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Relativistic efFects in scalar meson dynamics
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A separable potential formalism is used to describe the ss and KK interactions in the I (J )
= 0+(0++) states in the energy range from the s's' threshold up to 1.4 GeV. The introduction
of relativistic propagators into a system of Lippmann-Schwinger equations leads to a very good
description of the data (y = 0.93 per one degree of freedom). Three poles are found in this energy
region: fs(500) (M = 506 + 10 MeV, I' = 494 6 5 MeV), fo(975) (M = 973+2 MeV, I' = 29+2
MeV), and fs(1400) (M = 1430+5 MeV, I' = 145 + 25 MeV). The fo(975) state can be interpreted
as a KK bound state. The fo(500) state may be associated with the often postulated very broad
scalar resonance (sometimes called o or s meson) but due to its particularly large width one can
call it a correlated two-pion pair. The scattering lengths in the arm and KK channels have also been
obtained. The relativistic approach provides qualitatively new results [for example the appearance
of the fs(500)] in comparison with the previously used nonrelativistic approach Int.eractions in both
channels are attractive and have short range form factors.

PACS number(s): 14.40.Cs, 11.80.Gw, 12.39.Pn, 13.75.Lb

I. INTRODUCTION

Scalar meson spectroscopy is still far from being well
understood [1—4]. Since it was difficult to explain known
properties of the IG(JP ) = 0+(0++) states using a stan-
dard qq picture, other models treating the four-quark
states [5,6] or meson-meson molecules [7—11] have been
invented. There is also a continuous search [12,13] for
scalar gluoninm states, which can be mixed with the
quark states of the same quantum numbers. The na-
ture of the fo(975) and ao(980) mesons is very controver-
sial [14—17]. The closeness of their almost degenerated
masses to the KK threshold energy constitutes an argu-
ment towards their interpretation as virtual bound KK
states, which are unstable due to the open mvr channel
[10, 18—21].

In this article we extend the coupled channel formal-
ism of Refs. [18,19] including some relativistic efFects
in both the vrvr and KK decay channels of the scalar
mesons. We use the relativistic propagators and the sep-
arable potentials in the I ippmann-Schwinger formalism.
Such an approach has already been applied in the anal-
ysis of the pion-nucleon amplitudes [22] or in the studies
of the A(1405) resonance structure [23,24]. Our aim is to
describe quantitatively the isoscalar s-wave arm and the
KK scattering data in a wide energy range starting from
the vm threshold up to 1.4 GeV. The parameters of the
meson-meson interactions are Btted to the data and the
S-matrix structure is analyzed in order to extract infor-
mation about the scalar resonances in that energy region.
This is a new step in comparison with [18], where soxne
pole structure of the 8 matrix has been postulated and
the y tests have not been done. We observe that the rel-
ativistic efFects are important not only in the mar channel

but also in the KK channel even near the threshold. This
fact may have important implications, for example, the
fo(975) meson, interpreted as a KK molecule, can still
have a relatively small radius (less than 1 fm). Conse-
quently, the predictions of the radiative P decay into the
KK p system via P ~ fo(975)p have to be substantially
influenced [25]. The importance of the relativistic efFects
on the two photon decays of the J = 0++ and 2++
states has also been recently stressed [26].

This paper is organized as follows. In Sec. II we define
our formalism. Sec. III is devoted to an analysis of the
single xx channel essentially up to the energy of about
700 MeV. The properties of the KK channel interaction
in the decoupled case are discussed in Sec. IV. Both the
nonrelativistic and relativistic cases are treated. In Sec.
V we analyze the interactions in the coupled xm and KK
channels. A comparison with the data is performed and
the 8-matrix structure is studied. In Sec. VI we summa-
rize the main results and outline some perspectives.

II. THE FORMALISM

We describe the sr~ and KK isoscalar 8-wave interac-
tions in the &amework of the coupled channel Lippmann-
Schwinger equations [22]. The scattering amplitude T
satis6es the following equation in momentum space:
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&
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where V, G, T are 2x2 xnatrices (label 1 denotes the KK
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channel and label 2 the air channel), V is the interaction
matrix, G is the diagonal matrix of propagators written
in the center-of-mass system,

In Eq. (11) A is the symmetric 3 x 3 matrix of the coupling
constants,

(s I Gv I s) = G'(s) 4 (i, j =1,2), (2)

I q) = &1 g (p)gi(g),

and in the m~ channel a rank-two potential

and G, (s) = E —2E,(s)+i~, r. ; 0(+). In Eq. (2) s is
the relative momentum, E is the total energy and &;(s) =
gs2 + m2 are the relativistic energies; ml ——495.69 MeV,
m2 ——137.27 MeV are the average kaon and pion masses.

A very convenient parametrization of the interaction
matrix is a separable potential form. In the KK chan-
nel we use the simplest rank-one potential in momentum
space,

( ~ll ~12 ~13
A 12 A22 0 i )

0 x„)
and I is the symmetric matrix

(I„O O
I

0 I„ I„
I23 I33 j

consisting of the integrals

d S

27r 3

(12)

(13)

(14)

(p I
&22 I q) = &22 g2(p)g2(g) + &33 g3(p)gs(g) (4)

The transition potential matrix elements read

(p I &»
I q) = {qI v»

I p) = ~»gl(p)g2(g)
+&13gi(J )g3(g).

In Eqs. (3)—(5) A;& (i, k = 1, 2, 3) are the coupling con-
stants and g; are the form factors, which we have chosen
in the Yamaguchi form [27]

S
Isl = gA,, (s)G2(s)gi(s) (k, l = 2, 3).

(2~)3

In Eqs. (6), (12), and (13) label 1 refers to the KK chan-
nel and labels 2 and 3 to the mx channel in which the
interaction potential contains two terms. The matrices t
and I are functions of the energy E [see Eq. (2)].

A solution of Eq. (11) is straightforward,

where

4' 1
g'(p)—

mg if i= 1,
m ifi=2, 3,

(6)
t = (1 —AI) 'A,

and the resulting t matrix is symmetric (t'ai = tip), since
the matrices A and I are symmetric. Explicit expressions
for the matrix elements t'ai are given in Appendix A. All
the functions ti, i are inversely proportional to the Jost
function

and P; are the form-factor range parameters. The poten-
tials (3)—(5) are nonlocal. After this choice the potential
matrix has eight parameters (five coupling constants and
three range parameters), which should be fixed by a com-
parison of the theoretical amplitudes with experimental
data.

