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Phenomenology of a nonstandard Higgs boson in Wj;W~ scattering
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In this paper we consider the phenomenology of a nonstandard Higgs boson in longitudinal
gauge boson scattering .First, we present a composite Higgs model [based on an SU(4)/Sp(4)
chiral-symmetry breaking pattern] in which there is a nonstandard Higgs boson. Then we explore,
in a model-independent way, the phenomenology of such a nonstandard Higgs boson by calculating
the leading one-loop logarithmic corrections to longitudinal gauge boson scattering. This calculation
is done using the equivalence theorem and the Higgs boson is treated as a scalar-isoscalar resonance
coupled to the Goldstone bosons of the SU(2)r, xSU(2)R/SU(2)v chiral symmetry breaking. We
show that the most important deviation from the one-Higgs-doublet standard model is parametrimed

by one unknown coeRcient which is related to the Higgs-boson width. The implications for future
hadron colliders are discussed.

PACS number(s): 14.80.Cp, 12.60.Fr, 12.60.Rc, 13.85.gk

I. INTRODUCTION

Although it is well established that the electroweak
interactions are described by a spontaneously broken
SU(2)xU(1) gauge theory, the underlying physics of
the symmetry breaking is still elusive. In the min-
imal (one-Higgs-doublet) standard model (SM), elec-
troweak symmetry breaking is assumed to be due to an
SU(2)L, xSU(2)~ Gell-Mann —Levy linear 0 model. In the
broken phase this theory has a neutral scalar particle,
the Higgs boson (H), which, along with the isotriplet
(ur ) of Goldstone bosons of the spontaneously broken
SU(2)gxSU(2)R symmetry (which becoxne the longitu-
dinal components of the W+ and Z) completes a com-
plex scalar doublet. The 0-model dynamics provide the
Higgs boson a mass which is proportional to the quartic
self-coupling A, and is unconstrained by any symmetry.
If the Higgs boson is heavy, the model becomes strongly
coupled, and perturbation theory breaks down [1,2].

However, there are good reasons to believe that no
scalar Geld theory can be fundamental. First, scalar Geld
theories are "unnatural" [3]: since no (ordinary) symrne-

try protects scalar masses, theories without supersymme-
try require a large amount of fine tuning to maintain a
hierarchy between the weak scale and any higher scale in
the theory. There is, however, a strong restriction on such
theories coming Rom the analysis of their short-distance
behavior. Consideration of the dynamics seems to sug-
gest that scalar field theories are trivial in the continuum
limit [4,5]: for a physically meaningful bare coupling (As)
the renormalized coupling (AR) is forced to be zero in the
limit that the cutofF (A) is sent to infinity. As the cutoff
decreases, the upper bound on A~, and, consequently, on
the Higgs-boson mass mH ——2%~v, increases. Of course,

in order that the theory makes sense, m~ must be less
than A. This sets a maximum upper bound, which is
estimated to be roughly 600—800 GeV, if A is of order a
few TeV [6]. This suggests that the standard model can
only be viewed as low-energy efFective theory below some
scale A where additional new physics enters.

Physically, it is more relevant to interpret the triv-
iality bound by turning the argument around: if the
electroweak symmetry breaking (EWSB) sector involves
a heavy (iso)scalar resonance that couples to the elec-
troweak gauge bosons, then one should expect that is
has properties rather difFer &om those of the SM Higgs
boson and that these deviations become larger as the
mass of this putative Higgs boson grows. Such a particle
we generically call a "nonstandard Higgs boson. " With
luck, the physics of symmetry breaking will be directly
probed [7] in the next generation of high-energy colliders

[e.g. , the CERN Large Hadron Collider (LHC)], perhaps
through longitudinal gauge boson scattering [8].

In this paper we will compute the leading one-loop
corrections to longitudinal gauge boson scattering in a
theory with a nonstandard Higgs boson. At sufficiently

high energy, using the equivalence theorem [2,9,10], the
(strong) scattering amplitudes of the Goldstone bosons
which would be present in the absence of the electroweak
gauge symmetry are approximately the same as those of
the longitudinal electroweak gauge bosons. The inter-
actions of Goldstone bosons are conveniently described
in the language of chiral Lagrangians [11—13]. To low-

est order in moment»m, the most general efFective the-
ory that contains an isoscalar "Higgs" boson and the
isotriplet of Goldstone bosons of the spontaneously bro-
ken SU(2)l, xSU(2)R symmetry (at energies below the
cutofF scale A) [11,14] is
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where (, f', and ("are unknown coefficients, v=246 GeV,
and U contains the Goldstone bosons m

U=. p~
'

~, T(. ')=2b',

where a the Pauli matrices and Elr the Lagrangian for
the isoscalar

gxr = (8 H— ) — H — H — H—1 2 m q A3v 3 A4 4
P 2 4l

Here SUL, (2) corresponds to SU(2),~, while the 7s com-
ponent of the custodial SU(2)n corresponds to hyper-
charge. In addition, for simplicity, we have included only
the leading nonderivative terms in the scalar potential
(which are the only ones relevant for this investigation).
The ordinary linear 0 model corresponds to the limit

and

Sm'
A3, A4 ——

v2 (5)

II. THE SU(4)/Sp(4) MODEL

In this section we shall describe an explicit model
which contains a nonstandard Higgs boson. We focus
here only on the phenomenology of the longitudinal gauge
boson scattering. The ordinary fermions will not enter
our analysis and, therefore, we neglect the issue of ordi-
nary ferxnion mass generation (though it is straightfor-
ward to extend the model to generate fermion masses).

