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An analytical method is presented to solve generalized /CD evolution equations for the time
development of parton cascades in a nuclear environment. In addition to the usual parton branching
processes in vacuum, these evolution equations provide a consistent description of interactions with
the nuclear medium by accounting for stimulated branching processes, fusion, and scattering pro-
cesses that are speciSc to /CD in a medium. Closed solutions for the spectra of produced partons
with respect to the variables time, longitudinal momentum, and virtuality are obtained under some
idealizing assumptions about the composition of the nuclear medium. Several characteristic features
of the resulting parton distributions are discussed. One of the main conclusions is that the evolution
of a parton shower in a medium is dilated as compared to free space and is accompanied by an
enhancement of particle production. These effects become stronger with increasing nuclear density.

PACS number(s): 25.75.+r, 12.38.Bx, 12.38.Mh, 24.85.+p

I. INTRODUCTION

In a previous paper [1], Miiller and I addressed the
question of how "/CD in a medium" is modified as com-
pared to "/CD in vacuum" when one attempts to extend
well developed perturbative /CD techniques [2] from
high energy hadron-hadron collisions to ultrarelativistic
heavy ion collisions. The investigation of [1] condensed,
in the derivation of a generalized form of /CD evolution
equations that describe the time evolution of parton dis-
tributions in a nuclear medium, solutions of which I will
present in this paper. This aspect is of great importance
for the future ultrarelativistic heavy ion collider experi-
ments at the BNL Relativistic Heavy Ion Collider (RHIC)
and the CERN Large Hadron Collider (LHC), where
new phenomena associated with "/CD in a medium"
are expected to clearly modify naive extrapolations from
hadron-hadron collisions. Although in the last couple
of years, numerical simulations with /CD based Monte
Carlo models [3—6] have provided considerable new in-
sight into the xnicroscopic parton dynamics of ultrarela-
tivistic heavy ion collisions, one is still far from a coxn-
plete picture and a truly quantitative description. Aside
from the rather opaque complexity of these computer
simulations, one still relies on a substantial amount of
phenomenological modeling of nuclear and dense medium
effects due the current lack of better knowledge about the
details of such mechanisms. This is refIected by a very
large uncertainty in quantitative predictions: although
the different model calculations generally agree very well
for pp collisions at collider energies, they di8'er in their
predictions, e.g. , for, charged particle xnultiplicities, in
heavy ion AA collisions by a factor of 2 or more.

These issues lead to the main xnotivation for this work,
naxnely, the necessity to go back to a simpler, but more
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fundamental and transparent level, and study within
the firmly established framework of perturbative /CD
(rather than extending phenomenological model input)
the microscopic dynamics of quarks and gluons in the hot,
ultradense environment that may be created in heavy
ion collisions [7—9]. In order to do so, it is inevitable to
disentangle the various nuclear and medium efFects &om
each other by investigating physical situations where such
xnedium phenomena may be singled out, both in theoret-
ical and experimental research. For instance, deep inelas-
tic scattering on heavy nuclei [10], charmonium produc-
tion by Drell-Yan processes in nuclei [11],energy loss of
partons, jet quenching, and multiple scattering phenom-
ena in hadron-nucleus collisions [12], etc. , provide op-
portunities to explore nuclear modifications to the /CD
parton picture that has been so successful in high energy
particle physics.

As a first step in this direction, in Ref. [1] a general-
ized form of the well known Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations [13—15]
was derived. In the &amework of the leading logarith-
mic approximation (LLA) [16—19], we obtained a set of
coupled integrodifferential equations for the time evolu-
tion (rather than the Q2 evolution) of the off-sh'ell parton
distribution functions in nuclear matter. In addition to
the usual parton branching processes in vacuum, these
evolution equations provide a self-contained description
of interactions with the nuclear mediuxn by accounting
for stimulated branching processes, fusion, and scattering
processes, which are specific to @CD in medium. This
approach resulted in a probabilistic description within
perturbative /CD of the time variation of parton dis-
tributions as in nonequilibrium kinetic theory, however,
now including a consistent treatxnent of oK-shell propaga-
tion of partons, a concept that is absent in semiclassical
transport theory [20]. The essential condition for the ap-
plicability of perturbative techniques is that the /CD
factorization theorem [21] holds also in the presence of
dense nuclear xnatter, in which multiple interactions of

0556-2821/94/50(5)/3243(20)/$06. 00 50 3243 1994 The American Physical Society



3244 K. GEIGER

the evolving partons with this nuclear medium may be
separated in space-time by only very short distances. Re-
cent investigations by McLerran and Venugopalan [22]
are encouraging in this direction, since they showed that
a consistent perturbative calculation of parton structure
functions at small values of the Bjorken variable x be-
comes possible when one considers the limit of a very
thick nuclear target. The condition for the applicabil-
ity of perturbative QCD is then that medium-induced
e8'ects, such as color screening and rescatteriag, provide
dynamical cutofFs on a scale short compared to the QCD
renormalization scale A

Exploring this insight, the present paper as a sequel
to the work of Ref. [1] employs the probabilistic par-
ton cascade picture [15,23] to describe the evolution of
a parton shower inside nuclear matter, triggered by a
highly excited initial quark or gluon. Here I will start
&om the generalized evolution equations and solve for
the parton spectra with respect to the variables time,
longitudinal momentum, and virtuality, under some ide-
alizing assumptions about the composition of the nuclear
medium. Before going to the heart of the matter, let me
remark the following. The approach is at this point in a
yet idealized stage, since various unsettled problems are
left out and a number of simplifying approximations are
made. Still, it is a starting point which can be improved
step by step, perhaps, similar to the development of per-
turbative /CD in hard processes that started some 15
years ago. The main assumptions and approximations in
Ref. [1]and in the present paper can be stated as follows.

(i) Factorization of short distance interactions of
shower partons with the auclear medium from long range
nonperturbative forces is assumed. This means, even in
the presence of dense medium where a parton can en-
couater multiple successive interactions, a probabilistic
description of local, noninterfering interactions applies
at suKciently high energies.

(ii) Neglect of interference effects that afFect particu-
larly the softest partons: destructive interference of inter-
action amplitudes in both coherent successive small angle
emissions ("angular ordering" ) and multiple sequential
scatterings ("Landau-Pomerantchuk-Migdal effect" ).

(iii) Nuclear efFects due to long range correlations, e.g. ,
nuclear shadowing (antishadowing) not associated with
truly perturbative parton interactions are ignored.

The remainder of the paper is organized as follows.
Section II is devoted to recalling the intuitive picture de-
veloped in Ref. [1] of the probabilistic parton evolution
in medi»m. The theoretical framework is reviewed and
the master equations describing the time development
of the distribution of oH-'shell partons in a nuclear en-
vironment are s»mmarized. Section III then deals with
linearizing and solving these equations analytically by
making a number of simplifying assumptions regarding
the nuclear medi»~. Explicit closed solutions for parton
showers initiated by an energetic timelike quark or gluon
are obtained, which in the special case of absence of nu-
clear matter reduces to the well known LLA solutions
for parton distributions, however, time now being the
evolution variable rather than virtuality. Some general
features concerning the x dependence as well as the in-

Quence of the nuclear density are discussed. A summary
and outlook is given in Sec. IV.

II. THE COUPLED EVOLUTION EQUATIONS
FOR QUARKS, ANTIQUARKS, AND GLUONS

IN MEDIUM

Let me start by recalling the essential considerations
of Ref. [1] that lead to the derivation of a coupled set
of integrodiBerential equations for a system of oH'-shell

quarks(antiquarks) q;(q;) with flavors i = 1, . . . , ny, and
gluons g. As will become clear, these Boltzmann-type
equations describe the time evolution of parton cascades
in a nuclear medium, accounting for oK-shell propagation
of timelike virtual partons. Although, as mentioned be-
fore, the evolution equations may be applied to a variety
of physical situations, let me specify here for the pur-
pose of lucidity a de6nite, though somewhat idealized
scenario. Consider a fast parton injected into infinitely
extended nuclear matter by some highly localized pro-
cess of space-time extent, (qo) ~ && A . This pri-
mary parton then propagates through the nucleus and
initiates a cascade or shower of secondary partons. The
partons in the cascade can either radiate bremsstrahlung
gluons or produce qq pairs, collide with partons of the
nucleus (the medi»m), or absorb nuclear partons. I will
call such an event a parton shower or parton cascade. I
emphasize that I will explicitly distinguish between the
shower partons on the oae hand, and the nuclear partons
on the other haqd, which initially are coherently bouad
in the wave function of the nucleus. Also, for the present
time, I consider here the evolution of a single cascade
and therefore only account for iateractioas of the cas-
cade with the medi»m, but neglect possible interactions
between simultaneously evolving cascades.

