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Gluon fragmentation into P-wave heavy quarkonium
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The fragmentation functions for gluons to split into P-wave heavy quarkonium states are calcu-
lated to leading order in the QCD coupling constant. Long-distance effects are factored into two
nonperturbative parameters: the derivative of the radial wave function at the origin and a second
parameter related to the probability for a heavy-quark—antiquark pair that is produced in a color-
octet S-wave state to form a color-singlet P-wave bound state. The fragmentation probabilities for
a high transverse momentum gluon to split into the P-wave charmonium states xco, Xc1, and Xc2 are
estimated to be 0.4 x 10™%, 1.8 x 10™*, and 2.4 x 10™*, respectively. This fragmentation process may
account for a significant fraction of the rate for the inclusive production of x.s at large transverse

momentum in pp colliders.
PACS number(s): 13.85.Ni, 12.38.Bx, 14.40.Gx

Heavy quarkonium plays an important role in high-
energy collider physics, because these states can probe
physical processes at short distances of order 1/mg,
where mg is the heavy quark mass. Of particular im-
portance experimentally are the 17~ S-wave states of
charmonium and bottomonium, which have very clean
signatures through their leptonic decay modes, and the
J+* P-wave states with J = 0,1,2, which can also
be observed through their radiative transitions into the
17~ states. In most previous studies of the direct pro-
duction of heavy quarkonium [1], the dominant produc-
tion mechanisms were assumed to be given by the Feyn-
man diagrams that were lowest order in the QCD cou-
pling constant a,. It has recently been pointed out that
the dominant mechanism for heavy quarkonium produc-
tion at large transverse momentum pr is fragmentation,
the production of a high-energy parton with even larger
transverse momentum which subsequently decays into
the quarkonium state plus other partons [2]. While this
mechanism is often of higher order in the QCD cou-
pling constant a, than conventional mechanisms, it is
enhanced at large transverse momentum by powers of
pr/mgq, and thus dominates at sufficiently large pr.

The fragmentation of a parton ¢ into any hadron
H is described by a universal fragmentation function
D;_,g(z,u), where z is the longitudinal momentum frac-
tion of the hadron relative to the parton and p is a factor-
ization scale of order pr [3]. If the fragmentation func-
tion is known at some initial momentum scale pg, then it
can be determined at larger momentum scales p by solv-
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ing the Altarelli-Parisi evolution equations which sum up
the leading logarithms of p/ue. In Ref. [2], it was shown
that in the case of heavy quarkonium, the fragmentation
function D(z,mq) at an initial scale of order mqg can
be calculated using perturbative QCD. The initial frag-
mentation functions for gluons to split into S-wave states
of heavy quarkonium were calculated to leading order in
a, [2]. The fragmentation functions for heavy quarks to
split into S-wave states have also been calculated to lead-
ing order [4-6], and these calculations have recently been
extended to the P-wave states [7].

In this paper, we calculate the fragmentation functions
for gluons to split into the P-wave states to leading order
in a,. For the sake of clarity, we describe the calculation
in terms of the lowest P-wave states of the charmonium
system: the JPC = J*+ states x.s, with J = 0,1,2, and
the 1t~ state h.. Our results apply equally well to the
higher P-wave states of charmonium, as well as to the P-
wave states of the bottomonium system. While a gluon
can split into x.s at order o2 through the Feynman dia-
gram in Fig. 1, gluon splitting into the k. occurs first at
one order higher in «,. Since 11~ states of heavy quarko-
nium like the h. are difficult to observe experimentally,
we concentrate in this paper on the J* states.

In charmonium, the charmed quark and antiquark are
nonrelativistic with typical velocity v < 1 and typical
separation 1/(m.v). Our calculation of the fragmenta-
tion function is based on separating short-distance ef-
fects involving the scale 1/m. from long-distance effects
involving scales of order 1/(m.v) or larger. There are
two distinct mechanisms that contribute to the fragmen-
tation function at leading order in v [8], and we will refer
to them as the color-singlet mechanism and the color-
octet mechanism. The color-singlet mechanism is the
production of a c¢ pair in a color-singlet 3P state with
separation of order 1/m, in the quarkonium rest frame.
The subsequent formation of the x.s is a long-distance
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FIG. 1. Feynman diagrams for g* — c¢ + g which con-
tribute to the color-singlet term in the fragmentation function
for g — xeJ-