The model ass»~es the existence of a new strong and
confining "ultracolor" interaction based on the gauge

In the next section, we will illustrate the possibility of
a nonstandard Higgs boson by constructing a composite
Higgs model of the Georgi-Kaplan type [15,16] based on
an SU(4)/Sp(4) symmetry breaking pattern. Here the
compositeness scale will be identified with the cutofF A

of the composite Higgs efFective theory. In the limit that
A -+ oo, any composite Higgs model reduces to the stan-
dard model. However, if the Higgs boson is heavy, new
physics must enter at a scalar of the order of a few TeV,
and deviations from the standard model may be large
[14]. For this example, we derive the relationship be-
tween the parameters of the composite Higgs theory and
the parameters in the Lagrangian Eq. (1) above.

In Sec. III, we present the calculation of the one-loop
corrections to longitudinal gauge boson scattering in a
model-independent manner by starting &om the general
efFective theory of Eq. (1). Section III elaborates on the
results presented in [14]. Sections II and III are essen-
tially independent of one another.

Section IV contains our conclusions. Finally, Appendix
A contains an explicit form of the Lagrangian for the
SU(4) jSp(4) model, Appendix B contains the Feynman
rules for the Lagrangian (1), and Appendix C the analyt-
ical expressions for the one-loop integrals used in Sec. III.

1/~ 0) Y 1/0 01
p p I' 210 (6)

where a are the Pauli matrices and as usual the electro-
magnetic charge is generated by Q = Ss + Y.

When the ultracolor interactions G, become strong, at
the "chiral symmetry breaking" scale A (which will be on
the order of a TeV or higher), a condensate is produced,

(gg )=Af b, ,

where T denotes the transpose in ultracolor space, f is
the "f constant" for ultracolor chiral symmetry breaking
(the analog of f =93 MeV in /CD), and b, is a unitary
matrix in Bavor space that characterizes the vacuuxn ori-
entation. The rules of "naive dimensional analysis" [12]
imply that A must be less than or of order 4m f

By making a G transformation, 4 can be brought to
the form

0 r2) (8)

The condensate (7) spontaneously breaks the chiral sym-
metry G down to the subgroup H=Sp(4) [18—20], pro-
ducing five Goldstone bosons (which would be mass-
less in the absence of electroweak gauge interactions,
and the Yukawa couplings and fermion mass terms de-
scribed below). Notice that SU(2) xv x U(1)x is contained
in H=Sp(4) and thus is not broken at the scale A by the
ultrafermion condensate. Furtherxnore, electroweak ra-
diative corrections will not induce such a breaking [18].
As we show in the Sec. IIA, the Yukawa couplings to
the fundamental scalar will be responsible for misalign-
ing the vacu»~ slightly and driving electroweak symme-
try breaking.

The ten unbroken Sp(4) generators N' and the broken
ones rY satisfy the relationsi

The Brst relation follows from the deSnition of the Sp(4)
algebra.

group G„four new left-handed xdtrafennioxxs transform-
ing in a pseudoreal representation of G (recall that there
must be an even number of fermions in order to avoid the
Witten anomaly [17]),and a fundamental scalar doublet.
The presence of a fundamental scalar doublet is some-
what unsatisfactory. However, as we will see, the mass
of the nonstandard Higgs boson in this xnodel can be as
large as 700 GeV without the self-interactions of the fun-
damental scalar doublet being particularly strong: in this
sense the theory is le88 trivial than the usual fundamental
scalar-doublet standard xnodel with a heavy Higgs boson.

In the limit that the ultraferxnions are massless and the
limit of vanishing Yukawa coupling between the ferxnions
and the fundamental scalar, the global chiral symxnetry of
the ultrafermions is G=SU(4). These fermions have elec-
troweak quantum nuxnbers: one SU(2)xxr doublet with
hypercharge Y=p and two SU(2) w singlets with Y' = 6 2i.

The explicit form of the SU(2)xv xU(1)y generators em-
bedded in the aavor group G is given by
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The broken generators L, conveniently normalized as
Tr(Z Zs) = zb, are given by

(0 I) T 1 (0
I p I T=2~2l ~ 0

4 = ox+i' T

that has the quantum numbers of the usual Higgs dou-
blet, and a (1,1), the a, that appears as an electroweak
singlet. For convenience we will denote the complex dou-
blet of fundamental scalars 4', which also transforms un-
der SU(2)L, xSU(2)R as (2, 2), by

Cs' = O'X + iver' T . (12)

(I
2+2 II p

The algebra of Sp(4) is isomorphic to that of SO(5),
which contains an SO(4) SU(2) x SU(2) subgroup given
by Eq. (6), with Y being the third component of the cus-
todial SU(2) symmetry. Thus the five Goldstone bosons
II = (0, 2r, a), a = 1, . . . ,5, fall into a representation
which decomposes under SU(2) xSU(2) as the sum of a
(2, 2)

M@Tb,vP. In the low-energy theory M2 = pM, where p
is a dimensionful constant of order A.

The interactions of the fundamental scalar 4' are de-
scribed by the usual P Lagrangian, given by

(
Ey = Tr(D„4"tD"4') —A Tr(4"t4") + . (17)

2A)

Here m& ) 0, so that the electroweak symmetry is not
broken through the interactions in Eq. (17) alone.

Finally, 4' and II mix through Yukawa couplings of 4'
with the ultrafermions Q'. Above the chiral symmetry
breaking scale A this interaction is of the form iyQ 64 'g
plus H.C. In the efFective theory, to lowest order in y, it
becomes an interaction between 4' and II given by

Tr4' (Zt —Z)
iyvf'

2

Notice that in Eq. (18) we have included only pseu-
doscalar couplings. In principle we could also have scalar
couplings, but for the vacuum to align so as to break
the electroweak symmetry it is essential that there are
nonzero pseudoscalar couplings. The addition of scalar
couplings of the fundamental doublet would not qualita-
tively change the analysis.

Now we can gather all the pieces together to write
the Lagrangian Z,p of the SU(4)/Sp(4) model for scales
below A. To lowest order in momentum and the other
symmetry breaking terms (M and y), it is given by

Below the chiral symmetry breaking scale A, the dy-
namics of the Goldstone bosons can be described by an
efFective chiral Lagrangian, in analogy with /CD [11—13].
Using a nonlinear realization, the II are incorporated
into the field (

l'.,g ——Z,g+ Zp+ ZY„g .