The prototype reaction of such a scenario is a proton-
nucleus (pA) collision at very high beam energy, where
one may trigger on a high energy timelike quark or gluoa
that is produced at some point of time to inside the
heavy nucleus by a hard scattering, and single out the
development of the resulting parton shower inside the
nucleus with a sufBciently homogenous spatial density.
For the description of such a parton cascade it is conve-
nient to choose the nucleon-nucleon center-of-mass kame
(c.m. ivy) [24] in which each nucleon has the same value
of longitudinal momentum P:

with

Ks = /4AP* + Mi(1+2*), gsgvrv = 2P

where A is the nuclear mass number, M~ the nucleon
mass, and P/M~ && 1 is ass»med. For example, at the
RHIC (LHC) the maxim»m available beam energy im-
plies P/M~ & 100 (3000) even for p+Au collisions. I will
describe the longitudinal evolution of a parton show'er

along the shower axis (z axis), which I define parallel
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k~ = z~P+; z~P, k~~
2x~P (4)

where x~ = p, ~/P can be either positive or negative de-
pending on the partons direction of propagation along the
z axis. Furthermore, k2& & Q2 « P2 is assumed, and
all rest masses are neglected. It is important to realize
that energy and momentum are independent variables,
since one is dealing with oH-'shell particles of virtuality
Q ) 0 with a continuous invariant mass distribution.
The evolution of the parton system is then described by
the change of parton number densities, which are defined
as

QkI

2 2 dN~(t)
d dI'dQ20 Z

(a—:q;, q, , g; i = I, . . . , ny), (5)

to the direction of moment»~ of the initiating primary
parton. It is convenient to parametrize the four-momenta
Ik = k" = (E,k„k~) of the shower partons such that, for
the primary parton,

ko = ~zoP+ ' z
t' Q(2)

2zpP ' )
whereas, for the jth secondary parton,

X X~ Zg Z2 Z~X0

Q'=Q„'«Q„', «" «Q', , (9)

in accord with the uncertainty principle. Thus, in the ab-
sence of interactions with surrounding matter, the time
variable t is related to x and and the degree of oE-
shellness Q2 by the typical lifetime 1/Q in the parton's
rest frame, boosted by the Lorentz factor p = ~x~P/Q.
However, when considering a parton shower inside nu-
clear matter, scattering and fusion processes with nu-
clear partons will compete with spontaneous branchings
and consequently disrupt a steady decrease of average
virtuality with time. Both scatterings and fusions can
increase the virtuality of a parton by energy-momentum
transfer. This means that the relation (9) between x,
Q2, and t cannot be deterministic anymore, because in-
teractions with the nuclear medium occur stochastically
according to the density of nuclear partons. Each scat-
tering or fusion may "rejuvenate" a shower parton by
providing it with a virtuality Q'2 ) Q so that the par-
ton after the interaction appears to be younger (t & t').
To keep track of these repeated rejuvenations, one has
to reset the clock for the particular shower parton after
each such interaction with the medium. For this purpose
a new independent dynainic variable r, called the age of
a parton, was introduced in Ref. [1]. Instead of (9), one
finds

or, when integrated over transverse momentum,

a( qr, t) = fdk~a( , r;kr, q)r (6)

The relation between the parton nu~ber densities (5) to
the single-particle phase-space distributions is expressed
by the number of partons of type a present at time t:

N (r) = f drr f drkF, (s, k;t, r)

d k E,k;t

QZQ,

lllTltll (Z~ = zj /zj 1)

with I' denoting the corresponding phase-space density
of off-shell partons with virtuality Q = E —k2 in the
phase-space vol»me dEd kd r around k" and r at time
t, and f in the second part of the equality representing
the spatially integrated energy-momentum distribution.

In order to describe the time evolution of the parton
densities (5) or (6) one has to relate the change of the
dynamical variables z and Qz with the laboratory time
t which plays the role of an external "parameter" rather
than being an intrinsic kinematical quantity. In Ref. [1]
it was shown, using time-dependent perturbation theory,
that for the case of a parton shower evolving in vacuum
(i.e., by successive branchings only), one finds that the
time scale for a branching chain, starting at t0 ——0 with
initial values Qp and xp, is in the average given by

r —= r(*,t) =
~

)4
(10)

which determines the typical age of a parton depending
on x, Q2, and implicitly also on t, and which introduces
an additional time scale that reBects the external inBu-
ence of the medium on the time evolution of the parton
cascade. Correspondingly, the parton number densities
(5) and (6) must be generalized as

a(z, r, t) = dr' dk~
dN (t)

TO

which now has the meaning of the probability density
for finding a parton of type a at time t with age r =
]z]P/Q and momentum fraction z. The age variable
measures here the inBuence of the nuclear medium on
the development of the parton cascade. Note that in the
absence of a background medium the age variable loses
its independent character; i.e., it then evolves parallel to
laboratory time and 7 oc t. I will return to that point in
Sec. III.

A. The evolution equations

For the remainder of this paper I will be concerned
only with transverse moment»m integrated quantities,
so that it suffices to describe the evolution in terms of
the parton number densities q;, (q;) and g, defined by
Eq. (11). In addition, it is convenient to introduce the
parton momentum densities Q; (Q;) and G:



3246 K. GEIGER

Q;(z, r, t) = xq;(x, r, t), G(x, r, t) = &g(&, &, t),

i.e., the parton number densities weighted with the lon-
gitudinal moment~am &action x, and integrated over all

transverse momenta k&.
As graphically illustrated in Fig. 1, the coupled evo-

lution equations for the parton densities Q; of quarks,
Q, of antiquarks, and G of gluons, respectively, can be
summarized now as [I]

—+ —
~

Qj(z) T, t) = — A + A'(G) + B'(Q;) Q;
(8 81
EBt 87 )

B + Sqs(Q;) G

+ ) s«~Q;) Q, + ) s«(Q;) Q, ,

q; x g X
cresses e e ~ e ~ e

q;

x q;

~ r e ~ ~ r re ~ ~ e ~ ~ ~ r r
X g

~ ~ ~ ~ sere

X g
r ~ e r r e re

q; q, q;

q;

g g g g

FIG. 1. Diagrammatic representation of the coupled evolution equations (13)—(15) for (a) quarks (and sion&arly antiquarks)
and (b) gluons. In contrast to the branching processes, the fusion and scattering processes involve interactions of a cascade

A

parton with a nuclear parton (marked by thick lines). In (a) the various diagrams correspond to the integral operators —AQ;,
HG, —A'Q;, H'Q;, P.[See—Q~+SeeQ~], SesG, and in (b) to —CG, DG, P.[EQ~+EQ~]—, —O'G, D'G, P.[E'Q~ +E'Q—~], .

[SseQi + Ss)Qi] .SssG.
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f8 8)
I

—+ —
I

Q'(*»&) =-
(Bt &r &

A y A'(G) + B'(Q;) Q; y B y S„(Q) G

+) S-(Q;) Q. +) S—{Q') Q (i4)

fL f
~

—+ —
~

G(x, T, t}= — C + D + C'}G} + ) (D'}q,}+ D }q,}) —8 }0} 0
ER BTj

A f+).
j=1

71f
E y E'(Q ) y S {G) Q y ) E + E (Q ) y S -(G) Q (i5)

Note that this set of equations describes the time evo-
lution of the parton (longitudinal) momentum distribu-
tions Q = zq, Q = zq and G = zg, rather than of the
parton number densities q, q and g. The left-hand side of
these equations describes just the free streaming in the
absence of interactions, whereas on the right-hand side
the various integral operators acting on the parton mo-
mentum densities describe the change of the densities due
to branching, fusion, and scattering processes. In con-
trast with the branching operators (A, B, . . . , E), the op-

erators that describe fusions (A'(Q), B'(Q), . . . , E'(G))
and scattering processes (Sqq(Q), . . . , Sss(G)) are func-

I

tionals of the nuclear parton distributions (labeled with

a tilde) of quarks Q (Q) and gluons G.
In order to represent the integral operators in the evo-

lution equations (13)—(15) in compact form, let me intro-
duce effective coupling functions defined in terms of the
running /CD coupling strength in one-loop order:

12'
3 —2 ~)l (Q/

(16)

where A is the /CD renormalization scale and ny is the
number of quark Savors that can be probed at scale Q2.
The following definitions will be employed:

j dz a,
~ ~

8
~

—po ~
g(z, ~, t) + ) [q, (z, 7., t) y q, (z, r, t)]

(iz]Pi} (iziP
)

a, (7) —=

f,'Cz g(z, ~, t) + ) [q, (z, r, t) yq, (z, ~, t)]

a, (~)—
2x~

4n a, (M2)

M2=
I ~IPj

f z
@~as(z) = 2C&

I
z(1 —z) +

1 —z
1 2 2

s qq(z) = — z y (1 —z)

+

2

where' = "2 =4/3, CG =n, =3, andz =zs/z
is the fraction ofz values of daughter-to-mother partons
in the branching a —+ bc.

