

1 0'y —0'2
p = 2ppE+

Pp

The correct mean momentum is the one for which the
pion is stable, i.e., the value at which the pion mass is a
minimum. This point occurs at

(4.23)

(4.24)

Substituting this into Eq. (4.23) and solving for p2 gives
Eq. (4.6) with

8 (op —oz)
A2

(4.25)

The equations (4.6) [with ai given by (4.25)] and (4.24)
explain the linear dependence of both p2 and 1/po on
the quantity 1 —2C/m, as shown in Fig. 3. The straight
line fits shown in Fig. 3 correspond to ai ——3.75 and
1/a2 ——121.1, which emerge if we take A = 0.1877 and
oi —~z ——0.0165 GeV . The values of po for each case
are shown in Table I; note that they are all comfortably
larger that the quark mass, as assumed in the discussion.

The three equations (4.21), (4.24), and (4.25) fix the
three parameters cubi, cr2, and A. If all units are expressed
in GeV, these are

~i ——0.5282, A = 0.8152.02 ——0.5116,

(4.26)

Now that the parameters are known, we may return
to the coupled equations (4.20) and use our results to
predict the ratio of f+/f . From the second of the
Eqs. (4.20) we obtain

where we have introduced e = (1 —2 ), have assumed
that po » m, and kept terms up to order 1/po ex-
cept for terms of order s/po, which are neglected. We
have studied the most general solutions of these equa-
tions, and found that the observed linear dependence of
p,

2 on s, Eq. (4.6), can be obtained only if A —1, so
we simplify the discussion here by imposing the condition

A = —1 (4.21)

from the start. In this case the small component f+ drops
out of the first equation, giving

This gives a result in fair agreement with the exact solu-
tions, as shown in Table I and Fig. 4.

Using the values of the parameters we have deter-
mined, the matrix elements of the kernel are

0.5282 —0.6919@,((v,x)) ™
Pp

0.5282

Jp
0.5116

((v»x))

((v-~)) =
Pp

0.5116 —1.5041@, , (4.28)
Pp

0.20

0.16

0.08

0.04

where all quantities are in units of GeV.
Now that we have a qualitative description of the so-

lutions, it is easier to discuss the physics contained in
our model. First, in the chiral limit when p, -+ 0 and
oi ~ o'2, all of the kernels will approach o/po [where
o' =

2 (o i + o 2)]. Yet this limiting term plays practically
no role in the final description of the pion, and it is not
clear that we could even obtain a solution if the interac-
tion contained only these terms. If the chiral symmetry
breaking terms in the linear potential were ignored (i.e.,
if the 0 i —cr2 terms and the p;dependent terms in the oH'-

diagonal potentials were all discarded), the determinant
of the coupled equations (4.20) would give

p =4e(ps+m +o) . (4.29)

This gives a pion mass which approaches zero as e ~ 0
(with a linear dependence on e), but the solution stabi-
lizes at pp

——0, showing that the quarks are not confined.
Thus a reasonable description of a physical pion of finite
size cannot be obtained by using only the chiral limit of

f+ p
f 2po-

19.34 e

1+61.04m

1+A
2m + cTy + 02 A++ p1+ 2

2pp 2pp

(4.27)

0.00
0.005 0.01 0.015 0.02

FIG. 4. The ratio f+/f as a function of s for the three
solutions discussed in the text (solid squares). The solid line
is the predicted result, Eq. (4.27).
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TABLE II. Masses (in MeV) for the first few meson states. 1.0

Light quark states
m = 325

Heavy quark states
m = 1400 0.5

Theory Expt. Theory Expt.

ir(1300)
139.7
1237

139.6
1300+100

3070
3540

2979
3590(?)

0.0-

p/(u
D

2S

785
1173
1240

768/782
(u(1390)
p(1450)

J/4
4 (2S)
~(D)

3071
3540
3656

3097
3686
3770

-0.5—

-1.0
0.0 0.5

p (GeV)

m, = 0.1397

1.0 1.5

the confining interaction, which confirms our initial ob-
servation [1, 2] that those contributions from the linear
potential which survive in the chiral limit will decouple
&om the description of the physical pion.