A. Vacuum alignment

(19)

(ill.x.)(=exp
~

~, (-+('=g(ht,

where g g G, 6 E B. As usual, it is more convenient to
define the field Z = (2, which transforms linearly under
II. By using Eq. (9) and noting that $ = (b,(Tb, , it is
easy to show that Z transforms under G like

Let us now examine the ground state of the Lagrangian
in Eq. (19). Since we do not want to break electromag-
netism, we search for a minimum of the potential of our
effective theory with expectation values only for the two
isosinglets (n, a'). (All other vacua which preserve elec-
tromagnetism are equivalent to these up to a chiral ro-
tation. ) Setting 2r = m' = a=p, the potential is given

ZmgZgt, gEH

Z m gZg, g E G/H .

f2 M2 f2
Tr(D„ZtD"Z)+— Tr(Z+ Zt) (15)

The interactions of the II with the SU(2) yv x U(1)y gauge
bosons are described to lowest order in momentum by a
gauged G/H nonlinear o. xnodel

V(cr, o') = cr' + —0' —4M f cos
~4 &~~f)

( o.
V2pf ysr'—sin

~ 2f)
(20)

The conditions OV/Do=0 and BV/I9a'=0, which deter-
mine the extrema, always have the trivial solution o =
o'=0, for arbitrary values of the couplings. However, a
solution exists for nonzero values of o and o' if

with the covariant derivative de6ned as

D„Z= B„Z+ig[S, Z] W'„+ig'(Y,Z]8„. (16)
&1, m@&0yfw

2Mmp
(21)

In the second term in Eq. (15) we have assumed that
the II have a mass due to a G, and SU(2)ivxU(l)y.
invariant mass term for the ultrafermions. In the fun-
damental theory, this fermion mass term is of the form

and this solution has lower energy than o = o'=0. That
is, for y ) y = ~2Mm~/y f the vacuum becomes unsta-
ble, giving vacuum expectation values (VEV's) to both o.

and o', and thereby breaking SU(2)ivxU(l)y. One com-
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0
v = 2f sin + (0')2, (22)

where v=246 GeV.
It is convenient to recast our description in the more fa-

miliar notation of the two-Higgs-doublet model by defi-
nin

42f sin = v cosa,(~)
2f
o' = v sino. .

In order to identify the mass eigenstate fields, we per-
form a field redefinition in l:,g and rewrite Z and 4' as

z = utz, u, c' = vtc', v (24)

bination of the 2r and 2r' becomes the longitudinal com-
ponents of W+ and Z, while the orthogonal combinations
remain in the spectrum as a degenerate (due to isospin)
pseudoscalar isotroplet. Expanding Eqs. (15),(17) and
requiring that the W and Z masses be correct, we obtain

The eigenstates of this symmetric matrix correspond to
the isosinglet mass eigenstates II, h and are found by
performing a rotation on 0 and cr',

&Hl f cosP sinP'l & o l
&
" ) &-" ~ "'~) &

') (30)

The expressions for the masses m, mg of H and h, re-
spectively, as well as the angle P are not particularly il-

luminating except in some limiting cases that we discuss
below.

Two ranges of the parameters are of particular interest:
(i) Having f » v and slnall Yukawa coupling and (ii)
having f of O(v) and Yukawa coupling y 1. In the
first case, by taking the scale f » v we find that a —P
O(v2/f~) The. masses of the heavy Higgs boson h, the
massive isotriplet p, and the singlet a, grow with f, with
the h and p becoming degenerate. All of these states
decouple &om light states H, m in the usual sense of
Appelquist and Carazzone [22]. On the other hand, the
mass of the "light" Higgs boson, m, does not grow with

f Settin. g p —42r f, in the f + oo limit m tends to

where m2 m 2(%sin a+ 2rysinacos a)v (31)

and

f 2iS n ) t'2iS
=exp/ [, =exp/

( v cosa ) ( v sllla (25) In this limits the SU(4) jSp(4) model reduces exactly to
the standard model in the spontaneously broken phase
written in "polar" coordinates

(22X
Zp ——exp

~
(0+ (o)) ~Ef

40 = (cr'+ (o'))X,
(20)

(vr) ( cosa sina) (2r )
p (27)

The vr correspond to the exact Goldstone bosons that are
"eaten" by the longitudinal states of W~, while p remains
in the spectrum as a degenerate massive isotriplet.

The 2x 2 mass-squared matrix for the two neutral (iso-
singlet) scalar states o and cr', defined by

82V

BcJgBcT~
(28)

is obtained from Eq. (20) by using Eqs. (22) and (23).
Its explicit form is given by

tano. s~cos~a
2f~

+ 2%v sin a
tana yfp

(29)

where for simplicity ~ and o' denote now the shifted
fields. This Seld redefinition leaves all S-matrix elements
invariant [21], and the resulting Lagrangian obtained af-
ter some straightforward but tedious algebra is provided
in Eq. (A2) in Appendix A.

It is now straightforward to identify the mass eigen-
states vr and p as those obtained from 2r and 2r' by mak-
ing a rotation by a,

t2W Tn+ v + i~ ~ —= (H + v) exp

with the value of the A4,4 coupling renormalized at scale
A equal to Asin~a + 2rysinacossa.

Case (ii), where f O(v), however, is more interesting
since it is the regime where the "light" scalar Higgs is
entirely "nonstandard. " In order to give an idea of this
regime, we take as reference the values

f =180GeV, A=1, a=30', y=35.
For these values the mass spectrum is

(32)

m = 718 GeV, mg ——1675 GeV, mp: 1814 GeV,
(33)

m = 907 GeV, P = 21.5', A = 42rf 2.2 TeV .