As is evident from the evolutions equations (13)—(15),

Here a, (r) describes the z-averaged /CD coupling at
scale Qz = ]z~P/7, and the age 7 represents the mean
lifetime of a parton with longitudinal momentum &action
z and virtuality Q2. Finally I denote by p ~s, (z) the
usual branching functions [13,14]:

/I y z')
qs(z) =C

g 1 —z)
t 1 y (1 —z)

sq(z) = Cq z

the rate of time change of the number of partons receives
various contributions from the different interactions of
the cascading partons, represented by their momentum
densities Q, Q and G, from 1 ~ 2 branchings, 2 -y 1
fusions and 2 ~ 2 scatterings. In addition to the well
known parton evolution in vacuum (e.g. , jet develop-
ment in e+e annihilation), in which only spontanous
branching processes contribute, in the present scenario
of parton evolution in nuclear matter, the interactions
with the medi»m, i.e., with the nuclear partons, give rise
to fusion and scattering processes, and indirectly also to
stimulated branchings. The physical picture underlying
this probabilistic approach to generate such parton cas-
cades from sequential elementary 1 -+ 2, 2 ~ 1, and
2 + 2 interactions is a direct generalization of the stan-
dard perturbative /CD parton shower picture [15, 23].
For more details I refer to Ref. [1]. Here I will only list
the corresponding expressions of the integral operators
in Eqs. (13)—(15) corresponding to the diagrams in Fig.
1.
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B. Branching processes branching rates of gluons are given by

1 x+ QG' =+ dz t —~Vie 7 Pg~qq
0 z (19)

The corresponding branching rates for antiquarks are ob-
tained upon substitution Q; e+ Q;. The loss and gain

For cascading quarks the 1 ~ 2 branching processes
are balanced by the loss (—) and gain (+) rates

1 (X—&Q; = — dz Q;(x, T, t) —Q;
~

—,T, t
0 z

X ((T) ~q~qg(z)

1 1 x- C a =- dz a-(zat, ) ,
—a a—t,),

0 2 z

xf(T) 'Yg~gg (z),
1

D G: Df G(xt Tt t) dz f(T) fg~qq(z),
0

1

+ Eq, =+ dz qa —,at) ((,a) ta aa(z),
0

1

t- g q, = i dz ()t I , a, t) ((a) pa aa(z)
Ez

(2O)

C. Fusion processes

The 2 ~ 1 fusion rates that describe the effective loss of quarks due to fusions are

—A'(G} Q; = —p~ cqg~q

—& (Q;}Q'=—pfq c—

dz a;(z, a, t)a
i i ((—,a)

(* t) G(*(1- )) ~,-„()&(*, )

1

dz q( z, a)tq;~ , l p -(z)t (—,a)

Here p~ is the nucleon density of the nuclear medium (to be specified below), and the constants cqg~q ——cqg~q = 1/8,
cqq~g

——8/9 arise from the difFerence of flux factors (color and spin) for fusions compared to branchings [25]. Similarly
the fusion rates of antiquarks are given by replacing Q; ~ Q;. The corresponding loss and gain fusion rates of gluons
are

—C'(G}G =

—D'(Qj} G =

—D'(Q, }G =

1
—Pat zaz a dz a(z, a, t)a

~ ~ ((—,a)
o ( z p z

—G(xz, T, t) G(x(1 —z))((x, T) p (z),

(x(1 —z) ) x
P~ cgq~q G(xt Tt t) dz Qj aa(z) & a)

o ( z

(x(1 —z) l x
p~ cgq+q G(xt Tt t) dz Qj aa(z) ( a)

o
'

0 z ) z
1

+ E'(Q, }Qj=+ 2Pfv cqq g dz Qj(xz) Q, (*(1—z)) ~g qq(z)(:(»T)
0

1

+ E (Qj}Qj = + Piv cqq~g dz Qj (xz) Qj (x(1 z)) f ~ gq( q)(zz(xt T)
0

(22)

The flux factors are here cgg~g: 1/8t cgq~q: cgq~q: 1/8t cqq~g: 8/9.
In (21) and (22) the argtt~ent x of the nuclear parton distributions Q, Q, and G is understood as [x~, since the

nuclear partons move in Pdirection [cf. E—q. (1)],but the measured nucleon structure functions are usually defined
only for positive calues of x. Also note that in (22) the second term on the right in the expression for C'(G}G would
be multiplied by a factor 1/2 if G and G were treated on equal footing, because nuclear and shower gluons would
then be indistinguishable.

D. Scattering processes

The 2 ~ 2 collision rates for elastic scatterings of the cascading partons carrying momentum &actions x1 and x2
with the partons in the nuclear background medium of nucleon density p~ carrying momentum &actions x1 and. xz
are represented by the integral operator



50 ANar. YTrc sor.UTrows oF qcD r.vor.UTroN EqUATroNs. . . 3249

0

S s(A) B—:— A(z2) dp~ 2 p~
—1 +2 PJ

B(z,~, t)

B(zg, ~, t)
+1

B(xg, 7g, t) (~, zg )
+ 2 A(z2) 2 p~ d7.g

' ' 1 +8
'T 1 X2 dp J g [~Ia p +1 7 X

J J

'd zg P/~
A(x, ) d 2 Oab-+ab

—1 2 PJ

where A, B = G, Qz, Q~ and the tilde labels as before
the nuclear parton distributions, whereas the distribu-
tions without tilde refer to the cascading partons. As in
the case of fusions, Eqs. (21) and (22), the value of z2
in the argument of the nuclear parton distribution A is
meant as Ix2 I

when employing standard parametrizations
of nucleon structure functions.

The momentum fractions of two partons before (zq, xq)
and after (zz, z2) scattering involving a relative trans-
verse momentum exchange P2J are related by

2 2
PJ I PJ

processes q;g M q;g, q;q~ -+ q;q, , and q;q~ ~ q;q~,
whereas for gluons the contributing processes are gg ~
gg, gq~

—+ gq~ and gq~ + gq~. The parton-parton cross
sections do s~,g jdp& in the scattering function (23) are
related to the squared scattering amplitudes IM s~,gI,
averaged over initial spin and color states and summed
over the final states, by (neglecting the quark masses)

d&abmcd(s& pg) ~ ~ ~~a (p~) ~~ ~2

2 ab cd ~2 ] abmcd [ )
dPJ 8

(26)

(24)

Jp'
(z —z2) P2 (25)

For the quarks (and similar antiquarks) one has the

&om which follows the value of z1 at which the function
B(xq, 7, t) in Eq. (23) is to be evaluated:

where the degeneracy factors 17 s = (1+b s)
~ accounts

for the identical particle effect in the initial state if a and
b are truly indistinguishable, and correspondingly 'V,d is
the statistical factor for the 6nal state. However, since
cascading particles and nuclear partons are assumed to
be distinguishable, one has 17 s = 1 always (but not so
for 17,g). Since they are needed later, let me list for
completeness the relevant squared matrix elements for
the various processes [26]:

4 (i2+u2) 4 (s~+P)
I~q'q&~q'q, I

=
g I "2 I

+ ~~j

4 (s +u'l 4 (t" +u'l
e'e. e'e~ g ~

t"2
~

2 g

9 ( ut us st)
M 2 (

" t2 "
)

8 (s21
27 (ut)
8 (u2)
27 (st/

(27)

The variables s, t, u are the kinematic invariants of the
parton-parton scattering with s+t+u = 0, and p&

——tu/s
for massless particles. For massive quarks the corre-
sponding scattering matrix-elements can be found in Ref.
[27].