The separable form of the interactions enables us to
write the scattering matrix elements

D(E) = det(1 —AI). (17)

Let us notice that the coupling constants A;~ defined by
(3)—(5) have the dimension (MeV/c) and the integrals
(14), (15) the dimension (MeV) 3. For simplicity in fur-
ther calculations we will use the dimensionless coupling
constants defined as

(p I
T

I q) = g (&) t g (&)

(P I
T22

I q) = g2(p) t22 g2(q) + g2(p) t23 g3(q)

+g3(P) t32 g2(g) + g3(P) t33 g3(g)

(p I Ti2 I q& = (q I
T2i

I p) = gi(p) ti2g2('0)

+gi(p) t» g. (g) (10)
J,, = 2(P,P, )'i'I, ,

(9) and redefined integrals

(19)

where t'ai are energy-dependent reduced amplitudes
(k, l = 1,2, 3). In Eq. (8) Tll denotes the KK elas-
tic scattering amplitude, T22 in Eq. (9) is the vrvr elastic
scattering amplitude, while Tiq and T21 are the transi-
tion KK ~ ~~ and vrx m KK amplitudes. The system
(1) of the coupled integral equations satisfied by the Tl, l

elements leads to a set of algebraic equations for the re-
duced amplitudes tI,~ written in the 3 x 3 matrix form

t = A+ A It.

(20)2'
S = — T (k k)

2Ã
2

+12 —+21 — '/kl@1(kl)k2@2 (k2) T12 (kl & k2) s (22)
27r

(21)

If energy E is higher than the KK threshold mass, we
can relate (compare [22]) the on-shell scattering-inatrix
elements TI,l(kl, k2) to the 8-matrix elements:
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where the KK channel and x~ channel momenta kq and
k2 are de6ned by the energy-conservation condition

E = 2 kz+m& ——2 k2+m . (23)

This relation allows one to write the functions Ill(E)
and II,i(E) appearing in Eqs. (14) and (15) as functions
Ill(kl) and I&i(k2). Similarly the Jost function D(E)
given by (17) can be expressed as a function of two related
variables:

where

D(kl) k2) = DK(kl)D~(k2) —C(kl, k2), (24)

DK (k 1) —1 All ~11(kl) ) (25)
DPI'(k2) —1 A22 J22(k2) A33 J33(k2)

+A22A33 d(k, ),
G(klan k2) —A12 Jll(kl) [A12 J22(k2) + A13 J23(k2)

—A12A33 d(k2)]

+A13 Jll(kl) [A12 J23(k2) + A13 J33(k2)
A13A22 d(k2)] (27)

(26)

D( kl, k2)—
D(kl, k2)

'

D(kl, —k2)

D(kl, k2)
'

(29)

and the nondiagonal matrix element satisfies the equa-
tion

D(—kl, —k2)
11 22 12 —

D(k k )

Above the KK threshold the S matrix can be
parametrized in terms of the inelasticity parameter g and
the phase shifts b and 8K@.

ye2ib~R i /1 )2 &l(b~e~+sK A' )

~ i/1 g2ei(& +&~~)

(32)

If the energy E is lower than 2m~ then we can still use
Eqs. (21) and (30), provided kl is purely imaginary kl ——

igmK —E2/4. In this case the inelasticity parameter
q =—1, since the KK channel is closed.

Energy dependence of the experimentally measured
quantities b, b~g. , and g is closely related to the analyt-
ical structure of the Jost function in the complex planes
of the kq and k2 momenta.

d(k2) —J22(k2) J33(k2) ~23(k2) ~

In Eq. (25) DK(kl) is a part of the Jost function corre-
sponding to the interaction in the single KK channel,
Dz (k2) is a similar part in the mm channel and C(kl, k2)
comes kom the interchannel coupling.

Using the Jost function D we can also express the di-
agonal 8-matrix elements as the ratios

III. mm CHANNEL INTERACTIONS

In this section we consider interactions in the single
nx channel, i.e., without couplings to the KK channel
(A12 —%13 —0). We study the energy range from the
zz threshold up to about 700 MeV, where in the first
step the inRuence of the coupling to the KK channel can
be neglected. The aim of such an analysis is an esti-
mation of the zz potential parameters and investigation
of the pole structure of the xz' scattering function 822.
Two experimental facts can be quantitatively described
in such an approach: the first is a positive value of the
xz 3-wave scattering length in the I = 0 3 state, and
the second is a systematic increase of the z'z' phase shifts
from 0 degrees at the em threshold up to about 70' at
the energy of 700 MeV. Experilnental data indicate the
existence of the fo(1400) meson. Although the fs(1400)
mass is higher than the energy limit under consideration,
this resonance should be included in our analysis because
of its large coupling to the z z channel and a large width.

At the begi»i~g let us discuss a case when the prop-
agator G2 [see Eq. (2)] has the nonrelativistic form
G2 (3) = (k22—s2)/m2 + i~. We start by assuming that
in the potential V22 in Eq. (4) only the first term, i.e.,
the coupling constant A33 —0 is present. Then the Jost
function D&(k2) can be expressed as [see Eqs. (26) and
(A13) in Appendix A]

D~(k2) = 1+
1 —ia2

where a2 ——k2/p2. Its phase is directly related to the
phase shift b by

D~(k2) =) D~(k2) )
e '"". (34)

Knowing that the scattering length

a„= lim b /k2,kg~a (35)

we can evaluate a low-energy limit of the Jost function
(33). As a result we obtain

2A22

~2(1+ A»)
(36)

The positivity of the experimental a value imposes the
following conditions on the coupling constant A22.