process with probability of order v®. In addition to the
volume factor (m.v/m.)3, there is an extra suppression
factor of v? from the wave function of the P state near
the origin. The color-octet mechanism is the production
of a ¢C pair in a color-octet 3S; state with separation of
order 1/m.. The subsequent formation of the y.; can
proceed either through the dominant |c¢) component of
the x.; wave function or through the small |cZg) com-
ponent, which has a probability of order v2. In the first
case, the cC pair must radiate a soft gluon to make a tran-
sition to the color-singlet 3P; |c¢) state. In the second
case, a soft gluon must combine with the ¢ pair to form
a color-singlet |cZg) state. In either case, the probability
is of order v®, with a volume factor of v3 and an addi-
tional suppression of v? coming either from the probabil-
ity of radiating a soft gluon or from the small probability
of the |cEg) component of the wave function. Since the
color-singlet mechanism and the color-octet mechanism
contribute to the fragmentation function at the same or-
der in v, they must both be included for a consistent
calculation.

Separating effects due to short distances of order 1/m,
from those of longer distance scales requires the intro-
duction of an arbitrary factorization scale A in the range
mev € A € m.. The fragmentation functions for heavy
quarkonium satisfy factorization formulas that involve
this arbitrary scale. At leading order in v2, the factoriza-
tion formula for the fragmentation function for g — x.s
has two terms:

H,
me

a2, 8) + 27 + 1) T2 g (o)

1)

where H; and H}(A) are nonperturbative long-distance
factors associated with the color-singlet and color-octet
mechanisms, respectively. The short-distance factors
dg‘n(z, A) and dg(z) can be calculated using perturba-
tion expansions in a,(m.). They are proportional to the
fragmentation functions for a gluon to split into a cé pair

Di—’XcJ (27 mc) =

3177

with vanishing relative momentum and in the appropri-
ate color-spin-orbital state: color-singlet 3P; state for

ng) and color-octet 35; state for ds. Note that in the
factorization formula (1), the only dependence on A is in

dg") and Hj. This simple form holds if the coefficients
are calculated at most to next-to-leading order in a,. Be-
yond that order, dg also acquires a weak dependence on
A and J.

The nonperturbative parameters H; and Hg can be
rigorously defined as matrix elements of four-quark oper-
ators in nonrelativistic QCD [9]. Their dependence on A
is given by renormalization group equations whose coef-
ficients can be calculated as perturbation series in a,(A)
[8]. To order a,, H; is scale invariant and Hy satisfies

d _, 16
AHHS(A) = ma,(A)Hl . (2)
If the factorization scale A is chosen to be much less than
m,, this equation can be used to sum up large logarithms
of m./A:

16 as(A
Hé(mc) = Hé(A) + 27—/301[1 (as(snz)) Hl ) (3)
where 8o = (33 — 2ny)/6 is the first coefficient in the 3
function for QCD with ny flavors of light quarks. The
parameter H; can be related to the derivative of the non-
relativistic radial wave function at the origin for the P-
wave states:

~ 9 |Bp(0)
T 2r md

H, [1+0(v?)] . (4)

This parameter can be determined phenomenologically
from the annihilation rates of the x.s states. Using re-
cent high precision measurements of the light hadronic
decay rates of x.1 and X2, H; has been determined to
be approximately 15 MeV [10]. The parameter Hg was
introduced in Ref. [11] in a calculation of the rate for
the decay b — x.Js + X, which also receives contributions
from both the color-singlet and color-octet mechanisms
for x.s production. The prime on Hj is a reminder that
this parameter is not related in any rigorous way to the
corresponding parameter Hg that appears in decays of
the x.s states into light hadrons. Using data on the in-
clusive decays of B mesons into charmonium, its value
for A = m. has been estimated to be Hg(m.) = 3 MeV
[11]. This parameter also enters into the inclusive decay
rate of the T into P-wave charmonium states [12].