III. ANALYTICAL SOLUTIONS FOR THE
PARTON SHOWER FUNCTIONS

In the following I will present a method for solving
the evolution equations (13)—(15) analytically and will
investigate some characteristic features of the solutions.
Recall the scenario &om Sec. II with a highly energetic
incident quark or gluon, produced at some point of time

tp inside the target nucleus, with longitudinal momentum
&action xp 1, transverse momentum kJ 0 ——0, and vir-
tuality Q20 )) A, that initiates a cascade (or shower) of
secondary quarks, antiquarks, and gluons. By solving the
evolution equations, one can follow the time evolution of
this parton shower in the nuclear background medium
consisting of the partons of the heavy nucleus. In this
section r will solve the evolution equations (13)—(15) for
the parton momentum densities Q (Q) and G, or equiva-
lently the number densities q (q) and g. The synonymous
term parton shower functions as a generic term for these
distributions will be &equently used. As I will show, the
evolution equations can be solved in closed form, if one is
restricted to a somewhat idealized scenario that allows for
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a transparent analysis (without, however, giving up the
physical relevance of application to realistic situations).

A. Assumptions and approximations

The assumptions and approximations that I will have
to impose in order to achieve tractable solutions are the
following.

(i) As before I will employ a rigorous distinction be-
tween the cascading partons produced by the evolving
parton shower and the partons of the nucleus which rep-
resent the medium. Only the shower partons are fol-
lowed dynamically. The nuclear parton distributions are
approximated by a constant behavior, motivated by a
rather weak x dependence of the nucleon structure func-
tions at small values of x [28]. I will restrict the shower
development to the small x region where the probability
for an interaction of a parton is the largest, because of
the logarithmically large integration over the momenta of
the involved partons and the large available phase-space.

(ii) The nuclear background medium is assumed to be
of very large (ideally of infinite) size with a uniform spa-
tial distribution of nuclear partons, so that one can ig-
nore boundary effects and average over the spatial co-
ordinates. Also, I make the so-called "sudden approxi-
mation"; i.e., the nuclear parton distributions remain es-
sentially unaltered by the interactions with the shower
partons, at least on time scales characteristic for the
"intracascade activity. " However, once a nuclear parton
has interacted with a shower parton, it is considered to
be materialized &om the coherent medi»~ and becomes
part of the evolving cascade. Thus the medium acts as a
particle and energy-momentum reservoir.

(iii) For the nuclear partons of the medium, I will ig-
nore effects such as nuclear shadowing, color coherence,
long range correlations, etc. , that afFect the momentum
and number distributions of those quanta. I approximate
the nuclear distributions as simple superpositions of the
experimentally measured nucleon structure functions and
consider the nuclear parton density as a function of the
number of nucleons A per unit area. The contributions
of valence quarks are neglected; that is, the matter is
taken to be efFectively baryon &ee, an assumption that is
reasonable for the valence quark depleted, small-x region.

Accordingly, the attention here is restricted to the dif-
fusion of cascading partons in a longitudinal direction
and the dissipation of longitudinal momentum (or en-

ergy) of the shower particles. That is, I will solve for
the time evolution of the parton shower functions as a
function of longitudinal moment»~ fraction x and age
~. A more realistic evolution including also the difFusion
in transverse momentum k~, the lateral spread in r~,
as well as equal treatment of shower and nuclear par-
tons, requires a n»clerical analysis, which is planned to
be addressed in a separate work.

B. SimpMed form of the evolution equations

Because of the dependence of the integral operators
for the fusion processes and the scattering processes on

the parton distributions Q, Q, and G of the nuclear

9 W'/' -,
G(z) = ——,G

8X r02
(30)

Here the overall minus sign ensures that the nuclear mo-
mentum densities are negative definite, as explained after
Eq. (28). These z- and t-independent parametrizations
mimic in a crude approximation the effective number of
nuclear partons per imit area, weighted with their lon-
gitudinal momentum, as "seen" by the evolving shower
partons. Since at small x the contribution of the valence
quarks is negligible, the distributions Q (Q) are under-
stood to represent solely the sea quarks (sea antiquarks)
for which I take ny ——3; that is, I account for the Savors
i = 1, 2, 3 = u, d, 8 with the relative proportions

1 for i = u (u),
1 for i = d(d),
0.43 for i = s(a).

As reasonable values for Qo and Go one may take

background medi»m, the right-hand side of the evolution
equations involves quadratic forms of the parton distri-
butions, because of the coupling of the shower partons to
the nuclear partons. A general analytical solution of this
nonlinear problem is therefore not possible. To overcome
this obstacle, I explicitly distinguish these two sources [cf.
item (i) above]. I approximate the nuclear parton den-
sities as scale (Q2) independent and neglect their time
variation, as well as nuclear shadowing effects, etc. [cf.
item (ii)] and simply represent them by the nucleon struc-
ture functions multiplied with a nuclear factor:

Q'(*) = ~~*g'(l*l Qo) G(*) = s»g(l*l Qo)

(28)

where q;, g denote the usual (time-independent) mea-
sured nucleon structure functions, in principle to be eval-
uated at the initial scale Qo at which the primary parton
is produced. It is important to realize that in (28) the
values of x = p, /P ( 0, in accordance with Eq. (1); ie.
note the fact that the nuclear partons move in the —z
direction. Therefore, although the number densities q;, g
are (as probability densities) necessarily always positive
definite, the momentum densities are here Q;, G ( 0.
The nuclear factor pN depends on the geometry and the
nucleon density [25, 29]:

pN —
2 ~A&N )

where R~ = ro A ~, ro ——1.2 fm, and n~ = A/(4mR~&/3)
are the nuclear radius and the nucleon density of the tra-
versed nucleus, respectively. Furthermore, motivated by
the aforementioned weak z dependence of the nucleon
structure functions at small values of z & 10 2 (see how-
ever [28]), one may approximate the nuclear parton dis-
tributions (28) by a constant Qo, respectively Go, times
the nuclear factor (29):
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Q —02 G =3. (32) navors,

As long one is concerned with color and Savor insensi-
tive kinetics of the parton evolution, it is sufhcient and
convenient to consider nf ——3 identical types of quarks
and antiquarks, and the only Savor dependence comes
from the relative quark admixtures (31) in the nuclear
medi»m. Because of the absence of valence quarks the
baryon number is zero and particle-antiparticle symme-
try implies Q; = Q;. Therefore it is convenient to define
the iavor singlet combination by the sum over all quark

Af

Q:= ): I, Q' + Q'),

and consider quarks and corresponding antiquarks as one
particle species.

Collecting all these ingredients, one can now rewrite
the evolution equations (13)—(15) in a much simpler, lin-
ear form:

—Q(z, q) t) = — A + A'(G ) + —B'(zQ ) —ny Sqq(tcQ ) + — Q+ 2B + Sqq(zQ ) G

= —FqqQ + FqsG,

F + —E'(~Q ) + Sgq(G ) Q

=——FusG + Fsq&. (35)

= 0.81 (36)

In (34) and (35) both the parton densities and the
integral operators still depend on the three variables
t, v, and x, corresponding to the time development of
the virtuality (age) distribution and energy (longitudi-
nal momentiim) distribution, respectively. For each age
7 = ~z~P/Q2 one must in general expect a difFerent x
dependence (and in principle also fiavor dependence), re-
fiected by an "age distribution" A (7, t; z), which repre-
sents the probability that a parton a = q, g with x at
time t has an age v, and which, for quarks and gluons,
respectively, is defined. through [Ij

Q(z, r, t) = A, (~, t;x) Q(*,t),

Here g; is defined by (31) and the constant e accounts
for the efFective number of quark Qavors in the nuclear
medium that are probed by the cascading gluons:

terings it receives modifications because the age of the
scattered parton is reset to the younger age correspond-
ing to the larger virtuality caused by the moment»m
transfer of the interaction. In the absence of a medium
A = b(t —r) There.fore the age distribution refiects
the inQuence of the nuclear medium and determines the
characteristic age r. The age 7 must hence be related
to the mean kee time inbetween scatterings and conse-
quently introduces an external scale that depends on the
density of the medium. The separation of the medi»m
infiuence in the parton densities (by introducing A), sug-
gests describing the parton evolution by the time rate of
change with respect to the variable x only and interpret-
ing the age distribution as externally induced feedback to
the shower functions via (37), (34), and (35). Therefore
let me rewrite the latter evolution equations in terms of
Q(x, t), G(x, t) and A(r, t), defined in (38), by substitut-
ing the factorized forms (37):