—1&A» &0. (37)

The analytical structure of the Jost function in Eq. (33)
is very simple: it has a double pole at k2 ———iP2 and two
single roots at k2 ——iP2(+l/ —A2 —1). For A22 satisfying
the inequalities (37), both zeros lie on the negative part
of the imaginary k2 axis. Since the matrix element 822
is given by a ratio Dz-( —k2)/D7t. (k2), its poles coincide
with the Jost function zeros of the denominator except of
the numerator double pole at k2 ——iP2. The existence of
the fo(1400) meson must manifest itself by the presence
of two complex conjugated S-matrix poles lying oH' the
imaginary k2 axis. It has been shown in [18] that the
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introduction of the second term in the potential V„per-
mits one to obtain such a pair of poles and, in addition,
a positive value of the scattering length. The coupling
constants A22 and Ass in [18] had opposite signs. Al-
though it was not shown there, we can prove that in the
case when the vrvr potential contains in Eq. (4) two terms,
when there is no coupling to the KK channel, and the
scattering length is positive, the two other poles of the
S22 can lie only on the imaginary axis.

Next we discuss the relativistic form of the propaga-
tor G2 and investigate the analytical structure of the
matrix element S~~ calculated for a single term in V
(A33 —0). The situation now is quite different: the S22
function has a pair of poles ofF the imaginary axis and
simultaneously the condition a ) 0 can be satis6ed.
The expression for the scattering length in the relativis-
tic case is

where d2 is a constant defined in Appendix A by (A12)
and (A8). In order to get a „)0 the coupling constant
A22 must satisfy the conditions

1 t'p2 m2—+ —
I

+ d2
~

+A22+0
2 7I 4 2 p2

Negative sign of the coupling constant A22 means that
the interaction is attractive.

Using (34), we have compared our theoretical predic-
tions for the x7r phase shifts with the experimental data
in the energy range &om the x7r threshold up to 700 MeV.
We have used the data from the K,4 decay [28] (5 points)
and from the reaction vr p -+ x 7r+n [29—31] (16 points
up to 700 MeV). We have performed the g2 test using the
CERN program MINUIT and as the output parameters we
obtained A22 ———0.213 and P2 ——1239 MeV. For these
parameters y = 1.13 per one degree of &eedom. The
calculated scattering length a = 0.18m can be com-
pared with experimental values (0.28 6 0.05) m [28],
(0.24 6 0.09) m i [29], and (0.207 6 0.028) m i [32]. In
a combined analysis [33] of the nN -+ 7rmN data the
value a = (0.197+0.01) m i is quoted. The scattering
S-matrix function S22 has only one pair of the complex
conjugated poles at the energy E = 491 6 ~246 MeV. It
is clear that it cannot be related to the fo(1400) meson,
which, according to the Particle Data Group [34], has
the energy 1400 —i(75—200) MeV. In order to include
the fo(1400) state in a further analysis we have added a
second term to the m7r potential and the Jost function,
D~(k2) obtained the form (26). Then in the complex
momentum plane we have found a second pair of the
complex conjugated poles of the S22 function, which can
be related to the fo(1400) meson. In the j. umerical cal-
culations of the pole positions we must take into account
the energy range above 1 GeV and include the coupling
to the KK channel. Therefore, a full discussion con-
cerning the fo(1400) meson is presented in Sec. V. It is
worthwhile to note, however, that contrary to the nonrel-
ativistic case, both coupling constants A22 and A33 have

received negative signs.
The appearance of a new S22 pole, in comparison with

the nonrelativistic case, at an energy about 500 MeV can
be related to the existence of the so—called cr or e meson,
which has often been postulated both experimentally and
theoretically (see the references in [35]). The mass of this
meson varies between about 500 and 1000 MeV, while the
width varies even more —between 300 and 1000 MeV. A
broad bump in the m x efFective mass, centered at 775
MeV, has been recently reported by the Crystal Barrel
Collaboration in the reaction pp; 3xo [36]. Various
models of the cr meson structure have been formulated
describing it as normal qq, qqqq, or gluon-gluon states.
Such a low-mass scalar meson also appeared in the so-
called 0 model and in other field theoretical models (see
[37] and references cited therein) in which its mass had
a value of about 500 MeV, and its large width varied
from 300 to more than 500 MeV. The exchange of the 0
meson has been used in the Bonn model of the nucleon-
nucleon interactions [38]. It has been found that the 0'

meson exchange can efFectively describe the contribution
of two correlated 8-wave pions in the isospin 0 state. The
a mass and width have been also recently discussed in
the Nambu —Zona-Lasinio model [39]. An experimental
measurement of the o parameters is very dificult because
of its large width [35—40]. This meson does not appear
as a typical Breit-Wigner peak and in the partial wave
analyses it can easily be interpreted as a background.
The last time when the 0 meson was included in the
Particle Data Group tables was 1974 with M & 700
MeV and I' & 600 MeV (and it was called e) [40].

In the isospin 2, spin 0 e'er channel one does not expect
a resonant behavior of the scattering amplitude. Using
a simple rank-one potential of the Yamaguchi form we
have obtained a very good description of the correspond-
ing xm phase shifts up to about 1 GeV. No poles of the
I=2 scattering amplitude have been found in the mo-
mentum range of Rek2 between 0 and 4 GeV and Imk2
between 0 and —4 GeV. This fact, which confirms the
above expectation, is in contrast with the situation in
the isospin 0 channel in which we do And resonances.

IV. KK INTERACTIONS

Let us now discuss the KK interactions without
coupling to the arm channel. We shall be especially inter-
ested in the energy region close to the KK threshold near
1 GeV. In this paper we do not distinguish the K Ko and
K+K thresholds so we use their average energy value
Eih = 2m' ——991.38 MeV. The fo(975) meson energy
is very close to this value, so it is quite natural to in-
terpret this state as a bound KK state with a binding
energy of about 16 MeV. We do not, however, postulate
the existence of the bound state &om the beginning. As
we shall see in the next section, the parameters of the
KK interaction will be 6xed by a global 6t to the xx
and KK data. Here we discuss ch'Kerent conditions for
the existence of the particular KK structures: bound
states, antibound states (sometimes called virtual states
[41]), or resonances. For each case we shall examine ef-
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Eg ——2m~ —2 m~& —o.2~ for exp(mrs. (40)

The Jost function Dx (kq) in Eq. (25) vanishes if

A$g = 1/Re[ J~g (i~/)] (41)

since 1m[f1(io.1)] = 0. The coupling constant depends
on the range parameter p1, which can be chosen regard-
less of the binding energy Eg. In the nonrelativistic case
we approximate the propagator Gq in Eq. (2) by

fects of the relativistic propagation of kaons and their
infiuence on some observables, such as scattering length
or phase shifts. A very good method to distinguish the
three types of the KK states is to look at the positions
of the S-matrix poles corresponding to the Jost function
zeros in the complex kq plane [Eq. (29)]. If the zero lies
on the positive imaginary axis (kq

——iaq, aq & 0), then a
bound state exists. The antibound state corresponds to a
zero lying on the negative part of imaginary axis (aq(0).
If there are two complex conjugated zeros in the lower
half plane then there is a resonance in the KK channel.