We now turn to the calculation of the coefficient
ng)(z,A) in the color-singlet contribution to the frag-
mentation function. We follow the method and nota-
tion of Ref. [2]. Let A, denote the amplitude for
g* — cé(®P;,1) + g corresponding to the Feynman dia-
gram in Fig. 1. The ¢¢ pair have almost equal momenta,
and are in a color-singlet 3P; state. The amplitude A,
can be written down in terms of R} (0) using standard
Feynman rules for quarkonium processes [13]. Multiply-
ing A, by its complex conjugate and summing over final
colors and spins, we obtain the generic form
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terms in (5) that contribute to fragmentation then reduce

H
> Ay = ;l [45(s)(—gap) + Bi(s)paps to

+Ci(s)(Pagp + 9aps) + Di(s)9ags] ,  (5) H, p2
ZAQA}; ~ (AJ(S) + %B,(s)) (—9ap) -

where p and q are the four-momenta of the c¢ pair and
the fragmenting gluon g*, respectively, and s = ¢2. The
strategy is to reduce this expression in the limit go > m. (6)
to the polarization sum (—geg+- - -) for an on-shell gluon
multiplied by a function of s and z, where z is the longi-
tudinal momentum fraction of the cé pair relative to the

fragmenting gluon. Terms in (5) that are proportional g are ; 5
t0 go Or gg can be dropped, because in the axial gauge, obtained by dividing the coefficient of (—gsg) by s* for

4o and gg are of order m?/qy when contracted with the the propagator of the virtual gluon, and then integrating

numerator of the propagator of the virtual gluon. In the  ©ver the phase space of the cZ pair and the gluon in the

DaPp term, we can set p = zq + p,, where p, is the final state. The phase space integral can be expressed

transverse part of the four-vector p. After averaging over ~ cOmpactly in terms of integrals over s and z [2]. The

the directions of p, , p,pg can be replaced by —g.sp? /2 resulting expression for the integral over z of 4\ z,A
B P Y —9apP7] /4, I 1

up to terms that are suppressed in the axial gauge. The s

C

Energy-momentum conservation in the form s = (p_f +
4m?2)/z +p /(1 — 2) can be used to eliminate p ? in (6)
in favor of s and 2. The fragmentation probability is

[dz i (z,A) = L[o ds[ dz Siz (AJ(S) + (l_z)(zs“‘*mg)B,(s)) . 7

1672 /, ..(a) m2/s 2

We have anticipated the presence of an infrared divergence associated with a soft gluon in the final state by imposing
a lower cutoff A on the energy of the gluon in the quarkonium rest frame. This translates into a lower limit on s:
Smin(A) = 4m2(1+ A/m.). The calculations of the functions A;(s) and B;(s) in (7) involve some rather complicated
algebra, but the final results are relatively simple. Interchanging orders of integration in (7), we can read off the

functions d(1J) (z,A):

< i __me 5,2 z A>_1
dl (Z!A) T o7 ng/z ds 32(8—4'”12)4 fJ( ’ ) s < (1 + .y (8)

a? [*® m2 ANT!
=57 ) ds Wsz(s—— am2)s fr(s,2), z> (1 + ;n—c) ) (9)

where

fo(s,2) = (s — 12m2)? [(s — 4m2)? — 2(1 — 2)(zs — 4m?)s] , (10)
fi(s,z) =65 [(s —4m2)® — 2(1 — 2)(zs — 4m?)(s — 8m2)] , (11)
f2(s8,2) =2 [(s — 4m2)?(s® + 96m}) — 2(1 — 2)(zs — 4m2)s(s® — 24sm? + 96m})] . (12)

For z < (1+ A/m.)™!, the integral over s in (8) can be calculated straightforwardly. The cutoff A can be set to zero
everywhere except in terms proportional to 1/(1 — z), which diverge upon integrating over z. In the 1/(1 — z) terms,
the limit A < m. must be taken more carefully, and it gives rise to a plus distribution:

1 A 1 A
l_zﬂ(l—z—mc) — ——— —In—§(1-2). (13)

(1-2)4 M.