B - 1(B Bi—Q(z, )) = — F + —
I

—+ —
I A) Q

Bt ' " A gBt B7-&

G(x, r, t) = A, (r, t;z)G(z, t), (37) +Fee G

with normalization Jo d7A (7, t;x) = 1, and

1

A.( t)r= dhA. (~, t;x),
0

OO 1

f(t) = d~ dxA. (7-, t;~) f(*,r, t) .
0 0

(38)

The age distribution evolves parallel with laboratory time
inbetween interactions (free streaming), but due to scat-

Bt ' qq

(
qq

—G(z, t) = F„Q — F„
]. (B Bi+—

I

—+ —
IAl G

A (Bt Br) (40)

Here the terms involving A must in reality be determined
self-consistently by the dynamic interplay between the
shower particles and the nuclear enviro~ment. It con-
tains implicitly information about the nuclear structure,
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which at this point has to be provided as phenomenolog-
ical input. However, the actual form of A is irrelevant
if one is not interested in the age distribution itself, but
rather is concerned with the time evolution of the partons
with respect to x and Ovemge ~. In this case one may
multiply both sides of the equations by A and integrate
over r subject to the conditions (38), so that the explicit
dependence on A drops out. Then one is left with Eqs.
(39), (40), now without the terms A i (8/Bt + 8/Bq ) A
(taking A As), but one has to replace everywhere in

Jh

the operators F g,

T(t) = v~(t) t = d7 7' A(7, t)
0

(41)

where

v (t) = & 1
«(t)

dt
(42)

is the "velocity" by which the typical r changes with
laboratory time t. The evolution equations can now be
written in a coinpact form [15]:If one represents the time
evolving parton distributions in a symbolic matrix form
as U(t, tp = 0) = exp[ —iH t] with H the Hainiltonian of
the system, then the evolving parton state will form a
vector (Q, G) which satisfies the Schrodinger-type equa-
tion

(43)

As I will now show, this matrix equation, or equivalently
the simplified evolution equations (39) and (40) averaged
over r according to (41), can be solved in closed form by
diagonalizing the Hamiltonian H, subject to some chosen
initial condition at t = tp.

C. Solutions for the parton evolution

The integral operators in the matrix equation (43) are
now forms of the average age q (t) and the longitudinal
momentum fractions 2: = p, /P of the shower particles
only. As stated before, the time-dependent r(t) loosely
speaking re6ects the structure of the nuclear medium as
probed by the show'er partons, and it reduces in Bee space
to the trivial dependence 7 = t, i.e., v = 1 in (42). Thus,
one qualitatively expects a delayed parton evolution in
medium as compared to vacuum, because repeated re-
juvenations of the shower partons must '. =ad to ~ ( t,
or v & l. If v (t) has only a weak time dependence,
v const, then an appropriate solution ansatz for the
parton shower functions is the following factorized form
with a power dependence in 1/x and an exponential de-
cay with some time-dependent function g(t):

Q(»t) = «Aq(7 t) Q(~ ~ t) = &q ( I*I
' ~(*) + I~l' 8( x)) exp[—pg(t)]

0

G(x, t) = «As(7. , t) G(x T t) = Nu ( I*I
'

~(~) + I*I' ~(—~)) exp[ —py(t)]
0

(44)

Let me explain the physical motivation of this ansatz.
(i) The introduced power s is understood to be positive

definite, s & 0, and the constants Af~ and JVs are normal-
ization factors. As will become clear, the parameter 8

plays the role of a conjugate variable to the variable x,
controlling the longitudinal momentum distribution in x.
As the shower evolves, s will change with time, thereby
correlating the x and the t dependence of the shower
functions.

(ii) The form of the x dependence in brackets is moti-
vated by the particular dynamics viewed in the c.m.~~
frame (Sec. IIA) in which one naturally expects some
"drag effect" of the (in the —z direction moving) nu-
clear partons on the evolving parton shower. Although
the shower partons initially propagate in +z direction,
one must account at some point for particles moving in
both +z and —z directions. Shower partons moving in
+z direction will progressively degrade their longitudi-
nal momentum by branchings and scatterings, and will
eventually reverse their longitudinal direction, dragged
along and accelerated in the —z direction by absorption
of (fusions with) comoving nuclear partons.

(iii) The exponential factor accounts for the fact that
th

the running coupling strength a, in the operators I" g of

(43) depends on r(t) and therefore implicitly on t. By
introducing the function

, a, (q.(t')) 1 ( a, (v t) l
2m~(t') 2n.bv ia, (v tp) )

(45)
where b = (lln, —2ny)/12m = 0.72 and r = v t with
v assumed to be only slowly varying with t, it is possi-
ble to absorb the medium-dependent factor a, (w)/(2m 7 )
in the exponential time dependence of the distributions
(44). Note that for fixed coupling and v =const, one has

g oc ln(t/tp). Even in the general case g represents ap-
proximately the logarith~ of the laboratory time t. The
real time dependence in the laboratory kame is regained
by the inverse relation

I
exp —ln

I I
exp( —2n.bv y)

( ~P & (q,'l
EA')

(46)

where Qp is the virtuality of the shower initiating parton
Rt tp.

Substituting the ansatz (44) into the time-evolution
equation (43), one arrives at the following eigenvalue
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equations with respect to the new tixae evolution variable

y(t), corresponding to the diagonalized Hamiltonian I: b
V = Fqq(8) ——Fqg(8)

8 (Ql Kg)
(47)

b b
—, & = —Fgg(8) —Fg. (8) . (48)

or equivalently

Here the scalar functions F g(s) correspond to the oper-
ators in the Hamiltonian, F &, defined by (34) and (35):

Fqq (8) A(8) + AlG l (8) + 2 Bl q l (8) nf S (8)

Fqg(a) = 2 B(s) + S~qgl, (8),

Fgq(s) = nf E + nf E& -,&(8) + nf S~,~ (8),

Fgg(a) =C(a) + C'~p (s) + D(s) + nf D' -, (8) —S gg, (8)

The bmnching kerneLs in (49) are

1 1 3
A(a) = d» 1 —z' pq~qg(z) = Cq 2@(a+2) + 2p@—

0 8+1 8+2 2

1 s +3s+4
( + ~)( + 2)( + h) ) '

(49)

(50)

1
0 A sA(p)(B):Gh(t )dqgqdzz)Yqqg(*)

0

G h (v ) cqq q Cp (2@(a+2)+2vx )a+1 8+2 6
1

Bi @pe (8) KQ h (v& ) cqq~g dz z 7g~qq (z) = KQ h (v~ ) cqq~g
0
1

I 0 A s
Cd~pl (8) + nf D& -, l (8) = —G h (v~) cgg +8 dz

~

z —z') pg~gg(z)

1

KQ h (v~) cgq~q nf dz z fq~gq(z)
0 A

0

s +3s+3= —G h (v ) cga~a C~ 2$(s+ 2) +2' —4 as+1 8+2 8+3
11 KQO cgq~q 4'+ Af
6 Go cgg~g 3C~

1

EI apl(s) = —KQ h (v~) cqq~g dzz' pg~qq(z)
0

1 s +3s+4
( -) "--

2 (.+ 1)(.+ 2)(.+ 3)

1

C(a) + D(s) = dz
~

——z'
~ pg gg(z) + nf dzpg qq(z)

0

s +3s+3 11 nf

s +3s+4
E(s) = dzz' pq~gq(z) = Cq

2

where the branching functions p ~s, (z) are given by (18), and as before nf = 3, Cq = "
The g (pp) function is defined as Q(z) = d[lnl'(z)]/dz and pE = 0.5772 is the Euler constant. Note that these
branching kernels are 6nite, i.e., free of in&ared singularities, because the in&ared divergent contributions cancel
explicitly due to the balance of gain and loss terms.