At first we analyze the most important features of the
bound state. Its binding energy can be defined as

as large as 30'. Let us also notice that at higher Pq the
phase shift decrease with energy is much less steep than
at lower P1 ——150 MeV. This decrease at the KK thresh-
old is governed by the negative value of the KK scatter-
ing length. The general expression for the KK scattering
length in the relativistic case is given by Eq. (38) provided
we substitute in it the KK channel parameters mq, Pq,
and Agg.

The values of the scattering lengths and the coupling
constants are given in Table I. As indicated in the last
column, the relativistic corrections at the KX threshold
amount to 13/p if the value Pq is as large as 2000 MeV,
while at low Pq & 150 MeV they are smaller than 1'

Next we examine the main difFerence between the an-
tibound state and the bound state discussed above. The
corresponding Jost function zero is at kq ——in', but
now aq is negative. The nonrelativistic relation (43)
leads to a weaker coupling than in the previous case
(—1 & Aqq & 0). In Fig. 1(b) we show the energy de-

KK
(deg)

120

Gg(s) =
1

(42)

60

Then according to Eq. (A13) the dimensionless KK cou-
pling constant is particularly simple:

( ay 1Aii= —
~

1+—
~

120

1.0 1.2 1.4

(b)—

The KK force is attractive and the coupling constant is
negative and smaller than —1. For the relativistic prop-
agator we have numerically verified (see also [Eq. (A9)])
that the p1 dependence of Aqq is very similar to the one
in the nonrelativistic case for the small values of Pq up to
about 200 MeV. For larger p1 the absolute value of the
"relativistic" coupling constant is smaller than the cou-
pling constant in the nonrelativistic limit. If Igq, oo,
then nonrelativistically Aqq ', —1, while in the rela-
tivistic case Ag1,' 0 as —zmx/pg [see Eqs. (A9) and
(41)]. This is the first indication that in the limit of large

Pq the relativistic effects might be important.
In the absence of the coupling to the mn channel we

can use similar relation between the KK scattering phase
shift h~a and the phase of the Jost function Dx (kq) as
in Eq. (34) for the mz channel. In the limit kz' , 0 the
KK scattering length is given by a~& = tg(b&TJ)/kq.
The energy dependence of the phase shifts can be di-
rectly calculated using Eqs. (23), (25), (A9), or (A13)
for a speci6c choice of the bound-state energy at a given
value of the range parameter Pq. This is illustrated in
Fig. 1(a) for two values of Pq ——150 and 2000 MeV. At the
KK threshold the value of the phase shift is m (conven-
tionally assumed for a bound state) and monotonically
decreases to zero as the energy increases. Again we see
a very important difFerence between the relativistic and
nonrelativistic expressions for large Pq values (Pq & m~).
At Pq ——2000 MeV and E = 1400 MeV the deference is

60

1.0 1.2 1.4

180

120

60

(c)

1.0 1.2 1.4

E (GeV)

FIG. 1. (a) KK scattering phase shifts vs energy in the
presence of the bound state at 975 MeV. Solid lines corre-
spond to the relativistic KK propagator, while the dashed
line corresponds to the nonrelativistic propagator. The two
upper lines are calculated for Pq

——2000 MeV aud the two lower
lines for Pq

——150 MeV. (b) Same as in (a) but for the anti-
bound state at 975 MeV. (c) KK scattering phase shifts vs
energy in the presence of the resonance at M, = 993 MeV
of the width F = 46 MeV. Both curves are calculated for the
relativistic propagator: the upper one corresponds to Pq ——72
MeV and Aqq ——1.16 and the lower one to Pq

——10.47 GeV and
Ayy ———0.14.



3150 R. KAMINSKI, L. LHSNIAK, AND J.-P. MAILLET

TABLE I. KK coupling constants Aq ~ and scattering
lengths a corresponding to the KK bound state at 975 MeV
(without coupling to the mrs' channel).

Pi Nonrelativistic Relativistic
(MeV) Aii a)v (fm) Aii aR (fm)

~

—1
~

100%%uo

150 -2.55 -4.32 -2.48 -4.28 1
500 -1.39 -2.81 -1.18 -2.70

2000 -1.09 -2.35 -0.54 -2.05 13

ativistic form of the radial wave function is simple and
can be found in Ref. [18]. Its Fourier transform 4'~(p)
describes the momentum distribution of the KK relative
motion (see Ref. [42])

@pr(p) = c/v G~(p)ai(p),

where Giv(p) = —mR. /(ui + p ) is the nonrelativistic
propagator corresponding to the binding energy E~ ——

ni/mR and civ is the normalization constant

pendence of the phase shifts calculated in the relativistic
and nonrelativistic cases for two values of the range pa-
rameters )(3i as in Fig. 1(a). The phase shifts increase
at the KK threshold starting Rom the zero value, which
means that the scattering length is positive. Again we
notice that the relativistic eKects are mainly important
for the large values of the parameter Pi and for higher
energies. The phase shifts calculated relativistically are
larger that the corresponding nonrelativistic values.