In the literature of the thoro-Higgs-doublet models the angles
a aud P are sometimes defined the other way around, namely,
a rotating the isosinglet states and P rotating the isotriplets.

Of course this limit requires a large amount of Sne tuning
in order to maintain the hierarchy between f aud v.

As advertised, the Higgs mass is of order 700 GeV with-
out the self-coupling of the fundamental scalar being par-
ticularly large. The Lagrangian Eq. (19) does include

only the lowest order terms in the eftective chiral theory.
However, using the rules of dimensional analysis [12] we

see that, for the values chosen in Eq. (32), the higher
order terms should not significantly change the vacuum
structure of the theory [15].
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For generic values of the par~~eters this model has a
mass gap between the lowest lying states II, m and the
other heavy particles h, p, a. Hence it is reasonable to
focus on the interactions of the light scalars. "Integrat-
ing out" the heavy states, the SU(4)/Sp(4) theory has
precisely the form proposed in Eq. (1), in terms of a sin-
gle isoscalar resonance with the values of (,(', (",A3 A4

given as a functions of f, A, n, y in Appendix A. Generi-
cally we have

(34)

and

3m' f v' 'i
As, A4 ——

2 +0
v ( )

(35)

In particular, for the reference values in Eq. (32)

( = 0.62, (' = —0.21, ("= 0.71,

A3 —18.26, A4 ——4.79
(36)

III. LONGITUDINAL GAUGE BOSON
SCATTERING

Using the equivalence theorem [2,9,10], high-energy
S'I,S'L, scattering amplitudes in the full gauge theory can
be reliably computed purely in the scalar sector by re-
placing the longitudinal components of the gauge bosons
with the corresponding Goldstone boson. In this sec-
tion, we will analyze the Lagrangian in Eq. (1) which
describes, to lowest order in momentum, the most gen-
eral theory with a massive scalar-isoscalar resonance cou-
pled to the isotriplet of exact Goldstone bosons of the
SU(2)L, xSU(2)R symmetry spontaneously broken down
to SU(2) L,+R. In particular, we explore the consequences
of such a "nonstandard Higgs" boson for longitudinal
gauge boson scattering. The discussion given here com-
pletes the analysis begun in Ref. [14].

Chiral perturbation theory [12,13,23] has been used
extensively to study the phenomenology of gauge boson
scattering, but generally under the assumption that the
only strongly interacting degrees of freedom lighter than
a TeV were the longitudinal gauge bosons themselves
[25—27]. If there were a Higgs boson as heavy as a TeV,
then for energies lower than that it would be sufEcient to

The relatively light o in Eq. (33) does not survive when
other sy~~etry breaking terms are included or for larger val-
ues of f Furthermore. , the o does not appear as an s-channel
pole in WR scattering and the fact that it is relatively light
would not afFect the discussion in the next section.

An interesting alternative that includes potentially light
scalars is technicolor models with additional fundamental
scalars [24]. However, in contrast to the SU(4)/Sp(4) model
presented above, these do not reduce to the standard model

by taking any particular limit.

"integrate out" the Higgs and estimate its effects at lower
energies on the processes involving only W+, Z [27,28].
However, here the Higgs resonance is light enough com-
pared to the cutofF A or the other heavy resonances in
the model, so we must include it explicitly in the effective
Lagrangian. Note that, in this limit, the theory is very
difFerent than QCD, in which there is no significant mass

gap between the lightest resonance and any of the others.
In this theory, we present a calculation of the leading

one-loop corrections to longitudinal gauge boson scatter-
ing to+to ~ zz. (All other channels can be obtained
from this one by crossing. ) The treatment of infini-
ties induced by loops follows the standard rules of ef-
fective nonrenormalizable theories [12,23]. Namely, the
infinities associated with nonderivative interactions in
the Lagrangian Eq. (1) are absorbed in the renormal-
ization of the scalar self-couplings, while those associ-
ated with vertices involving derivatives are absorbed in
SU(2)L, x SU(2)R invariant counterterms which are of or-
der p4. The coeKcients of these counterterms are new
independent (running) couplings in the theory and can-
not be computed. In what follows, we shall compute
the leading corrections in the modified minimal subtrac-
tion (MS) scheme, setting the higher order counterterms
to zero when the renormalization scale p, is taken to be
A 4z f. These results include the so-called "chiral log-
arithms" of the pure Goldstone boson theory, which are
the largest contributions at sufEciently low momentum
[29,30]. As required by consistency of the chiral expan-
sion [12,13], these corrections are expected to be com-
parable in magnitude to the p counterterms and should
provide a reasonable estimate of the size of higher order
efFects.

In addition, in our computation we have kept the "fi-
nite" parts of O(p4) terms that come along with the log-
arithms in the MS scheme. Unlike the chiral logarithms,
these corrections are scheme dependent; therefore, in gen-
eral, they have no physical meaning. However, in the
limit f ~ oo the theory reduces to the one-Higgs-doublet
standard model and, as in any renormalizable theory, all
of the p dependence of our answers should disappear. In
this limit we should recover the exact one-loop amplitude
for the linear sigma model provided in Ref. [31]. This
will serve as an important check for our calculation.

The Feynman rules for the Lagrangian Eq. (1) are
given in Appendix B.

A. Tree amplitude

The tree amplitude for m+m ~ zz is found from the
diagrams in Fig. 1 to be

where S, t, u are the usual Mandelstam variables with
s + t + u=0. For ~s (( m, v only the first term (coming
solely from the Goldstone boson contact diagram) sur-

vives; this corresponds to the low-energy theorems [9,25].
For somewhat higher energies, deviations from the SM
emerge and these are parametrized by just one parame-
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w

H

. z
ventional choice of the VEV v as a running quantity is
substituted in the more traditional treatxnents of elec-
troweak radiative corrections by the mass of the gauge
boson M~, since M~ = gv/2. For our purpose the dif-
ferences between various definitions of g are negligible
[34j.