Similarly, the f(uaion kernels are evaluated as
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The constants c s~, in (51) are given after Eqs. (21) and
(22). The dimensionless function h+ contains the nuclear
dependence, Eqs. (29) and (30):

9vrA v tl/3

ro2 fz]P
9~X'~' &q', i

exp —ln
~ ~

exp( —2~bv y)

where scattering at small angles implies [cf. Eq. (24)]
2

PJXl —Xl +

p'
(X2 —Xl jP2

Finally the 8cattering kernels are obtained as

(52)
and the parton-parton cross sections do s~ q/dp2& given
by (26) and (27) can be replaced by their small-angle
contributions

S~~ l, (s) =
4 a, (v t) ~Q h (v ) Z~~

S~~sl, (s) =
4 a..(v t) ~Q h (v ) Z~s ~g,

dO'abmah

CtP J

7l Cl 8
4 ~abmab

PJ

S~~~~ (s) = -' o., (v t) G h (v ) Zsq~gq,

S (s) ag(v~t) G h (v~) Zgs~ss

These scattering kernels result from the operators (23) in
the limit of the "small-angle approximation" or "Landau
approximation" [30], in which one restricts attention to
scatterings with small transverse momentum exchange
p2& (( s ( P2. In this case the scattering operator (23)
simplifies considerably to

where the constants Z b~ b follow kom the squared ma-
trix elements ~JH s~ s], Eq. (27), by observing that
at small angles pJ ———t (( 8 and by keeping only
the leading terms in p2&/s:

~m~ae = ~v*c&~e'a& = ~e'0&~a'e& = ~e'e'~e'v.

8
0 4~0'0' = a'0'~e*e* =

9

F (As)B / dssf f 9

x dp~B(zg, 7, t) A(z2)
0

(rabm44b
~ (

I

dP J ~ I~ I
&J J r

/z/Pl

Returning to the eigenvalue equations (48) and com-
bining them, one obtains

)(4;+ A+(s) y, + A (s) = 0,
which implies

(s) = —
—,
' F (s) + F (s) + -', ))[F„(s)—F (s)] + 4F,(s)F,(s)

(s) = —-' F (s) + F (s) ——,' )hF (s) —F (s)[ + 4 F (s) F (s) (59)

and, corresponding to these functions, the constraints
Q(z, t) = A'~

~

—
~

exp[A+(s) y(t)],

or

JV4) Fse (s)
IVY Fss(s) + A+(s)

~s Fs~(s)
JV~ Fss(s) + A (s)

for )M = —A+, (60)

for p, = —A . (61)

G(z, t) =
~

—
~ exp[A+(s) g(t)),JV~ Fs~(s) (11'

Fss(s) + &+(s) Ez)

Thus the solutions are given by Ol
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&(* t) =&
I

—
I

expI.~-( )x(t)1
&z)

&(z, t) = ' "
I

—
I

exp&-(s) ~(t)j
Nq Fsq(s) (1& '

Fss(s) + A (s) (z)

or by a linear combination of these two solutions. In
general one can write the solutions for the parton number
distributions p = Q/z = P,. (q, + q;) and g = G/z as

p(z, t)dz = a+ e"+(')~() + a e"-(')"()
&e+1 +

dz
g(z, t)dz = ++ +gq P+ { ) g(p)

+ p+

~-( ) x(&)

Figure 2 shows the behavior of the functions

Pqq p Pqg p Egq p Egg and Fig. 3 shows that of A+, A, and
the derivatives A+, A+ with respect to the variable s. The
three cases (a)—(c) correspond to different nuclear den-

sities of the medium as controlled by the nuclear mass
number entering the function hA, Eq. (52): (a) A = 0
(free space), (b) A = 50 (moderately dense medium), and

(65)

(c) A = 200 (dense medium). Evidently A+ vanishes at
s = so 1.0;1.1;1.2 for the cases (a), (b), (c), respec-
tively, and is positive for 8 ( 80, and negative for 8 ) s0.
From (64) it is obvious that the number distributions of
shower partons behave as dz/z'+, so that one can in-

terpret the region with s ( s0 as the developing stage
of the shower, with 8 = s0 representing the situation at
the shower maximum, and the region with 8 ) s0 as the
fading stage leading to the tail end of the shower. The
variable 8 therefore indicates the shower age at a given
value of z: in a "young" shower (s ( so) the number
of shower particles increases with age, while in an "old"
shower (s ) so), it decreases.

Solutions corresponding to a certain initial condition
are obtained by summing up these parton shower func-
tions with respect to the variable s, weighting them with
an appropriate amplitude. This procedure is known as
the Mellin transformation method. It has been applied
extensively to similar problems of electron-photon show-

ers in the early days of cosmic ray theory [31,32]. The
reason for introducing Mellin transforms of the parton
shower functions is that they are more easily determined
than the original functions. Let me denote by Mq (Mg)
the Mellin transform of the function p (g):

1

M, (s, t) = dzz' p(z, t)
0

1
M (s, t) = dz z' g(z, t),

0
then the inverse transformation is

2.5

I I I0 s»
I

i s

-2.5

2.5

S
FIG. 2. Form of the functions Fqq, Eqq, Fqq, Fqq, Eq. (49),

with respect to the variable s. The three plots (a)—(c) cor-
respond to diHerent nuclear density of the medium measured
in terms of nuclear mass number: (a) A = 0 (free space), (b)
A = 50 (moderately dense medium), and (c) A = 200 (dense
medium).

5 l I I I ~ I l k I t I I I

FIG. 3. Functional behavior of A+, A, Eq. (59), and of
the derivatives A+, A+ versus the variable s. The cases (a)—(c)
correspond to Fig. 2.
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p(z, t) =

g(x, t) =
+' M, (a, t)

27ri .-' x'ds

where s is now a complex parameter, and the path of
the integral is running parallel to the imaginary axis.
By analytic continuation of the shower functions (64) to
complex values of s, one obtains the solutions

C+COO

p(z, t) = a e~+( )&(~) + a e -( )&( )
s+1 +

C+ COO

g(z, t) = + gq A+ (e) y(t) + — gq A (s) g(t)

where a+ and a are functions of the complex parameter
s and are determined by the initial conditions imposed
on p and g.

I will now discuss the two cases of (1) a parton shower
initiated by a quark, and (2) a parton shower triggered
by a primary gluon. In accord with the physical pic-
ture that was outlined in Sec. II, the shower axis z
is defined along the momentum of the primary quark
or gluon, so that the incident parton has zero trans-
verse momentum. Since I consider here the longitudi-
nal evolution only, the time development of the parton
cascade proceeds by increasingly populating the region
with small values of z as the shower develops along the
shower axis which corresponds to growing values of s. Ac-
cording to Eq. (3), the initiating primary parton carries
a longitudinal momentum p, p ——xpP and has a initial
timelike virtuality Qp such that its energy is determined

by Ep = g(zpP)2+ Qp = zpP + Q2p/(2zpP), where

Qp « P is assumed.

Inserting this initial condition into (65), one has, at tp ——

0,

Mq(a, tp) = xp,
which means that

Ma(a, tp) = 0, (69)

C+COO,{*,~=o) = ~. (*—') —,

a+ +gq + a Igq

F„+A. F„+A-

If one introduces functions H+ and H through

(71)

g(z, t = 0) = 0 .

The parameters a+ and a are now completely deter-
mined by (68)—(70), together with (67):

ea++a =zo

X. Parton ehomer initiated by an incident quark a+ ——H+(a) xp a = H (a)xp, (72)

If one considers a parton shower initiated by a primary
quark, then the initial conditions at time t = to are

or

Ilaa(a) + A+(a)
Ai(a) —A (s)

Faa(s) + A (a)
A+ (a) —A (s)

g(x, tp) = 0 .

one can now express the solutions for the differential
spectra of secondary quarks and gluons produced by a
primary quark as

p(z, t)dx = . — ds
27ri X c—i~ X

(s) A+ {s)x(t) + H (s) eh (s) x(t)

C+lOO

(z t)dz da ( ) A+(s) x(t) eA (s) y(t)
2vri x, ; x ~g

where

L( )
~&Pa~(s)

A+(s) —A (s)

(74)

(75)

Correspondingly, one can evaluate the integral spectre of secondary quarks and gluons, that is, the integrated number
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densities of partons with longitudinal moment»m &actions greater than a given value x:
Xo C+'LOO sI (x, t) = dh'q(h', p2, t) = —— H (s) e"+ ' x' + H (s) e"- ' ~'

27ri c—i~ s

z' 1 c+~oo d s.(*)= *'(' ' )=
I

—' ()2+i; s3/'2 ~ x (76)

K Par ten shamed initiated by an incident glean

If one considers instead of a primary quark an incident gluon, the initial conditions are

p(z, tp) = 0, (77)

and the procedure is completely analogous. In this case one has instead of (74) for the differential spectra:

1 d c+aoo

P(h, t)dk =
27ri x ~J( )

~+(~) &(~) ~—(~) x(~)
z

1 d~ + ~ l s
g(x, t)dx = . — ds

27ri z c—i~ z

where

J( )
1 Ew(s)

+s A+ (s) —A (s)

( )
A+(s) x(t) + H ( )

A (s) x(g) (78)