For z > (1+A/m,) ™!, the limit A < m, can be taken only after evaluating the integral over s in (9). This gives rise to
additional end-point contributions proportional to §(1 — z). Our final result for the short-distance factor multiplying
H,/m, in the fragmentation function is

(zn) = 2% _z - 1A)51_ P ] 14
di’(z,A) = a1 [(2J+1)(1—z)+ + (QJ (2J +1) n (1-2) + Ps(2)| , (14)
[
where the cc;;ﬂiments Qs :.;e o Po(2) = 2(85 ; 262) 9(5 ; 3z2) In(1—2), (16)
Q0=ﬁ, Q1=§7 Q2=§’7 (15)
3z(1 + 42)

and the functions Pj;(z) are Pr(z) =~ 4 ’ (17)
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FIG. 2. Feynman diagram for g* — c¢ which contributes
to the color-octet term in the fragmentation function for g —

XeJ-

_ 5z(11 — 42)
- 4

We next consider the color-octet coefficient dg(2) in the
fragmentation formula (1). At leading order in a,, this
contribution to the fragmentation function comes from
the subprocess g* — c2(351,8) given by the Feynman
diagram in Fig. 2. The c and ¢ have equal momenta ¢/2,
and are in a color-octet 3S; state. The projection onto
this state can be reduced to a simple Feynman rule:

Py(z) + 9(2—-2) In(1—2). (18)

v(g/2)u(q/2) — \/%Z(%:

where €#(q) is the polarization four-vector of the 35 state
and i, 7, and a are the color indices of the quark, anti-
quark, and color-octet state, respectively. The parameter
Rg(0) is a fictitious “color-octet radial wave function at
the origin” related to the nonperturbative matrix element

s(A) by Hi = (2/3n)|Rs(0)|2/m2. The square of the
amplitude A, for the subprocess g* — c¢¢, summed over
final-state colors and spins, is

T H9)(d+2me) , (19)

a 3 = r 3H’A “YGa L .
ZAAﬁ 6ra,m; 8()(gﬂ+4m2

c

(20)

The g.gs term can be dropped because g, is of order
m2/qo when contracted with the numerator of the vir-
tual gluon propagator in axial gauge. The expression
therefore reduces to the polarization sum (—gag + ...)
for an on-shell gluon multiplied by 6ma,m3Hj. Dividing
by (4m?)? for the virtual gluon propagator, we obtain the
fragmentation probability (37wa,/8)Hg/m.. This proba-
bility can be identified with the second term in (1), inte-
grated over z and summed over J = 0,1,2. This term in
the fragmentation function contributes only at the end
point z = 1. We can therefore identify the function dg(z)
in (1) to be

Ty,

24

ds(z) = 51— z). (21)

The total fragmentation function at leading order in o,
is given by the factorization formula (1), with the color-
singlet coefficient given in (14) and the color-octet coeffi-
cient given in (21). To avoid large logarithms of m./A in
the color-singlet coefficient, we can choose A = m.. We
thus arrive at the final expressions for the fragmentation
functions of gluon splitting into x.; to leading order in
Q,:
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Dy—*XcJ (Z’ ch)

2a%(2m,.) H; z
~ 22— (2J+1)—r—
81 me ( + )(1 - Z)+

+Qs0(1—-2) + Py(2)

wa,(2m.) Hg(m,)

+ (27 +1) =5, -

6(1 - Z) ’
(22)

where Q7 and Pj(z) given by (15)—(18). The choice of
the scale p in the running coupling constant is indepen-
dent of the choice of factorization scale A. We have fol-
lowed Ref. [2] in choosing p = 2m,, which is the mini-
mum value of the invariant mass of the virtual gluon. If
we wish to use a value for the factorization scale A in (22)
which is significantly smaller than m., we should use the
solution (3) to the renormalization group equation for
Hg(A) to sum up the leading logarithms of m./A.

Rough estimates of the gluon fragmentation contribu-
tion to the production of the x.s states at large trans-
verse momentum in any high-energy process can be ob-
tained by multiplying the cross sections for producing
gluons with transverse momentum larger than 2m. by
appropriate fragmentation probabilities. Integrating the
initial fragmentation functions (22) over z, we obtain the
probabilities

af(2mc)H 1
108m,

ma,(2me)Hg(m,)
24m, ’

where Ry = 5, R; = 4, and Ry = 16. Notice that with

the choice A = m, for the factorization scale, the color-

singlet pieces give rise to negative contributions to the

initial fragmentation probabilities. Requiring that all the

probabilities (23) be positive, we obtain an interesting
lower bound on Hg(m.):

Py—’ch ~ — Ry

+(2J +1)

(23)