A special case in the KK channel is the existence of
a resonance at the complex energy Ms —iI's/2, where
Mp is the resonance energy and I'g is its width. In the
complex momentum plane there are two S-matrix poles
in the lower half plane at kq ——kk~ —ikl, where kr ) 0.
They coincide with zeros of the Jost function:

cN — ((il + Pl )
1 o iPi 3/2
2 mK

(46)

such that Jdsk
~
@~(k) ~2 = 1. Similarly, in the rela-

tivistic case we write

@R(p) = cR GR(p)ui(p),

where GR(p) = 1/(E —2/p2+ m2&) is the relativis-
tic propagator corresponding to the total energy E =
2/m& —ai and cR is the normalization constant. The
relativistic wave function in the con6guration space
4R(r) is related to ilrR(p) by the Fourier transform. An
important parameter describing the radial extension of
the KK system is the root-mean-square diameter

D~(+kR —ikl) = 0. (44) (r ) =f d rr (OR(r) ( (48)

For our nonrelativistic and simple choice of the KK in-

teraction [Eq. (3)] the interaction strength and the range
parameter are fixed, since pi ——kr and Aii ——kR/k& ) 0

(repulsive interaction). In the relativistic case, however,

there are two possibilities of choosing the parameters Pi
and A~q at a given resonance position. One set of param-
eters is very close to the nonrelativistic set. This is re-

lated to the values of kl, which in general must be smaller

than about 100 MeV if we would try to attribute the dis-
cussed resonance to the observed rather narrow fo(S?5)
meson strongly coupled to the KK channel. The second
relativistic solution is obtained for very large Pi value
and Aii & 0 (attractive interaction). The phase shifts
are plotted in Fig. 1(c), and their behavior is very differ-
ent in the two cases. For sinaller Pi values close to 70
MeV (upper curve) we at first observe an energy decrease
and then an increase of the bR-Ic function. This means
that the resulting scattering lengths are negative. The
phase shifts calculated for the relativistic and nonrela-
tivistic propagators are very similar. They dier by less
than one degree so the corresponding lines in Fig. 1(c)
are indistinguishable. The lower curve corresponds to
the second relativistic solution and the phase shifts in-
crease staring &om 0 at the threshold. In this case the
scattering length is positive.

At the end of this section we return to the discussion of
the bound state, especially its wave function in the mo-
mentum and cou6guration spaces. An important param-
eter describing the bound KK system near the threshold
is the root-mean-square rad;us parameter. It has been
discussed in the nonrelativistic model [18],and its prefer-
able value was given as (rs)i/2 = 0.76 fm. The nonrel-

TABLE II. Root-mean-square radii of the KK wave func-
tion.

(MeV)
971.65
973.36
973.71

Cly A
(MeV) (MeV)

98.90 2000
94.51 1496
93.59 2177

Nonrelativistic

( 2)i/s

(fm)
0.76
0.81
0.80

Relativistic

( 2)i/a

(fm)
0.66
0.73
0.69

or the root-mean-square radius (r&~) i/2 =
2 (r2) i/2. The

results of numerical calculations are given in Table II.
The first set of parameters o.i and Pi is taken from
Ref. [18]. The second and third line correspond to the
results of 6ts described further in Sec. V. The root-
mean-square radii are small, typically about 0.7 fm, so
the KK molecule has a rather compact structure. This
fact can have important consequences. For example, in
Ref. [25] a larger value 1.2 fm has been used to predict
the width of the radiative P ~ fo(S?5)p decay. If in-

stead of 1.2 fm we use the value 0.? fm the corresponding
width increases by a factor of 2. The difFerence between
the root-mean-square radii is caused by different forms
of the wave functions as explained in A.ppendix B. Let
us mention that the annihilation probability of the KK
molecule into two photons will be substantially increased
for small KK radii (compare [48]). In Table II we can
also notice a general trend: the root-mean-square radii
calculated for the relativistic propagator are smaller by
about 0.1 fm in comparison with corresponding values for
the nonrelativistic case. The difference comes from the
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behavior of the radial wave functions for the values of
r smaller than about 0.7 fm, where the relativistic wave

function takes higher values than the nonrelativistic one.

V. mm AND KK COUPLED-CHANNEL
ANALYSIS

In this section we describe the coupled-channel
analysis performed for the interacting ax and KK pairs.
Starting from the ver threshold we put the upper energy
limit at 1400 MeV, where one can still neglect the cou-
pling to other channels with higher thresholds (as dis-
cussed in [19]). The interactions (3)—(5) in both chan-
nels have the forms as simple as possible. As it was
mentioned in Sec. III the rank-two potential allows us
to describe a substantial increase of the xx phase shifts
below 1 GeV and the existence of the known fo(1400)
meson. All the potential parameters have been obtained
by fitting the calculated phase shifts h~~, bx~ and the
inelasticity parameter g to the experimental data. Above
the KK threshold a sum p = b~~ + b~& is often used
and a quantity z = (1 —rP)/4 is introduced to repre-
sent the inelasticity. Except for the 7m threshold data of
Refs. [28,29] we have used the data of Refs. [30,31] cov-
ering a wide energy band. The total number of the b~~
points is 56. In addition, 17 points of the iI dependence
have been taken from Ref. [43]. For the y dependence we
use two distinct data sets [43,4+4, which essentially difFer
in their behavior near the KK threshold. In the data
[45] used in the analysis of Ref. [44] a constant increase
of y is seen, while in the data of Ref. [43] some threshold
decrease with energy can be observed. As it was shown in
Sec. IV, this difFerence could be crucial for understanding
the nature of fo(975), so we have performed two separate
fits to the collection of the b~~, 6~x, and iI points. The
data set containing 16 y points of Ref. [43] is further
called set 1, while in set 2 we include 17 &p numbers read
from Ref. [44] (the total niimber of the data points is 89
and 90, respectively for these two data sets).

The fitted parameters are shown in Table III. The
asymmetric errors 6+ and 6 correspond to an increase
of the total g2 value by one unit. Let us notice that all
the channel-coupling constants A;; are negative, which
means that the interactions are attractive in both chan-
nels. The couplings between channels are small. The

ranges of the form factors are short, since the P; values
are in the GeV region. During the fitting procedure we
have found that it was convenient to use as an indepen-
dent variable the product i43P3 instead of Ps. For both
data sets this product is very close to —arm —431
MeV. This fact is not accidental, as is explained in Ap-
pendix A. The very large value of Ps is compensated by
very small values of the corresponding coupling constants
A33 and A is. The starting parameters A22 and P2 in
the minimization procedure have been given in Sec. III.
Other coupling constants were initially put equal to zero
and P; parameters had the value 1 GeV. In Table IV we
show y2 values of two fits for separated data parts. The
data on b~~ and iI are very well described by both fits
but the data on y only by the fit to the data set 1.