(79)

For the integral spectra one has, instead of (76),

I (z, t) = J(s) e~+(~) x(~) e~-(~) x(&)
2+i . , +s z

I (x, t) = —— H (s) e"+(') &(~) + H (s) &-( )x(&)
2

(80)

8. Saddle point evaluation of the parton spectra

C+ COO

F(z, t) =
2~i .—,

C+t,OO

27 i

7i(s) e~+(~) x(~)
x )

ds 'R(s) exp[A+ (s) y + ys —k ln s],

(81)

The integrals F = p, g, Iq, I& can be evaluated by
numerical computation of the contour integral in the s
plane, but alternatively one can also obtain analytical
forms by employing the saddle point method, which I will
outline now. First note that Fig. 3 exhibits the fact that
A+ ) A for all values of s, so that one can neglect the
second term in these integrals (oc exp[A y]) compared
to the first term (oc exp[A+ g]). Therefore, dropping the
second term, the typical structure of the integrals is of
the form

can be read off the formulas of Secs. III C 1 and III C 2.
Now, the functions 'R are slowly varying with s, so that
the integrand in (81) is a product of a function 'R with
a weak s dependence times an exponential of the form
exp[/(s)], where

(])(s) = A+(s) y + ys —k ln s . (82)

If BP/Bs = 0 and B P/Bs ) 0, at some point s = s,
then the integrand in (81) may be approximated by a
Gaussian function on the path parallel to the imaginary
axis crossing the real axis at s = s, with the slowly
varying functions 'R(s) treated as constants and evalu-
ated at s. Thus, by expanding P(s) around s = s where
dPjds = 0, one can evaluate the integrals by the saddle
point method (see e.g. [31]),

F]z, t) =
]

2z
] {—] exp]2+(2)2]

B$ l ~ hp)'
Bs, ep x i

where the symbol 'R under the integral stands for the
functions H+, H, L, J, the variable y = ln(xp jx), and
the values of the power k are -1/2, 0, 1/2, 1, or 3/2, as with the saddle point s de6ned by the equation

(83)
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= A+(a)t+y —— = 0,
BS s (84)

which establishes a correlation between y = ln(xp/x)
and y, i.e. between the momentum distribution and

I

the time evolution variable y. Applying this formalism,
one obtains the following results for the parton spectra
F = (p, g, Iq, Ia (dropping the bar on the s, i.e. a:—s is
the saddle point):

(1) For a primary quark of longitudinal momentum
&action x0,

1
p(z, t) dx =

27r

1
g(x, t) dx =

27r

Iq(z, t) = 1

27r a

I,(z, t) = 1

27I' a

y(t) = —, )n( —)A+(a) x 2s

x(&) = —, ( (*—') ——,
A+(a) z s

I

x(&) = —, ) (*—') ——
A+(s) z 2a

QA+(s) y
L(a) rzp ' dz „(,)~

a QA+(s) g + 1/(2a2)

II+(a) *p ' )„(.) „
QAI+I(a) y + 1/s2

L(a) A+(s) g

QA+(a) y + 3/(2a )
(85)

(p(z, t) dx = a J(s) +0 s 6]2
~ +(8) X

2x gA'+'(s) y —1/(2a2) z z

1 II (a) rxp 'dz ), ()
/2n gA" (s) y & * x(t) =—

(2) For a primary gluon of longitudinal momentum fraction zp,

y(k) = —, ln( —
) +

A+ (s) z 2a

, (.) '-(—*:)

/2m a gA+'(s) y + 1/(2s')
~—(s) zp A+ (s) ~

V'2+a' QAI+I(a) y + 1/a'

1 (*) 1

A+(a) x 2a

,(~) = —,' (.(*—') — -'

A+(s) z s
(86)

Recall that the time evolution variable y(t), defined in

(45), relates these spectra to real time t via Eq. (46),
so that t can be resubstituted if desired, provided v in

(42) is known. I would like to remind the reader that one
of the advantages for using g, Eq. (45), as the evolu-
tion variable rather than the laboratory time t, was to
absorb the nuclear medium dependence and thereby ob-
tain a relatively model-independent description. Thus,
notwithstanding the uncertainty of medium effects, the
properties of the parton shower evolution are esseatially
controlled by perturbative /CD, but the connection to
real time resides in the relation (46). From this point
of view, the parton spectra (85) and (86) represent the
elementary solutions to the evolution equation (43) un-
der the approximations made in Sec. IIIA aad sum-
marize the loagitudinal parton cascade evolution in nu-
clear matter within the present kamework. It is evident
that the variation of the n»mber of shower particles with
time follows an exponential law with exponent A+ (a)y(t)
with the (implicitly medium-dependent) "absorption co-
efficient" (—A+) describing the variation with time and
the power (—s) controlling the momentum distribution

19—G = —I'gg G, Fss(s) =—2' = —A+(s)

where C~ ——n as before. Then the saddle point evalua-
tion yields (setting xp = 1)

1

1n xp x.
It is worth noting that the distributions p and g re-

duce to the well known approximate solutions to the
Q2 evolution according to the DGLAP equations [18], if
one sets the nuclear matter density equal to zero. Then
r = v t = t or v = 1, because ia the abseace of scatter-
ing and fusion processes the particles can only evolve by
successive branchiags with the age 7 being equal to labo-
ratory time t. The connection between time and Q2 evo-
lution, as discussed ia Sec. II A, is given by the average
relation (9), Q2 = zP/t. Then, considering the evolution
of the gluon distribution alone, at small z the behavior
is controlled by the branching kernel Fsa(a) = C(a) near
a = 0 [cf. Eq. (50)]. Hence, taking only the dominant
term in F~~ into account, one has

2 - 1/4
m ~~ ln '((~~, ))ln(l/x)

g(x, t) dx = 4 n, ('n, (Q') ) dz
exp ——' ln

i

'
i

ln(l/x)
7r 6 (, n, (Qp2)y x

(88)
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where the time variable X, when reexpressed in terms of
Q2 rather than t, is given by

1 (o., (Q2) ) 1 (in(Q'/A') l
27rb (n, (Qo2)) 2mb (ln(Q2/A2)) '

(89)

with Qo2 = P/to and Q = zP/t (t & to). Equation
(88) together with (89) coincides with leading logarithmic
behavior of the gluon distribution within the LLA [18].

Let me return now to the parton spectra (85) and (86),
and by example exhibit some characteristic features of
the longitudinal parton shower evolution in nuclear mat-
ter, as refiected by the y, x and nuclear (A) dependence
of the spectra. In what follows I chose the virtuality of
the cascade initiating parton Qo ——30 GeV. An increase
(decrease) of Qo generally results in a larger (smaller)
overall multiplicity of secondaries and also shifts the evo-
lution toward earlier (later) times. The initial longitu-
dinal momentum &action was set to xo ——1, since the
shower development depends only on the ratio zo/z. Fi-
nally the /CD scale A that enters the running coupling
n, was taken equal to 230 MeV. In order to exhibit the
nuclear medium in6uence on the shower development, as
controlled by Eq. (52), I considered as before the three
cases: (a) A = 0 (absence of medium), (b) A = 50 (mod-
erately dense medium), and (c) A = 200 (dense medium).

In Figs. 4 and 5 the parton number densities p(z, t)
and g(z, t) from (85) and (86), respectively, are plotted
for z = 10 and x = 10 s versus y (it is helpful to keep
in mind that for slowly varying a„one has approximately
y oc lnt). The essential observations are basically the
same for both quark and gluon initiated showers.

(i) For a given value of the ratio z, the change with
"time" X of the spectra p and g reBects the aging of
the shower. The multiplicity initially increases (young
shower), goes through a peak (shower maximum), and
then decreases again (old shower). The time it takes for a
parton shower to evolve &om xo ——1 downwards to some
value x naturally increases with decreasing x and at the
same time the average multiplicity of produced particles
grows rapidly. (The integral spectra Iq and Ig, which are
not shown here, exhibit an analogous behavior. )

(ii) Comparing the cases (a) through (c), the infiu-
ence of the nuclear medium manifests itself in a slowing
down of the shower development, particularly at later
times (g & 2). In other words, the denser the medium,
the more delayed is the aging of the cascading partons.
Related to that is the clear increase of the parton multi-
plicity at a given x with larger nuclear density, because
repeated energy-momentum transfers by scatterings and
fusions rejuvenate the shower partons and amplify the
bremsstrahlung processes.