FIG. 1. The tree-level Feynman diagrams contributing to
m m ~ zz. 1. Self en-eryy contribntione

ter (. For ( P 1, the tree amplitude in Eq. (37) has a bad
high-energy behavior, as expected for a nonrenormaliz-
able effective theory. In fact, for ( ( 1 the amplitude
vanishes for some energy greater than m2. However, in
this region, the tree amplitude is not trustworthy since
higher order eH'ects will be large. Furtherxnore, in the
region around the peak s = m we have to include the
Higgs decay width. This is done through the substitution

s m s —m' —iImII '
(s)

where IIH() (a) is the one-loop self-energy given in Eq. (41)
below. 6

The Higgs self-energy II~( (p2) is found from the dia-
grams of Fig. 2(a) to be

II~ (s) =—(~) 3 282 m2A

, ( B,(1) + A(m)

i+a(', ) ). (41)

ImIIH (m ) = -ml'~ (42)

Analytical expressions for the functions used are given
in Appendix C. The imaginary part of the one-loop self-

energy IIH is related to the decay width through a uni-
tarity cut

B. One-loop amplitude
and is given by

We now present the one-loop axnplitudes which are for-
mally of order O(p4) in the chiral expansion. These are
calculated using MS regularization with the infinities in
the diagrams (which correspond to poles in I/e) omitted.
Hence the parameters m, v, (,(', f",Aa, A4 that appear in
the expressions below are actually the MS renorxnalized
quantities. The corresponding physical Higgs xnass and
(VEV), denoted here as mH, v, are obtained from m, v

by a finite renormalization

-I HH( p )
2

w, z

2 Z —x 2
)

mH ——m +bm
(a)

with v=246 GeV and

bm = ReIIH (m~) (40)
+ ~ ~ ~

with II~ (p2) the one-loop Higgs self-energy given by Eq.
(41) below, with G(1) = —2++/~3. We used above that
Z = Z, the wave-function renormalization of the m .
This is found either directly, by minimizing the one-loop
effective potential and determining the shift from v, or
by using the Ward identity that ensures the equivalence
theorem. Let us remark finally that the slightly uncon-

+
w

w

The inclusion of the running width instead of the constant
one has been suggested [32] to be more efFective on peak.

Actually mH is the on-shell mass and not the real part of
the pole position.

See Eq. (4.11)—(4.13) in the paper by Bagger and Schmidt
in Ref. [10] and also [33].

FIG. 2. (a) One-loop Higgs boson self-energy. (b) Sum
of diagrams that replaces the propagator on the resonance re-
gion. (c) Higgs boson self-energy contribution to w+m -+ zz.
As explained in Sec. IIIB 1, for energies around the Higgs
mass the resummed propagator is used from diagrams of Fig.
2(b).
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3
(o) Bm

32ÃtP
(43)

dII= 1+Re
I p2 —0

Since the parameter ( can only be ( ( 1 in the
SU(4)/Sp(4) model, we see that in this model such a
Higgs would be narrower than the SM Higgs boson.

The one-loop contribution of II~ (s) to sv ur —+ zz,(~) +
for energies away &om the Higgs-boson pole, is given by to be given by

err
ZH ——1+Re

J' p'- '

((a) s2II( )( )
(v2) (s —m2)2 (44)

s —m —II&( )(s) —ilmll&( )(s)
(45)

In the resonance region, ~s —m
~

& ml'H, again we have
to include the Higgs decay in the propagator. However,
now, if we want to count powers of A'(= m2/2v ) (which
in the linear 0 model is the self-coupling A) consistently
on the peak, we have to resum not only the imaginary
part of the one-loop Higgs self-energy but also its real
part along with the imaginary part of the two-loop Higgs
self energy II& (s). Purthermore, since we are using a(2)

nonlinear representation of the Goldstone bosons, the in-
clusion of the width is consistent with the equivalence
theorem [35]. Hence, the Higgs self-energy contribution
on peak to tv+tv +zz, i-s found by making the replace-
ment (in order to avoid double counting) of the second
diagram in Fig. 1, which corresponds to the second term
in Eq. (87), with the diagram in Fig. 2(c) with the
propagator given by

(46)

3 2m2 1

~2v2 f, 2~~31
2m'

~
9 )

(47)

Ver tee co~ctiona

The Hm+m and Hzz three-point functions con-
tribute to m+m ~ zz scattering through the diagrams
shown in Fig. 4. The Hm+ur three-point function is

With this resssmmation procedure our complete ampli-
tude is correct to order O(A') on the peak (see [8?]). The
imaginary part of II~ (s) at s = m2 can be found from

the one-loop correction, I'&, to the Higgs decay width
through a unitarity cut similar to that of Eq. (42) at
the appropriate order. This is presented in the following
section.

Prom II~ in Eq. (41), and the Goldstone boson self-

energy II, given by the diagrams in Fig. 3, we 6nd the
wave-function renormalization factors, defined as

W,

W
'

a
~ W

Z W

Z W Z

2
y((P ) W W

a'
W

W W

p

W

FIG. 3. The one-loop gauge boson self-energy.

In models arith elementary scalars, since no scalar VEV can
exceed 246 GeV, ( must be less than one. The possibility that) 1 was demonstrated recently in Ref. [36j.

FIG 4 The one-loop contribution to m+m m zz scatter-
ing amphtude through the Hm m vertex.
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il'(s) = —((m a —(s Bg(s) — a 1+6
l

Z 2 2 ('Aav ( s
16m2v3 2 . Em2

m2—(P+ Q')m aA(m) +( s + m ——
[ Bq(a) —m Cq(s)

2 2)

+( Asv m A(m) —
l

—+ m B2(s) —m C2(s)
k2

(48)

Isospin variance implies that the Hzz vertex is iden-
tical to the Hm+m vertex. This contribution to the
m+m ~ zz amplitude is

l

multiplying each external H, m line by wave-function

renormalization factors ZH, Z, respectively. This
gives

)(~ 2al'(a)

(v) a —m' ' (49)

m2
l

—™y Rel'(mir)
l

Z'~'Z~~ (5O)

where the replacement in Eq. (45) is needed in the reso-
nance region.