However, it is incorrect to conclude &om these observa-
tions that the linear potential plays no role in determin-
ing the mass and size of the physical pion. In fact, both of
these quantities are very sensitive to precisely how chiral
symmetry is broken by the confining forces. For example,
had we neglected the second channel (by setting o'2 ——0
and neglecting all of the p-dependent terms in the ker-
nels), the determinant of the coupled equations would
give

p = 4poe+2cri + (2m + cri)
~

2E+ —
2 ~

. (4.30)
po)

1.0

0.5

0.0

-0.5—

-1.0
0.0

I

0.5
p (GeV)

mg = 1.2375

1.0

This equation gives a pion with mass y,
2 = 2o i g 0 when

e ~ 0, and shows again that the second channel is needed
to obtain the correct chiral limit. Of course a scalar linear
potential does break chiral symmetry, but if the second
channel is retained, we still recover the limit p ~ 0 as
e ~ 0. The difFerence in strength of the diagonal and
off-diagonal interactions, approximated by the constant
oq —erg, drives the mean momentum to infinity as ~ —+

0 [recall Eq. (4.24)], and the term dependent on A p
ensures that p2 and I/p2o are both linear in e (at least for
very small e). These two terms ensure that the strength
of the diagonal and off-diagonal potentials will be equal
in the chiral limit by forcing them both to zero. The pion
becomes a point particle, permitting us to regard it as a
fundamental field, which is nicely consistent with (but

FIG. 5. Solutions for pion and its first excited state. In
the top figure the solid line is u and the dashed line is u
In the lower figure, the solid line is u and the dashed line
is v

not required by) its interpretation as a Goldstone boson.
Finally, as discussed above, the condition (4.21) ensures
that the linear dependence of p2 and I/po2on e holds over
a wide range of e.

In conclusion, this model gives a pion with two highly
relativistic constituents and with a structure sensitive to
the detailed way in which the linear confining interaction
breaks chiral symmetry. These points will be discussed
further in Sec. VI.

V. NORMAL MESONS

p dsk AU(k) + E+(p, k)V(k)
E~ (2ir)s (I + p2)(I + k2)

p ~ f m ) dsk E~~(k, p)U(k) —DV(k)
C a~U(p) —

~

C +m~
~
V(p) = — 2,ViiE, &

2 ' (1+P )(1+k')

( C) m
2E„/ 1 ——/+C

m) E~

We now turn to a discussion of how the model describes mesons other than the pion. For these mesons the mass
mg is comparable to the dynamical quark mass, and the mean momentum is related to the mass difference m~ —2m,
as in conventional quantum mechanics. Under these conditions it is a good approximation to neglect the coupling to
channel 2, and the equations therefore become
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1.0 1.0

0.5
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-0.5—
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-1.0
0.0 0.5

p (GeV)
1.0 1.5

-0.5-
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I I
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0 ~ 'r

-1.0
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I

0.5
p (GeV)

1.0 1.5

-0.5- mg = 1.173 1.0

-1.0
0.0

1.0

0.5
p (GeV)

1.0 1.5
0.5—

0.5

00
-05—

mz = 3.540

-0.5—
m~ = 1.240 -1.0

0.0 0.5
p (GeV)

1.0 1.5

-1.0
0.0

I

0.5
p (GeV)

1.0 1.5 FIG. 7. Solutions for g and its first excited state. In each
figure the solid line is u, the dashed line is v (channel 1).

FIG. 6. Solutions for p and its first two excited states. In
each figure the solid line is u, the dashed line is ~, the closely
spaced dotted line is v„and the widely spaced dotted line is
Vg.

where the quantities a, A, D, and Ey were defined in
Eqs. (3.10), (3.12), and (3.13). For the pseudoscalar
states, U(p) = u(~)(p), V(p) = v(~)(p), a = 1, and
Eqs. (5.1) are two coupled equations for the S- and P
state components of the meson wave function. For vector
states,

quark mass. The dynamical xnass for the light quark
states is m = m„=325 MeV, and for the heavy quark
states is m = m, = 1400 MeV. Note that the first ex-
cited S state, labeled 2S, lies above the D state in the
light quark sector, but lies below the D state in the heavy
quark sector.

We discuss these results and draw conclusions &om
this work in the following section.

U(p) =
I (i)(„)l

v(~)
&(p) =

I(„()())
VI. DISCUSSION AND SUMMARY

OF THE RESULTS

(5.2)

as discussed in Sec. III. Now Eqs. (5.1) are four coupled
equations for the S, D, and triplet and singlet P states.