In order to exhibit the x dependence of the parton
spectra at fixed value of X let me define the so-called
normal spectra [31]at the shower maximum. The normal
spectra correspond to an optimum value X = Xo, which
coincides with the value of X that makes the function
exp[/(s)] of Eq. (82) a maximum, because the other
terms change slowly with X. Thus, Xo is defined by the
equation
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FIG. 4. Primary quark: Time-evolution of the differential
spectra for the parton number densities p(z, t) and g(z, t)
with respect to the variable g(t), according to (85), at fixed
values z = 10 and z = 10 . The virtuality of the cascade
initiating quark was chosen Qo = 30 GeV. Cases (a)—(c) as in

Fig. 2.

or

|9
t9X

exp[/(s)] = 0 at X Xo (90)

=0.

Recalling that Eq. (84) is satisfied, one has

(91)

Hence, at s = so,

y —k

A+ (sp)

at X Xo

xoi
ln —

I

—k
W' (s,)

(92)

The normal spectra of p, p, Iq, Ig and the corresponding
optimum values yo are easily obtained from Eqs. (85)
and (86) by putting s = so, A+ ——0, and y = yo. The
values of so, given by A+(so) = 0, and of A+(so) can be
read ofF Fig. 2.

The top part of Fig. 6 displays the typical shape of the
normal spectrum around shower maximum, correspond-
ing to s = so and X = Xo. It is interesting that, when
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FIG. 5. Primary gluon: Development with time y(t) of
the parton number densities p(z, t) snd g(z, t) for the case
of s shower initiating gluon, Eq. (86), with initial virtuality
Qo = 30 GeV snd at Sxed values z = 10 ' snd z = 10
Cases s)-c) ss in Fig. 2.

plotted as a normalized probability distribution p(yo),
this normal spectrum is unique. First, it is the same for
quarks and gluons; second, it is indepen. dent of the type
of primary particle; and, third, it does not depend on
the nuclear medinm density. On the other hand, the cor-
responding optimum values yo vary signi6cantly for the
difFerent cases, as is evident from the lower part of Fig.
6, which shows yo versus z for the three aforementioned
cases, (a) A = 0, (b) A = 50, and (c) A = 200. This
behavior is to be expected, since yo marks the charac-
teristic time that it takes for the parton shower to build
up the normal spectrum. Looking at Fig. 6, one can
conclude the following.

(i) With decreasing z the values of yo increase, roughly
as ln(1/z). The slope is the same for both quarks and
gluons, but y~o is always smaller than yo, re8ecting the
fact that the gluons evolve faster due to their larger in-
teraction and radiation probability.

(ii) The efFect of the nuclear medium is again a sub-
stantial dilation of the shower development, and thus to-
ward the establishment of the normal spectrum. This is
clearly re6ected by the steepening of the slope of the time
scale yo when proceeding from the &ee space case (a) to
the dense matter case (c).

FIG. 6. Top: Unique shape of the normal 8pectrum
around shower maximum in terms of the normalized probabil-

ity distribution p(go) = a(z, Zo)/ 1 dza(z, Zo) where a = p, g.
Middle and bottom: The optimum values yo for gluons and
qusrks vs z, corresponding to the point of time y(t) when

the normal spectrum at a certain value of z is established.
The three sets of curves (s) snd (c) refer to different nuclear

density, as in Fig. 2. The virtuality of the primary quark,
respectively gluon, wss chosen Qo ——30 GeV.

IV. SUMMARY

In this paper I presented an analytical method to solve
the /CD evolution equations derived in Ref. [I] which
describe the cascading of quarks and gluons in a nuclear
environment. These evolution equations extend the well

known DGLAP equations for jet development in hard
/CD processes to the time evolution of parton cascades
in a nuclear medium, including fusion, scattering, and
stimulated branching processes in addition to sponta-
neous branchings. In order to obtain tractable closed
solutions to the evolution equations, a number of ideal-
izing approximations were necessary. Therefore, at this
point, this approach does not of course provide quanti-
tative predictions of parton transport phenomena in a
dense matter enviro~~ent. The main uncertainty is here
the lack of detailed knowledge of the form of the medi»~
inBuence on the cascade evolution. Since &equency and
type of interactions of the partons with the medium must
depend crucially on the nuclear density and structure,
one must supply some external input. In order to mini-
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mize the amount of phenomenological input, the medium
inBuence was therefore hidden into a time evolution vari-
able y(t), the relation of which with the laboratory time
t, however, is determined by the specific properties of
the nuclear medium. One benefits in that the calculated
properties and spectra of the cascading partons are a
rather firm consequence of perturbative /CD proceses
in a nuclear medium being characterized by a specific
time variable y.

Of prime interest in this work was the multiplicative
behavior of cascading partons at small x, since such soft
particles each take away only a negligable portion of the
total energy, but forxn at the saxne time the bulk of mul-

tiplicity. The characteristic properties of parton shower
evolution inside nuclear matter with respect to the vari-
ables time (g), longitudinal momentum fraction (x), and
nuclear density (A) can be summarized as follows

(I) With respect to the rate of time change at fixed
value of x, a typical parton shower can be divided roughly
in three stages: (i) young shower: during the early stage
the shower particles rapidly multiply due to branching
processes (mainly gluon emission); (ii) shower maximum:
for a short time the number of particles in the cascade
remains almost constant; (iii) old shower: the increasing
dissipation of energy due to branchings as well as a grow-
ing number of fusion and scattering processes reduce the
number of shower particles at given x during later times.

(2) The mean of the x distribution of shower partons
shifts with progressing time to smaller values of x, but
this developxnent is significantly delayed in a dense mat-
ter environment as compared to &ee space. The x spectra
exhibit a unique forxn around the shower maxixnum, in-
dependent of type of parton and of the nuclear density.
This normal spectrum is established after a certain op-
timum time y = yo, which measures the characteristic
time scale that depends on the density of the surrounding
medium: the denser the matter, the longer it takes for the
partons to build up to their normal spectrum. Also, glu-
ons always reach this point earlier than quarks, because
of their larger cross section and radiation probability.

As said before, the approach presented here has no
truly predictive relevance for experimental observables
yet. Rather, it may be a first step towards a more funda-
mental understanding of "/CD in medium, " using well-

developed methods of renormalization-group improved
perturbation theory for "/CD in vacuum. " I believe that
the most important issues to be addressed in the near fu-
ture within such a program are the following.

(1) The rigorous distinction between the shower parti-
cles and the nuclear partons needs to be dropped. Instead

both should be treated on the same footing in order to
describe a self-consistent dynamical multiparton systexn.
This would then incorporate also tixne- and x-dependent
nuclear parton distributions that receive modifications
due to the response of the shower evolution. An interest-
ing aspect of such a dynamical interplay between scat-
terings, multiplication and recombination of partons is
the question of a possible saturation [33] of the parton
number densities that may render a finite parton density
as x~0.

(2) In the context of nuclear structure, the relevance
and the form of the age distribution A of virtual shower
partons needs to be studied, because it provides an in-
terface between the nuclear medium and the response of
the cascading partons to this environment. Therefore A
may be experimentally accessible by comparing inclusive
quantities associated with parton evolution in, e.g. , deep
inelastic scattering experiments on hadrons versus heavy
nuclei. This issue is of great interest &om both theoreti-
cal as well as experimental sides.

(3) Interference efFects which are important particu-
larly in the small-x domain need to be taken into account
systematically. These include two well known phenom-
ena, namely, (a) the coherence of successive soft gluon
emissions in the parton cascade leading to destructive in-
terference and a suppression of gluon radiation, and (b)
the Landau-Pomerantchuk-Migdal eKect, i.e., the inter-
ference of induced gluon emission amplitudes in multiple
parton collisions, which also causes a depletion in the
gluon radiation spectrum.

(4) A possible extension to include the time develop-
ment of the transverse momentuxn distribution of partons
as well as the lateral spread of shower particles would
be desirable. This would then provide a solution to the
cascade development in full four-dimensional momentum
space, in virtuality Q, longitudinal, and transverse mo-
mentum components x and k&2, respectively.

(5) Parallel to the previous items, a comparison with
a full six-dimensional phase-space analysis (as is possi-
ble with Monte Carlo simulations [3], for example) is of
great ixnportance to test the accuracy of the analytical
solutions. Such a twofold investigation can be explorative
for both analytical and numerical solutions of the evolu-
tion equations, in the sense that mutual feedback may
lead to an ixnproved understanding of the xnicroscopic
parton dynamics in nuclear matter.
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