10a,(2m.) H,.
97

Using H; = 15 MeV, m. = 1.5 GeV, and a,(2m.) =
0.26, we find Hg(m.) > 1.4 MeV. The estimate
Hg(m.) ~ 3 MeV obtained in Ref. [11] is consistent with
this lower bound. Using the value H{(m.) =~ 3 MeV,
our estimates for the initial fragmentation probabilities
in (23) are 0.4 x 1074, 1.8 x 104, and 2.4 x 10~ for xo,
Xec1, and X2, respectively. The production of x.; states
contributes to the inclusive rate for production of the
17~ charmonium state J/1 through the radiative decay
XeJ — J/¢ +v. Multiplying the fragmentation probabil-
ities given above by the appropriate radiative branching
fractions of 0.7%, 27%, and 14%, we find that the prob-
ability of a J/4 in a gluon jet is approximately 8 x 1075,
This is more than an order of magnitude larger than the
probability 3 x 1078 for the direct fragmentation of a
gluon into J/1 that was obtained in Ref. [2].

The methods used above to calculate the fragmenta-
tion functions D,_,, ,(z) can also be used to calculate

Hi(m.) > (24)
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the distribution of the transverse momentum p, of the
Xecs relative to the gluon jet. This transverse momen-
tum is related to the invariant mass s of the gluon jet by
s = (p% +4m?2)/z + p%2 /(1 — 2). For the color-singlet
contribution, the s distribution is obtained by integrat-
ing over z in (7). For the color-octet contribution, the
s distribution is a § function at s = 4m2. Adding these
two contributions we obtain

dPy_ 1y 2a2m H, (s — 12m?)?
= = . =2 0(s — Smin(A
ds 81 s3(s — 4m2) (s~ smin(A))
!
ma, Hy(A) 8(s — 4m2) (25)
24m,
dPy_y 40?m H, s+ 4m?
el _ 8 € 9(s — Spmin(A
ds 27 52(s —amg) 0~ smin(A)
ma,H{(A) 2
—2 87 §(s — 26
+ 32 5 gz, (26)
dPyy., 4aim.H, 5% + 12sm? + 96m?
ds 81 s3(s — 4m2)

Xx0(8 — Smin(A))
ma,Hy(A) 5
24m,

where spin(A) = 4m2(1 + A/m.). Integrating over s,
we recover the fragmentation probabilities given in (23).
The cutoff dependence of the color-singlet terms in (25)—
(27) is canceled by the A dependence of the parameter
H{(A) in the color-octet terms. The color-singlet terms
in these invariant mass distributions were obtained pre-
viously by Hagiwara, Martin, and Stirling [14], up to an
error of 47 in the overall coefficient. They did not include
the color-octet contributions, so their answers were sen-
sitive to the value of the infrared cutoff A. In the region
near the lower end point s = 4m2, the distributions (25)-
(27) must of course be smeared over an appropriate range

+5 (s —4m?), (27)

ERIC BRAATEN AND TZU CHIANG YUAN 50

in p, before they can be compared with experimental
data.

We have calculated the fragmentation functions for
gluons to split into P-wave quarkonium states to lead-
ing order in o,. The fragmentation functions satisfy a
factorization formula with two nonperturbative param-
eters H, and Hj which can be determined from other
processes involving the annihilation and production of P-
wave states. These fragmentation functions are universal
and can be used to calculate the rates for the direct pro-
duction of P-wave states at large transverse momentum
in any high-energy process. They are also needed to cal-
culate the total production rate of the 17~ states from
the fragmentation mechanism, since the P-wave states
have significant rates for transitions to the 17~ states.
The fragmentation probabilities for g — xc1 and g = Xxc2
were estimated to be on the order of 10~*%. This is large
enough that gluon fragmentation into x.s should account
for a significant fraction of the x.s’s that are observed at
large transverse momentum in hadron colliders. Frag-
mentation into x.s followed by its radiative decay may
also account for a significant fraction of the J/1’s that
are produced at large pr.

While this paper was being written, we received a pa-
per by Ma [15], in which the color-singlet term in the
fragmentation function for g — X, is calculated for lon-
gitudinally and transversely polarized x.; separately. Af-
ter summing over polarizations, his result agrees with
ours except near the end point z = 1. In the end-point
region, Ma’s fragmentation function is sensitive to an in-
frared cutoff.
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