The masses of the lowest lying pseudoscalar and vec-
tor states are listed in Table II, and wave functions
are shown in Figs. 5—8. For completeness, the physi-
cal pion (with mass m~ = 0.1397 GeV) is also given
in Table II and shown in Fig. 5. The additional pa-
rameters are the strength of the constant potential C =
0.4974 x 325 = 161.655 MeV, the strength of the linear
confining potential cr = 0.2 GeV2, and the forxn factor
masses A = 1.7m and Aq

——3.5m, which scale with the

In this work we have focused on the role of chiral sym-
metry and on the quantitative treatment of the chiral
symmetry breaking terms which arises &om the fact that
the current quark xnass is nonzero and the linear part of
the confining interaction is presumably a scalar in Dirac
space. Our work complexnents a nuxnber of other recent
works which also treat mesons as relativistic bound states
of the qq system. Some of these works also discuss the
role of chiral symmetry [9—11], but in all of these works
the confining interaction is chirally symmetric, and there-
fore cannot be taken to be a pure scalar. To our knowl-
edge, this work is the first to show that a zero xnass pion
can emerge as the current quark mass approaches zero,
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FIG. 8. Solutions for J/i' and its first two excited states.
The curves in each figure are as in Fig. 6.

even though the confining intexuction is a chiralty viotat
ing scalar interuction. Other recent works do not discuss
the role of chiral symmetry or the origin of the dynam-
ical mass of the quarks [12, 13]. The most ambitious of
these is the study by Tiemeijer and Tjon [12], who have
succeeded in describing the meson spectrum and decays
using relativistic two-body equations similar to (but dif-
ferent from) ours. Among the many things they find is
that a global fit to meson excited states (the Regge tra-
jectories) is greatly ixnproved by allowing the linear con-
fining interaction to be a mixture of about 80% scalar and
20% vector, and that even in this favorable case a good
fit to the trajectories requires the total strength of the
linear confining interaction to be at least o 0.33 GeV,
considerably larger than the strength cr 0.2 GeV re-
quired by nonrelativistic equations and also contrary to
the results suggested by lattice gauge calculations. Their
work suggests that our model, when extended to higher
excited states, may also require such an admixture, and
may su8'er from the same problem. Other studies using
an instantaneous approximation have also found that a
linear combination of vector and scalar confinement may
be ixnportant [14, 15].

One unsatisfactory feature of our work is the appear-

ance of form factors. It may be possible to eliminate the
form factor which regulates the large q behavior of the
1/q4 term in the kernel [the one which depends on A2 in
Eq. (3.18)] by using the method recently introduced by
Hersbach and Ruijgrok [16]. In any case this form factor
is used only to regulate the quark self-energy, which could
be regulated is some other way. The quark form factor,
given in Eq. (3.19), is suKcient to ensure the convergence
of the bound state equations, but also aEects the large
momentum behavior of the excited solutions in the light
quark sector, as shown in Figs. 5 and 6. Perhaps it can
also be replaced using the method of Ref. [16], or by a
more sophisticated treatment of the quark self-energy.

We close this section with a brief summary of the prin-
cipal results of this paper:

(i) Using a relativistic model with the interaction ker-
nel (1.1), which consists of only a constant vector plus
a linear scalar interaction [with no one-gluon-exchange
(OGE) term], we obtain Eq. (2.8) for the dynamical gen-
eration of quark mass. This equation relates the strength
of the constant vector interaction | to the diH'erence be-
tween the dynamical quark mass of the light quarks which
make up the pion, m„,and the current mass of these
light quarks mo. C = (m„—mo)/2. Using a dynami-
cal quark mass of m„=325 MeV, we find a fit to the
pion mass gives C = 161.655 MeV (where, because of
the extreme sensitivity of the equations to the small pa-
rameter e = 1 — = mo/m„, C must be given to six
significant figures ifthe pion mass is to be determined to
four significant figures), and hence a current quark mass
of mo 1.7 MeV, in qualitative agreement with current
thinking.