In Figs. 2—4 the results of our fits to the data sets 1
and 2 are shown. Theoretical b~~ and g values differ
only slightly for both fits. In Fig. 3 we notice an initial
decrease of the y curves at the KK threshold, so the data
set 1 is clearly favored by the model (compare also the
corresponding y2 values of Table IV). Because of a very
similar monotonic increase of the h~~ phase shifts above
1 GeV, the difFerences in the y behavior for the data sets
1 and 2 are related to various possible trends of the b~~.
As discussed in Sec. IV the trend seen in the y data of
Ref. [43] is connected with a presence of the quasibound
KK state, but in order to exclude other possibilities new
precise h~~ measurements near the threshold are needed.

We have investigated a pole structure of the S-matrix
elements, and the results are shown in Table V. The
pole fo(500) lying quite far from the physical region (see
Sec. III) causes a slow but systematic increase of the b~~
phase shifts starting from the irn threshold. The pres-
ence of the narrow fo(975) manifests itself by a strong
jnmp of the b~~ and the enhancement of the inelasticity
function x near the KK threshold (see Figs. 2 and 4).
A further increase of the bn~ and rp above 1.2 GeV is
related to the presence of the fo(1400) meson. Also the
structure of the inelasticity around the energy 1.3 GeV is
caused by this state. We should point out that the values
of the resonance parameters may be changed if a fit to
another data set is performed. We expect that changes
may be much larger than the error ranges quoted in Ta-
ble V. This is due to the fact that some experiments
on the xm and KK scattering have supplied contradic-
tory results, as was illustrated by our choice of the sets 1
and 2. We think, however, that the differences between

TABLE III. Model parameters and their np (A~) and down (3 ) errors

Fitted
parameters

All
A2g

A33 x 10
Agg

Ag3 x 10
Pg (GeV)
p2 (GeV)
PsxAss (MeV)
Ps x 10 (GeV)

Values
-0.658
-0.201
-7.46

0.0363
3.0

1.496
1.162

-431.162
5.8

Set 1

0.030
0.003
2.32

0.0021
2.5

0.115
0.052
0.070

2.6

-0.031
-O.Q03
-3.51

-0.0025
-1.0

-0.082
-0.051
-0.040

-1.9

Values
-0.511
-0.201
-8.95

0.0251
2.8

2.177
1.141

-431.145
4.8

Set 2

0.075
O.OQ4

3.11
0.0064

2.9
0.528
0.052
0.065

2.6

-0.078
-Q.004
-5.55

-0.0048
-0.9

-0.402
-0.052
-0.035

-1.8
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TABLE IV. g values for the fits to the data sets 1 and 2.

Set
No.

1
2

x'
total
75.2

100.8

x'
b~~ data

52.2
50.5

x'
y data

6.7
34.2

x'
g data

16.4
16.1

7T7T

(deg)

300

data sets are representative. In particular the resonance
parameters are not very much in6uenced if we compare
results of two fits in Table V. Let us mention here that a
moderate width of the fp(1400) is obtained together with
the presence of the wide fp(500). The calculated masses
and widths of the fp(1400) meson are in very good agree-
ment with the corresponding values obtained in Ref. [43]
(M = 1425 6 15 MeV and I' = 1606 30 MeV). The mass
and width of the fp(1400) meson are not well measured
experimentally. In the Particle Data Group table [34]
the fp(1400) width is estimated to lie between 150 and
400 MeV; recently the Crystal Barrel Collaboration has
found a scalar resonance at M = 1365 MeV and width
I' = 268 6 70 MeV [36]. In the absence of the former
state, the systematic increase of the vrz phase shifts be-
low the energy of 1 GeV should be caused by a very wide

fp(1400) state (see for example Ref. [18]) or by another
wide state at the energy of about 1 GeV.

In Fig. 5 the S~z matrix element singularities are pre-
sented using the complex variable z (compare [46] and

[»]):

k, +k~z-
gm~-m (49)

The positions of poles and zeros have been calculated
from the fit to the data set 1. A very similar struc-
ture of the S~~ has been found for the fit to the data
set 2. The energy sheets on the z plane are defined
by the signs of the imaginary parts of the kq and kq

momenta (Imkz, lmkq) as follows: I (+,+), II (—,+),
III (—,—), IV (+,—). In Fig. 5 we notice two poles on sheet
II labeled 1 and 2. They correspond to the fp(500) and
fp(975) resonances. The fp(1400) resonance position on
sheet III is indicated by 3. Those poles are the near-
est singularities lying close to the physical region. The
xm threshold region is also strongly inauenced by the
cuts located on the imaginary z axes. In the momen-
tum space these cuts are on the k; axes (from Rim; to
+ ioo). Their origin is due to the presence of the loga-
rithmic and square-root functions in the J;~ integrals (see
Appendix A). In the nonrelativistic case these integrals
have much simpler structure, and there are no cuts in the
z plane. Two poles at Re z ) 0 are particularly close to

240

180

120

60

0.4 0.6 0.8 1.0 1.2 1.4

E (GeV)

FIG. 2. Isospin 0 8-wave xx phase shifts calculated for the
data set 1 (solid line) and set 2 (dashed line). Arrows indicate
the energy range used in the data fits. Data are from [28—31].

the [z]= 1 circle: pole 2 associated with the fp(975) reso-
nance and the another pole lying on sheet III with a zero
almost superposed on its top. Pole 2 can be related to
the antibound state discussed in Sec. IV. If the coupling
between channels is switched oH', then the poles move to
the ~z~= 1 circle. The positions of other zeros or poles
are connected with the discussed fp(500) and fp(1400)
resonances. In particular the structure of the inelasticity
function shown in Fig. 4 is a result of an interplay of the
S-matrix zeros and poles. The S~7t- matrix element also
has two second-order zeros related to the form of the e'er
potential. They correspond to the values of kz ———i'
and kz ———iPs, and due to large values of Pz and Ps two
of them lie very close to the origin of the z plane and the
other two very far from that point. These poles are not
shown in Fig. 5.