From the proper three-point function we can compute
the decay width of the Higgs at one loop, by adding to the
tree amplitude the real part of I'(a) (for a = m2), and

where we have used Eq. (39) to replace v with v=246
GeV in the tree amplitude. Then the one-loop correction
I'H to the total Higgs decay width I'H ——I'H + I'H,
is found to be (this result differs from that presented in

[14]; we have corrected a typographical error in the next-
to-last term)

I (~)
H

I(~)
=

H

1 m2 P'v' ( 2~~3) ("m'
v22 [1+A(m)]+ l

—1
l
+ 2

1 — + A(m)
2 ( 3 ) 4m2 ( 9 ) (v2

, 3m2 &1 ) (2m2 lvr2 (As 27r2+('
l

—+ A(m) l
+

l

——4 —5A(m)
2v2 (3 ) 2v2 q 6 2 9

(51)

where we used the explicit form of the B,C functions presented in Appendix C. In the linear o'-model limit, Eqs.
(4),(5), our calculations agree with those in Refs. [34,31]. For our reference values of Eq. (36), the one-loop correction
to the three-level width in Eq. (43) is 28%, while the corresponding standard model correction is only 7.6'%.

3. One-pat'ticle-invducible cor rectione

The one-particle-irreducible (1PI) diagrams that contribute are shown in Fig. 5. The bubble diagrams in Fig. 5(a)
give the chiral logarithmic corrections &om the nonlinear sigma model. They are given by

Ab~bb~, =
4 2 2

—s B2(a)+2( m s
l

—+A(m)
l

1 L2 2 2 (1
4vrv2 2 2

The diagrams with three internal propagators shown in Fig. 5(c) are given by

2/2

3(4~v2) 2
2 s m2s' l—3m a+6m

l
m + —— lA(m)

6 2 tu

(s ( 4, at 3, 4s)+3s
I

—- m B&(s)
l

3m + t + ———m t+ 6m —
l
Bz(t)

E. 2 2 2 t)
—

l
3m + u + ———m u+ 6m —

l Bq(u) + 3m sCq(s)4 2 su 3 2 4s~ 2

2 2 u)

2 2 22s —t —u

2S+3m s+m +2m — Ci t +3m s+m +2m — Ci u
t

while the rest with three internal propagators in Fig. 5(d) are

AGB = 1 (5 2 13 ~ 2
a2 p2 t

l

—a + (t +u )+——ln + —(s+2t)ln —+ —(a+2u)lnp
(4&v ) (9 18 2 —a 6 t 6——u)

The rest of the diagrams with two internal propagator given in Fig. 5(b) are

(52)
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A2 t„.—— m aA(m) —
~

—+ m a
~
B2{a)—m sC2(a)(4~v2) 2

The diagrams in Fig. 5(e), with four internal propagators are equal to

Ab „=T(s, t) + Z'(s, u),
where

(55)

(56)

—m 6m + —(2a —5t) + 4m
~

—+ —
~

A(m)
1 , (a tl
3 (t a)

+ 3m + 4m ——m t+ —(a+ 2t)
~
B,(t)

l4s

l 6 )
+

~

3m + —m (a —t) + 4m —+ —(2a + t)
~
B2{a)4 4t s

s 6 )
+2m

~

2m —t+ 2m —
~
C2(a) —2m 2m + s+ 2m — Ci(t)

2( 2 2 2 28
aj

+mtD(s, t)) . (57)

Tadpoles

1
s =

{
{~~ —~ ~~A{4m'v2 2 (58)

5. Complete one-loop amplitude

The contribution from the tadpole diagrams shown in
Fig. 6 is

{4),(5), our computation is scale independent and repro-
duces the calculation of Ref. [31]. This provides a non-
trivial check of our calculation.

For the sake of completeness we present here the low-

energy ljmit of our amplitude which constitutes the p
corrections to the low-energy theorems [14]. For this
we use the low-energy limit of the functions provided in
Appendix C. These can be found, for example, in Ap-
pendix A of Ref. [38]. Let us call the total amplitude for
tv+tv ~ zz, up to one loop, by

Adding all the one-loop contributions from above, and

multiplying by a factor of Z for each external line
we find that the complete one-loop correction to the
tv+tv ~ zz amplitude is given by

A1-loop A2-pt + A3-pt + AGB + Abubble + Ai-tri

+A2 „;+Ab.„+At.a+ 4A„..(z'~2 —1) .

(59)

As explained, our results here are expressed in terms
of the renormalized mass and VEV. The physical pa-
rameters are found through the relations (39). We have
veri6ed explicitly that, in the linear 0'-model limit, Eqs.

I

A(at t t u) = Atree + A1-loop (6O)

In the Ijmjt 8 && m and —t (( m, we 6nd

2

A(, t, ) = —,+, , 7 +('
v2 4vrv2 2 m2v2 ' (61)

where

7 = —ln + —(a+ 2t)ln —+ —(s+ 2u)lnP RL P
2 —8 6 —t 6

m2
+a2P + Q(t2 + u') + Rln (62)

P = - + 2«" + &'
~

-&'+ —
I

——&'+,
I

&' - —
I
+ 6'65, g&3 t', g'l, A',

9 (2 9p 9 2A'
g 2) 8A'2 (~3 ) (63)

13 ll 2 5 4
Q = ———('+ —(',

18 9 18 (64)

t2 2&=" —('-('
~

—+2(' I+2(("- + —(2-&')(t'+ ')
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FIG. 6. The tadpole diagrams.
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where A' = m2/2v2. Also in Eq. (61), and since m (
4mv, we have retained the 1/m correction to this order
in the momentum expansion. In the linear cr-model limit
and to leading order in a/m2 this amplitude explicitly
agrees with that of Ref. [$1].