(ii) In common with the NJL model, our relativistic
equations (3.1) have the property that the pion mass
automatically approaches zero in the chiral limit when
C i m„/2 (or mo -+ 0), even though the linear part of
the interaction is a scalar and thus breaks chiral sym-
metry. This result is due to the constraint (1.3), which
arises &om the physical requirement that the linear in-
teraction be zero when the two quarks occupy the same
point in coordinate space. The decoupling of the linear
confining interaction is, then, a consequence of the result
that the pion is, in our approach, pointlike in the chiral
limit.

(iii) Using four parameters which are the same for all
sectors [the strengths of the constant interaction C and of
the linear interaction 0 = 0.2 GeV, and two form factor
masses A = 1.7m and Aq

——3.5m which scale with the
quark mass m] and the dynamical quark masses, which
must be chosen for each sector, we are able to describe
the gross features of the meson spectrum.

(iv) The light quark sector consisting of the pion (and
its excited states) and the p and/or ur (and its ex-
cited states) is reasonably well explained by choosing
m„=325 MeV [and C = 161.655 MeV as discussed
above]. Note that, even though there is no OGE term,
this choice of quark mass gives a good separation between
the pion and the p and/or a, and we also obtain a large
splitting between the pion and its first excited state, in
good agreement with experiment (see Table II). The first
excited S and D states of the vector mesons are about
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200 MeV too low. Experience with nonrelativistic models
leads us to believe that addition of OGE should ixnprove
the splittings and contribute to the meson masses, but
this model suggests that the smallness of the pion mass
is due primarily to coupling to a second channel, required
by chiral symmetry, and not to the OGE force. However,
the constant part of the interaction we are proposing has
a pure p"p„vector structure, and hence might be re-
garded as arising ultixnately from the renormalization of
the OGE force.

(v) The choice of m, = 1400 MeV gives a reasonable
account of the low-lying charmonium spectrum, includ-
ing the splitting between the rk and the J/@, but other
splittings are 100 MeV too small, as xnight be expected
for a model without the spin-spin interaction of a pertur-
bative, OGE force.

Some of these results, the ~-p mass splitting and the
quark self-energy, will be modified once the full OGE
force has been added to this model. However, one may

view our constant interaction, which is purely vector, to
be a first approximation to a full incorporation of a non-

perturbative OGE force. In particular, the constant term
may ultimately owe its origin to the renormalization of
the OGE contributions to the quark self energy. In this
case, the remaining finite part of the OGE force may have
less of an eKect on the xneson spectrum than is the case
in most models.

In conclusion, our model gives a good account of the
gross features of the meson spectruxn and provides a nat-
ural explanation for the small pion mass.
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APPENDIX A

1. Estimates for the confining kernels

1 1

dzV~(p~ l, k~ l) A(p, k, z)u~ l(k) A(p, k, 1) u (k) dzV~(p, k )
—1 —1

A2
4xoA(p, k, 1) u~'l(k)

2pk [m2 —E„Es+ pk]
'

where the term proportional to 1/[(E„—EI,)
2 —(p+ k)2] was neglected. Inserting the estimate (A2) into (Al) gives

~ kdk EI,A(p, k, 1) ul~l(k) —EpA(p, p, 1)u'I l(p)
V„Xu~'~ -—

2m () pEI, [m2 —E„EI,+ pk]
(A3)

In this section we derive simple estixnates for the linear confining kernels. These estimates are used in our discussion
of the stability of the pion given in Sec. IV B.

A typical integral to be estimated is the Vqq matrix element

~l I~
»

~ ~~
3

~

3

~k

1

~
1

~
1 ~ k

d k Vqq(p, k)A(p, k, z)
(27r)s (1 + p2) (1 + k2)

k2dk
dzpz(pl l, kl I) A(p, k, z)z~ l(k) — A(p, p, l)z (p)j (A1)

o (2x), ' ' '
Er

For a first estimate we neglect both form factors, so that V~ = —8vro/q4, and exploit the fact that the z integral is
dominated by the region near z = 1, where the integrand peaks. Then the z integral becomes, approximately,

The denominator has a double zero at p = k, but the
zero of the nuxnerator at the same point ensures that the
integral exists as a principle value, as in the nonrelativis-
tic case. The behavior of the integrand depends on the
behavior of the wave function u~ l. Since A(p, k, 1) de-
creases monotonically in k, if Equ( ) (k) does not increase
then the integrand is positive for k ( p and negative for
k ) p, with a principal value singularity at p = k, as
shown in Fig. 9. Hence the integral over a region &om
k = 0 to k = ko && p is zero, and the entire result coxnes
from values of k ) k(). If E),A(p, k, l)u(~l(k) decreases
suKciently rapidly, the integral can therefore be approx-

imated by

"i~(p,p, 1) "'(p)o ) (E„')
2'& (p)

x . (A4)f kdk

E), [m2 —E~E), + pk]