We have also performed fits with only one term in the
arm potential, i.e. , with Ass ——0 in Eq. (4). The yz fit was
poor. In this case the S~~ matrix element has no pole
corresponding to the fp(1400) meson and the b~~ and p
phase shifts have a very Bat behavior above the energy
1.2 GeV.

Similar fits as for the relativistic form have been done
using a nonrelativistic form of the Jost function. The
coupling constants Aqq and A33 then had opposite signs,
and the fp(975) meson also appeared as a Itlt bound

TABLE V. Masses and widths of resonances obtained in 6ts to the data sets 1 and 2 compared
with values of the Particle Data Group [34] and Ref. [40] for fp(500).

Pole
fo(500)
fo(975)
f.(1400)

Set 1
M (MeV) I' (MeV)

506+10 494+5
973+2 29+2

1430+5 145+25

Set 2
M (MeV)

505+10
974+2

1428+

I' (MeV)
497+5
30+1

157+~9

Particle Data Group
M (MeV) I' (MeV)

& 700 ) 600
974.1+2.5 47+9

1400 150-400
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(deg)

I
I

I
[

I

300

250

0

+
:: II0+

V V

' IV. .: .IV.

200 -3 -2 0 i Re(z)

150

1.0 1.2

E (GeV)

1.4

FIG. 3. Sum of the xx and KK phase shifts. Pull circles
denote data set 1 [43] and open circles data set 2 [44). Lines
and arrows are as in Fig. 2.

I I I I
]

I

0.10

0.05

state. We have found that apart from the fo(975) meson
there was only one very wide (I' 1300 MeV) state at
the energy of about 850 MeV. The y2 value for the fit
was 283 for 89 points so it was much worse than in the
relativistic case. Energy dependence of the b~z, y and z
was similar to that one in the relativistic fit with only one
term in the z's potential. As in Ref. [18], the 8 matrix
also has two poles on the negative part of the imaginary
axis kz but no poles corresponding to the fo(500).

Scattering lengths as7r and a&& are very important
quantities describing the near threshold vrvr and KK in-
teractions. Comparison of the values obtained by us with
experimental measurements and other theoretical esti-
mations is shown in Table VI. Good agreement of the
predicted a~~ values for the relativistic case with other
data is found. In the nonrelativistic case there are two
S-matrix poles on the k2 imaginary axis and one of them
is relatively close to the mar threshold, which gives a large
positive contribution to the scattering length. Therefore

FIG. 5. Structure of the S matrix element in the complex
z plane. Positions of poles (1 —fp(500), 2 —fo(975), 3—
fo(1400)) are indicated by crosses and zeros by circles. The
roman numbers label the energy sheets. The bold line shows

the physical region, and the rectangles on the imaginary axis
indicate the S cuts.

the scattering length is much larger than in the relativis-
tic case. An appearance of the imaginary part of the KK
scattering length is related to the fact that above the KK
threshold the annihilation process into two pions is pos-
sible. The value of this imaginary part is evaluated using
a low-momentum approximation of the inelasticity g:

rl = 1 —2bkg + O(k, ), (50)

TABLE VI. Comparison of the mm and KK scattering
lengths obtained in the present work (sets 1, 2, and nonrela-
tivistic St) with other determinations.

where the parameter b is equal to Ima&Ir (see also
Ref. [19]). The negative value of the real part of the
KK scattering length is caused by an infiuence of a sin-

gle pole lying close to the KK threshold on the sheet II
(see Fig. 5). This pole is related with the narrow fo(975)
meson. We expect that in a case when two poles are
close to the KK threshold on sheets II and III (as dis-
cussed in Ref. [17]) the absolute value of the real part of
the KK scattering length can be much smaller. The rea-
son is that the contributions of such poles have opposite
signs so they cancel to a large extend. The cancellation
is complete if the poles lie symmetrically in the kaon
momentum space (at ki and —ki). The precise experi-
mental measurements of this quantity could distinguish
between these two possibilities. There is one experimen-
tal estimation of the KK scattering length based on the
data of Ref. [47], which gives numbers similar to our
findings. Unfortunately, the KK phase shifts used by
Wetzel et al. do not satisfy a very general requirement
ba-x (

—ki) = —bxa-(ki), so the values of the scattering
lengths obtained in [47] could be questioned. The K+K
scattering lengths quoted in Ref. [48] and given in Table
VI are theoretical estimations used in the calculations

1.0 1.2

E (GeV)

1.4

FIG. 4. Inelasticity parameter x = (1 —g )/4. Data are
taken &om [43]. Lines and arrows are as in Fig. 2.

Source
Set 1
Set 2

Nonrel. fit
[48]
[32]

a~~ m~'
0.172+0.008
0.174+0.008

0.40

0.207+0.028

Re(a —) (fm)
-1.73+0.07
-1.58+0.09

-1.70
-1.15

Im(a —) (fm)
0.59+0.04
0.61+0.04

0.78
1.80
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of the properties specific to the kaonic atoms. Contrary
to the KK case, more information on the ~m scattering
length is available. Our values for the relativistic fits are
in good agreement with other determinations (see Table
VI).

Because of the channel coupling the fo (975) and
fo(1400) mesons can decay into the m7r and KK pairs.
The fo(975) meson being presumably a KK bound
state becomes unstable due to the annihilation process
KK m xx. The branching ratio of its decay into the
KK channel is

KK (51)

where I'qQq denotes the total and I ~& the KK &actional
decay width. If we wish to compare the experimental
fe(975) branching ratio with the theoretical one, we must
take into account the fact that due to the proximity of
the KK threshold the fo(975) resonance has no atypical
Breit-Wigner shape. As it was discussed in Ref. [19] the
average branching ratio B „ofthe fe(975) reads