The scattering amplitudes for all other channels can be
obtained &om the tv+tv ~ zz amplitude A(s, t, u). In
terms of the kinematical variables 8, t, u, these are given
by

A(tv+tv m zz) = A(a, t, u),

W-

W

, Z

/
/

H
/

/
/

/ '.Z

W ~

r
/

/

H

/

W
' 'Z W.' Z

W ~ Z
H A(m+m m tv+tv ) = A(s, t, u)+A(t, a, u),

A(z m zz) = A(a, t, u) + A(t, a, u) + A(u, t, s), (66)

W.

W

/

/
/

/

/
/

/
/

Z

H
Z W

(c)
Z

W. , H, Z

H

W

Z
A(tv+tv+ m tv+to+) = A(t, s, u) + A(u, t, s),

A(ur+z m m+z) = A(t, s, u) .

C. Cross section and discussion

~ Z W

W

The diHerential cross section for longitudinal gauge bo-
son scattering in any of these channels is obtained &om
the amplitudes above by

do 1

6

where A = At„,+ A~ ~. Since we neglected the 1-PI
two-loop diagrams, we have

W
H

H

I

I

I

I

'Z
I

I

Z

Z

W

W

W Z

Z

Z

]A~' = ]At„,]'+ 2[Re(At„.)Re(A) p)
+Im(At„,)Im(A) p)] .

The total cross section is

(66)

(e) d~
ot~, (s) = dt —(a, t) .

dt (69)

FIG. 5. (a) Bubble diagrams that contribute to
m+uy ~ zz. (b) The rest of the 1PI diagrams with two
internal propagators. (c), (d) Feynman diagrams with three
internal propagators. (e) Feynman diagrams with four inter-
nal prepagators.

In Fig. 7(a) we show the total cross section for the
Wi+~i ~ R z+ s nn as un t'on 8 t
SU(4)/Sp(4) model with the parameters in Eq. (36). As
was explained in Sec. IIIB1, our one-loop amplitude is
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accurate in the resonance region only up to order A'. Our
calculation respects unitarity to the appropriate order in
perturbation theory, however, the computation also in-
cludes some (but not all) subleading contributions. These
contributions can be numerically significant on the peak
and appear to cause a violation of unitarity [37]. The
height of the peak for the one-loop curve is 4.5% higher
than the peak in the tree-level curve. The corresponding
curves for a standard model Higgs boson with the same
mass are shown in Fig. 7(b); here the one-loop peak ex-
ceeds the tree-level peak by ll%%uo. The sharp fall in the
amplitude in the region above the peak can be under-
stood by noting that for ( (I the tree amplitude in Eq.
(37) vanishes at some energy greater than m2 (if one does
not include a Suite width). This only signals that higher
order effects are expected to be significant there. Also,
far above the peak the amplitude presented is not trust-
worthy due to the breakdown of the expansion in powers
of 1/A.

Qualitatively, however, for gauge boson scattering be-

low a TeV, the width and shape of the peak appear to
be the most important features differentiating a standard
from a nonstandard Higgs boson resonance. In Fig. 8(a)
we show the decay width I'H as a function of mass for
the nonlinear model for our reference values in Eq. (36),
both at tree level and one loop, while the corresponding
graph for the standard model is shown in Fig. 8(b).

The cross sections discussed above are not directly
measurable in hadron colliders like the LHC; one must
first convolute them with the 6'I.R'L, luminosities inside
the proton. A more detailed study of how well the LHC
would be able to differentiate a standard Rom a nonstan-
dard Higgs can only be answered after detailed analysis
of a specific detector. This question is currently under in-

vestigation [40]. Unlike the analysis presented here, how-

ever, one must also include the potentially nonstandard

couplings of this nonstandard Higgs to the top quark,
since this affects the production of the Higgs through

gluon fusion.
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FIG. 7. (s) Total cross section for W& W& ~ W&+W~, in
the SU(4)/Sp(4) with s Higgs mass mrna=718 GeV, snd using
the values in Eq. (36) as s function of s. Solid lines correspond
to tree level snd dashed lines to one loop. (b) Total cross
section for W& W& ~ TV& R'& in the standard model with
a Higgs mass mH=718 GeV, as a function of 8. Solid lines

correspond to tree level and dashed lines to one-loop.

FIG. 8. (s) Total Higgs decay width as s function of the
Higgs mass for the SU(4)/Sp(4) model with the choice in Eq.
(36). Solid lines correspond to tree level snd dashed lines to
one loop. (b) Total Higgs decay width as s function of the
Higgs mass for the standard model. Solid lines correspond to
tree level and dashed lines to one loop.
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IV. CONCLUSIONS

In this paper, we consider the phenomenology of a
"nonstandard" Higgs boson. In the first half of our
analysis, we discussed a composite Higgs model based
on an SU(4)/Sp(4) nonlinear o model that features such
a nonstandard Higgs boson. This xnodel illustrates the
possibility of the existence of a scalar resonance that is
relatively light (possibly within the reach of the LHC),
but whose dynaxnics is significantly difFerent from that
of the standard model Higgs Boson. Unlike conventional
technicolor models, composite Higgs models may have
a large mass gap between the Higgs resonance and the
other heavier resonances and, therefore, one cannot nec-
essarily rely on the discovery of the other, more exotic,
resonances as an experimental signature of the dynamics.
Instead, it will be ixnportant to understand whether the
light scalar resonance has the properties of a standard
model Higgs resonance or not.

Furthermore, because of the triviality of fundamental
scalar theories, any scalar boson with a xnass of order
500 GeV or higher that couples to the longitudinal elec-
troweak gauge bosons is likely to have properties very
different than those of the standard model Higgs boson.