The remaining integral in Eq. (A4) diverges logarithmi-
cally, and will be cutoK by the forxn factors we have ne-
glected so far in this discussion. If p (& m, and assuming

f dk/k Nq, the integral becomes
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FIG. 9. The integrand of Eq. (A3) as a function of the
internal momentum k for a 6xed external momentum p = 0.84
GeV and a wave function proportional to 1/E The th. in open
box is in the vicinity of the point ko, the region below ko makes
no contribution to the integral.

kdk 2 kdk

Ex, [m2 —E Es+ pk] m x, (p —k)2

(A5)

A(p, p, 1) =
p2

ifp(& m,

ifp)) m,
(A7)

and hence, in both limits [either p (( m or p )) m],

(E) - kdk 2'
A p, p, 1

i, p ) ' ' x„Ei,[m2 —EpEx, +pk] p

(A8)

and

If p )) m, the same integral becomes

kdk 2p kdk

Ex, [m2 —E Ex, + pk] m2 (p —k)2

2pNg
(A6)m2

However [recalling Eq. (4.13)],

are approximately equal, and a function of (pp, )2. Their
precise dependence on the pion mass p, for a fired momen-
tum pp

——0.84 (corresponding to the mean momentum of
the "middle" state at p = 0.205) and for the form factor
mass used in this paper (As = 3.5m) is shown in Fig. 10.
Note that they are approximately a linear function of p
in the vicinity of p = 0.14 ~ 0.25, and if we require the
intercepts of the two lines to be the same (in order to
simplify the theoretical analysis) the forxn factors in each
channel are well approximated by

fx(p) = f(m + p —2Epp) 1.12[1—biippp,
f2(p) = f(m + p, +2Epp) 1.12[1 —b22ppp,

(A10)

where the 6ts shown in Fig. 10 correspond to bqq ——1.31
and b22

——1.66, the numbers used in Sec. IVB. These
form factors modify both the p and k dependence of the
kernels, but, as we will see below, the k integration is
regularized more strongly by the smaller mass A = 1.7m,
which provides convergence even when p = 0. Hence the
p dependence of the diagonal kernels comes primarily
&om the external p dependence, and we have finally

Vj gA ~ ——2Agg p)

V22A ——2%22p ) A11

with Axx ——o'ibii/2 and A22 ——o ib22/2.
The ofF-diagonal kernels have a more complex p, de-

pendence coming &om the external form factors, the re-
tardation factor, and the p dependence of the limits of
integration. As discussed in some detail in our 6rst pa-
per [1],the V2i integrand has singularities over the region
from k to k+ [where k~ were defined in Eq. (3.16)], and
our prescription for the de6nition of the linear potential
requires that this region be removed &om the integration.
Under the same assumptions used above, the remaining
integrand is finite and negative in the region [0, k ], and
finite and positive in [k+, oo). For values of p in the vicin-

ity of a GeV, f V2xBu(x) can therefore be approximated
(roughly) by

1.2

1.0

Vj gA
7l po po

0.9

where our 6ts to the actual solutions give Nq 2'.
Hence, in both the ultrarelativistic and nonrelativistic
limits, the linear con6ning interaction contains a term
which goes like 1/pp, as suggested by the uncertainty
pri. nciple.

The kernels also depend explicitly on the bound-state
mass p. The diagonal terms depend on p only through
the quark form factors given in Eq. (3.20). Assuxxnng

that p» m, the form factors in both channels (1 and 2)

0.8

0.7
0 0.05 0.1 0.15 0.2 0.25

P
FIG. 10. The quark form factors Eq. (3.21) for channel 1

and 2 (labeled on the figure) plotted as a function of xi (in
GeV) for a fixed p = 0.84 GeV. The straight line fits are
Eqs. (A10).
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kdk Ei,B(p, k, 1) u( )(k) —Ei,+B(p, k+, I)u( )(k+)

f Bu( )
2x s +i, pEi, m2 —E~Ei, +pk+ p(E„—Ei, ) + A@2

(A12)