In the second half of our analysis we calculated the
chiral logarithmic corrections to longitudinal gauge bo-
son scattering in a theory with a nonstandard Higgs res-
onance. We found that the most important deviations
Rom the standard model are paraxnetrized by the pa-
rameter (, which is directly related to the Higgs width.

The understanding of the electroweak symmetry sec-
tor will surely require further experimental investigation.
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APPENDIX A

In this appendix we give the expression for the La-
grangian of the SU(4)/Sp(4) that we mentioned in Sec.
II. Making the field redefinition given by Eqs. (24)—(26),
we have

Zo ——cos
~ ~

+ i2y 2Xsin
~

(o + (o) ) . . f o + (a) t

2f ) 2f &

(A1)

and the SU(4)/Sp(4) Lagrangian Eq. (19) is

If a scalar isoscalar resonance is observed in longitudi-
nal gauge boson scattering, it will be important to show
whether or not it is the standard model Higgs boson.

Cy = —(8"oct„cr)+ —sin
1

„

f2 . , fo+(a)~, 1
2 " 2 E ~2f ) " '

2
~

Tr(8"MB„Mt)—V(cr, cr') + 8"o'8 —o'

I I

+—
i i

Tr(8"VB„Vt)
4& V~f &

,"( '+( '))
v slI12ck ( 2f )

where V(o, o') is the potential in Eq. (20), expressed in
terms of the shifted fields o, o'. Above we have ignored
the singlet field a, and terxns with xnore pseudoscalars p,
coxning from Z~„g,since these will not be relevant to our
calculation. The p and a masses are

m = . , m =ypftana.
2yV f

(A3)sln20!
In the Lagrangian above, there are some individual dia-

grams, like the Hp p vertex coming from the l'.~„1„that
grow like f /v Such terms wou. ld appear to violate the
decoupling of the p as f + oo. However before the redef-

inition of Eq. (25), there are no terms that grow with f
The resolution to this dilemma lies in a general theorem
in quantum field theory [11,21], according to which all
physical on-shell S-matrix elements are invariant under
field redefinitions that leave unchanged the one-particle
states, which constitute the Hilbert space of the theory.
Indeed, one can easily verify that, when evaluating any
8-matrix element, the bad large fbehavior ca-ncels when
the external lines go on shell.

Finally, after "integrating out" the heavy states p, h,
and a, we obtain the Lagrangian in Eq. (1). The param-
eters $, (', f",As, A4 are given by
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V COS 0!
( = sinnsinP+ cosncosP 1—

2fg 'I

2
= 1 ——cos acos P,V 2 2

2

A4
——6Asin P+ 2xycos P

r V COS 0!
x 4sinP 1 — —tanncosPf' (A4)

V
2 V COS 0!—cosckcos P 1—

2 2

APPENDIX 8

As ——6u(Asinnsin p + n'ycosnsinpcos p),
In this appendix we give the Feynman rules for the

Lagrangian in Eq. (1).

2 —m2

2

ZU )Z

2Pl ' P2

Ql qZ

I ~pl 'p2—2
Q2

QP ~Z

m+, z

tO qZ
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4

„,.2pl p4+2e p3+(pl —p4) (p2 —p3);

uo-r p, p%4% z

, :2p p+2p p 4+(p+p. ) (p. +~4):
V

2ig .

3'U
2pl p y 2~ p3 y (pl —p4) ~ (p2 —p3)'

Ir
2ig .

, .2pl .p2 + 2p3 p4 + (pl + p2) (p3 + p4)]
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to E/pq p%4% m

2i(' .

, :2p p. +2p'p. +(p. -p.) (p. -p)j

ps Xz

2i(' .

, .2m m+2p3 p4+(m+p~) (ps+p4).

APPENDIX C

In this appendix we provid. e the analytic expressions
for the one-loop integrals that appear in the text. Here, p,

is the renormalization scale. In our computation we shall
take y, to be the cutofF of our effective theory A 4n f
We use the notation

Then we have

m'
A(m) = 1 —ln

p2
(C3)

cr = s/m', ~ = t/m', (C1)
B,(s) = 2 —ln

~

(C4)

ln(1 —zt)
Li2(z) = — dt

0 t (C2)

and de6ne the dilogarithm for arbitrary complex argu-
ment by

where

m2
B,(s) = —ln —|(o.),p2

2 *arcsin~2* —2, 0 ( x & 4

G(z) = i 2 (
—ir +arcccsh~r) —2, z & 4

2 arcsinh+2* —2, x & 0 .

(C6)

The functions Cq(s), C2(s) arise &om loop diagrams with three internal propagators. Following Ref. [39] they are
given by

vr2 &

+1(s) = —
~

lzi2(1 + && + &) 6) (C7)

where

1 x~ . (1—al . ( 1 ) . ( 1 —o.
&2(s) = ———~12

~

.
~

—li2 + 1 12
~o 6

I
1 —ceo ) q1 —ot+ —ze) q1 —o'l+ —ae)

f . i+112
(1 — / +' ) ~(1 — 1 +

1
l~ = —(1 6 Ql —4/o) .

2

(Cs)

(CQ)
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Finally the expression for the box diagram D(s, t), following Ref. [41], is given by

(1+7)
~

y —— D(s, t) = 2Li2
~

I+ —
~

—2Li2(1+ zy) +4Li2(1+y) + ln'( —y) —2in'( —zy)

+21n(—y)ln( —~ —ie) —rl(z, —y)ln
~

2+ zy+ —
~

(

-'71 —-y
I

+
I
2+ - + -

I

z y&
(CIO)

with

- 1/2
0z= I ——+ ——o —ie 2 ——

~2 4 2&

where

a7 —2~ —2+ /or(o~ —47 —4) + is~(1+ 7)
2(I + ~)

as defined by 't Hooft, and Veltman [39].

q(a, b) = ln(ab) —lna —lnb, (C11)
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