The numerator and denominator both have simple zeros at k = k+, ensuring that the integrand is 6nite at k = k+, so
that the contribution from the region [0, k ] can be roughly included by adding k to the lower limit of integration
[as in Eq. (A12)]. It turns out that the solutions are very close to I/E over the momentum region of interest, so that
we may replace B = —1+A A, and if p )) m, then k+ p, and we obtain roughly

i„+a, , 21 pk(k —p)
m2

(A13)

where we have retained the exact structure of the lower limit because the integral is sensitive to it. The integral is
cutofF at large k by the mass A, which becomes efFective when

—q 2[E~Ei, —m —pk] A = (1.7m) = 2.89m2 m (k-p)
kp

Finally, assuming k && p, as we did before, we obtain the following estimate

(A14)

V2j.B
0 f2(p)

' "' dk

Kpo 2ppo g +g k1+
m2

f2(V)
~po

1
2ppo1+
m2

'
g2(v) .

2.89
log

l
p (2EO+p) + p(2EO+ p)

2Po (&o P+po) — 2po (@o+po+p) )

(A15)

The functions g2(p) and gi(p, ) [obtained from g2 by
substituting fi(p) for f2(p)], for the fixed momentum

po = 0.84 GeV, are shown in Fig. 11. They have been
normalized to unity at p = 0; the unknown constant N2
contains all normalization factors. Note that they can
also be fit by a linear function of p (assumed to scale as
the product pop). The fits shown in Fig. 11 are

1.2

»(p) = 089[1—&21 pop]
g2(p) 0.89[1 —b2i pop] (A16)

where b2j ——2.68 and b2j ——2.94. The second of these
curves is the correct one to use for the V2j kernel we have
been discussing.

We turn now to the Vj 2 kernel. Because of the symme-
try of the matrix kernel, the Vj2 matrix element which
we need can be obtained from the V2j matrix element
with the k and p integrations interchanged. In particular

1.0 Vj 2B u~

0.8

g 0.6 d p d ku p V2jp~k B

0.4

0.2—

0.0
0

I

0.05 0.1
I

0.15 0.2 0.25

FIG. 11. The functions gi and gs (labeled 1 and 2 on the
graph) plotted as a function of p (in GeV) for a Sxed p = 0.84
GeV. The straight line fits are Eqs. (A16).

(A17)

Recalling that B = A —1, and carrying through the es-
timate as we did above, gives two terms. The A term is
identical to the result we have already obtained, but the
contribution from the —1 term is no longer small. We
know that it must go to zero as p, m 0, and can there-
fore be written as 2Ap, with A an undetermined constant.
Our estimates of the ofF-diagonal potentials have there-
fore given
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Vj2B ——2Ag2p,

V2gB ——2A2g p,

2. Numerical methods

In this section we discuss our numerical methods. The
techniques are essentially extensions of those already dis-
cussed in our earlier papers [1,2].

For a given bound-state equation, each wave function
is expanded in terms of a set of basis functions (P;(p)j:

&'(p) = ).~vA(p).
j=l

(A19)

The bound-state equation is then converted into a gen-
eralized eigenvalue problem, Ax = ABx, by integrating
the entire equation over all momentum p using an appro-
priately chosen measure so that the matrix arising &om
the linear potential (and hence the entire matrix equa-
tion itself) is symmetric [recall that our potentials are

l

with A12 = 02~21/2 —A and A2y ——0'252] /2. The constants
0&, 0.2, and A are adjusted to fit the results, as discussed
in Sec. IV.

Hermitian, V~(p, k; P) = Vz, (k. , p; P)]. This last feature
is particularly advantageous as it avoided the generation
of spurious complex solutions due to round-ofF errors.

For the basis functions we used cubic B splines. While
in our previous works we used other choices (Laguerre
polynomials in Ref. [1]; generalized Yukawas, i.e., (p2 +
M; )"' in Ref. [2]), we found that they were not suffi-
ciently Hexible in the present case to solve the pion equa-
tion for arbitrary potential parameters. The difficulty
here lay in matching the high momentum tail in our solu-
tions, arising &om the chiral-symmetry of our equations
with the low momentum structure due to the scalar, lin-
ear potential. The advantage of B splines in this regard
is that they naturally span large momentum scales while
building in only minimal biases.

Although expansion in B splines is a well-known nu-
merical technique, for the sake of completeness we give
their definition and discuss some delicacies that were in-
volved in their application to our equations. The cubic
B splines are defined [17] so as to have finite support and
to have a continuous first and second derivative. These
requirements are achieved by piecing together four cu-
bic polynomials, each defined only over a finite region.
The points where the polynomials join are called knots.
The cubic B spline b„(z),centered at knot z„with equal
spacing h between knots, is defined as [17]

3fz —z„2)
)

+n —1

1
b„(z)= —

& 1+3 "
3(z„+2—z&

, 0,

2 3

~
(z —z~-xl+~

I

3 (z„+z—z&
3 fz„+z—zl

z C [z„2,z„~],
z q [z„„z„],
z C [z„,z„+~],

z q [z„+~,z„+2],
otherwise.

(A20)

To obtain our basis functions (P;(p)3, we start with n
equally spaced B splines defined over the range 0 & z &
1. For the pion case we then introduced a nonlinear
(quadratic) mapping from x to momentum space in order
to be adequately sensitive to the structure in both the low
and high momentum regions. For all other cases, a simple
linear mapping was sufhcient (a high momentum cutoff

p ~ was introduced beyond which the wave functions
were taken to be zero; after obtaining a solution, we then
varied p to ensure that the solution was insensitive to
its value). Each wave function was expanded with a ba-
sis set taken with the appropriate boundary condition at
p = 0. As illustration, the complete set of S-wave basis
functions in x space (normalized to one at the peak) for
the case that n = 4 are shown in Fig. 12. Note that the
derivative has been guaranteed to be zero at the origin.
For the B spline with center at the origin, this is auto-
matic. To the spline centered at x = h was added the
tail &om the spline centered at x = —h. The basis set for
P- and D-wave solutions were generated by multiplying
the S-wave basis by p/Ez and (p/EJ )2, respectively

The presence of knots required special care in our in-

1.0

0.75

0.25

0.0
0.0 0.25 0.5 0.75 1.0

FIG. 12. The full set of cubic B splines used for 8-wave
solutions in the case n = 4. The derivative at the origin is
zero by construction.

]

tegrations. All integrals were subdivided into pieces de-
fined by the knots of the basis functions entering the
integrand. Gaussian quadrature was then used to eval-
uate the integral of each subdivision. This procedure of
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avoiding integration through the knots was essential, for
without subdividing as many as twelve places of numeri-
cal accuracy could be lost (as, e.g. , in the simple integral
over two basis functions). Due to this necessity, the dou-
ble integrals for the linear-potential matrix elements be-
came rather complicated since in addition to the knots,
the pole positions of the various potentials had to be
specially handled. In the case of the diagonal potentials,
Vjq, V22, which have single poles (after the subtraction)
at p = k, symmetric integration in the k integral about
the pole position was used in those cases where the ma-
trix elements involved integrands with overlapping basis
functions. For the case of the off-diagonal potentials, the
region cutout of the integral in V2q [defined by the poles
kq(p) and k2(p)] introduced new integration limits that
had to be properly incorporated (the Vq2 matrix elements
were obtained using Hermiticity). Although in this case
no pole remains in the potential after the subtraction, in
order to ensure that the off-diagonal potentials smoothly
matched onto the diagonal potentials in the limit that
the pion mass went to zero, we integrated evenly below

and above the pole positions kq and k2.
In practice we solved our generalized eigenvalue prob-

lem for the bound-state mass after having chosen values
for our parameters in the quark-quark interaction po-
tential. Since the bound-state mass not only appears
linearly in our equations in the kinetic terms, but also
nonlinearly as part of the definition of the form factors
of the linear potential, we used an iterative procedure
of first guessing a value for the bound-state mass to be
inserted into the confining potentials, then solving the
eigenvalue problem and seeking a self-consistent solution.
For all solutions other than the pion, the convergence of
this procedure was rapid, as the dependence in the lin-
ear potential is very mild for large values of the bound
state mass (i.e., for y, 2m). The pion, on the other
hand, required more care. Finally, the number of basis
functions were increased to check the convergence of our
solutions. Except for the pion, this was also in general
rapid (n = 6). The pion however, required significantly
more (n = 16). The curves in Sec. IV were obtained
using n = 40.
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