1 Mmax

B„= dE(l —g ),
max ™eM, h

(52)

where M, M„and Mqi, denote, respectively, the up-
per limit of integration, mass of the meson and mass of
the KK threshold. In the numerical calculations we put
M = 41'q q. We obtain B„=18.0 6 0.7% for the
fit to the data set 1 and B „=18.4 6 0.6% for the fit
to the data set 2 in agreement with the Particle Data
Group value 21.9 6 2.4% [34]. In the case of the fo (1400)
meson we have performed the integration from M, —r,QQ

to M, + I', , substituting 21', q in place of 2(M „—M, )
in Eq. (52). For the fs(1400)~KK branching ratio, we

obtain 16+1% for both data sets in agreement with [44].
Let us notice that the fo(1400) resonance mass is slightly
higher than the upper energy limit 1e4 GeV used in the
fits. This fact may lead to some uncertainties in the
predicted values of the fo(1400) branching ratios. The
Particle Data Group value is 6.4+2 s% [34]. It is entirely
based on the analysis done in Ref. [49] in the energy
range from 1100 to 1420 MeV. The corresponding value
of the branching ratio calculated for the parameter set
1 in the same energy range is as high as 30.3%. This is
a result of the existing discrepancy between the s-wave
intensities obtained by the Argonne group [43] and the
CERN-Cracow-Mn~ich group [49]. In our analysis we
have chosen the Argonne data, since they include points
closer to the KK threshold. For energies higher than 1.4
GeV an influence of other scalar —isoscalar states such as
fe(1525), fo(1590), or even fs(1710) (see references in
[34]) may be important. We have also tried to include in
our analysis the energy range from 1.4 to 1.5 GeV,and we
could not simultaneously fit the bs~ and y phase shifts.
The b~s. data in this energy region favor wider fe(1400)
meson; the sum y = bs~ + balr, which increases steeply
with energy requires an existence of a narrow state.

VI. CONCLUSIONS

We have performed the analysis of the isoscalar spin
zero urer and KK coupled-channel interactions. The
model was based on a separable potential formalism.
Two-channel scattering amplitudes have been evaluated
kom the coupled equations of the Lippmann-Schwinger
type. Using the relativistic propagators we have obtained
very good fits to the experimental xm and KK scattering
data. It has been found that the potentials in the mx and.
KK channels are attractive and have short-range form
factors. The y fits in the relativistic case were 3 or 4
times better than in the nonrelativistic case. In contrast
to the nonrelativistic calculations (see [18] and Sec. V)
new fo(500) state has been found in the mx interactions
treated relativistically. Its large width about 500 MeV,
comparable to its mass, is in agreement with other esti-
mations. Because of the large distance of the fo (500) pole
from the physical region one can call the fo(500) state a
correlated two-pion pair. In the relativistic version of our
model the mass and width of the fo(1400) meson are well
described (see Table V). Relativistic effects also play the
important role near the arm threshold. The xx scattering
length is significantly smaller than in the nonrelativistic
case and is in agreement with the experimental data and
other models (see Table VI).

We have also been interested in describing the KK in-
teraction. Two different data sets on the KK phase shifts
have been taken into account. Our solutions indicate the
existence of a quasibound state below the KK thresh-
old, which we identify with the fo(975) meson. Thus this
state does not seem to be a typical qq meson. Some ob-
servables, e.g. , the KK scattering length and root-mean-
square radius of the fs(975) have been evaluated. We
predict the large negative value of the KK scattering
length about —1.7 fm and the corresponding imaginary
part of the order of 0.6 fm (Table VI). In our calcula-
tions the fe(975) state appears as the compact KK sys-
tem with the root-mean-square radius of about 0.7 fm,
so it is not a KK molecule of the deuteron size. Analysis
of the KK channel leads to a conclusion that at the KK
threshold the relativistic corrections to the KK scatter-
ing length or the root-mean-square radius are of the order
of 10% and they gradually grow with increasing energy.

The existing data above the KK threshold are still
controversial. Comparison of our expectations with new

experimental data may be done in near future and a new

light on the nature of the fe(975) and ao(980) mesons
can be shed on if very precise measurements near the
KK production threshold like those planned at COSY
[50] are performed. Very good energy resolution would
enable us to take into account a mass splitting between
the charged K K+ and neutral K K modes. Because
of the Diferent interactions of the K and K+ with nu-

cleons in the GeV region the molecular picture of the
fe(975) can also be verified by studying its interaction
inside nuclear matter (see also Ref. [19]).

ACKNOWLEDGMENTS
This work has been partially supported by Polish Com-

mittee for Scientific Research (Grant No. 2 0198 9101).



50 RELATIVISTIC El'I ACTS IN SCALAR MESON DYNAMICS 3155

Discussions with L. Gorlich, A. D. Martin, M. Rosanska,
K. Rybicki, and J. Turnau are gratefully acknowledged.
We thank very much D. Morgan for his computer com-
mbb~bcations. Division de Physique Theorique is Unite de
Recherche des Universites Paris ll et Paris 6 associee au
CNRS.

APPENDIX A

In this appendix are give explicit expressions for the t-
matrix elements (ll) in terms of the coupling constants
A;z and the integrals I;~ [Eqs. (14) and (15)]:

[All (All A22 Al2)I22 (A11A33 Als) 33 + A12A13 23

+(A11A22A33 A33Al2 A22Al3)(I22I33 I23) ]1

t12 D (A12 A12A33I33 + A22A13I23)1

t13 D (A13 A13A22I22 + A33A12I23)1

t22 —D (A12I11[A12(1 A33I33) + A22A13I23] + A22(1 A11I11)(1 A33I33) A22A13I11(A12I23 + A13I33))b

(A1)

(A2)

(A3)

(A4)

t23 —D [A22A33I23 + A12A13Ill —(A11A22A33 —A22Al3 —A33Al2)I11I23), (A5)

t33 —D {A13I11[A13(1—A22I22) + A33A12I23] + A33(1 A11I11)(1—A22I22) A33A12I11(A13I23 + A12I22)) ~

(A6)

In Eqs. (Al) —(A6) D denotes the function defined in Eq. (24). The integrals (14) and (15) have also been used in [23]
to calculate the K Npoten—tial but analytical formulas have been given only when the propagator G in Eq. (2) was
nonrelativistic (see also [51]). We show below that in the relativistic case the analytical calculations can be performed
as well. A very helpful substitution is y = /32/(32+ m2). Then after some straightforward algebraic operations the
integrals I~~ can be r'ewritten in the terms of the integral

If ~2 is real then

1

F(z)=
y2~2 + (A7)

1 l ~'1+x&~
F(g2) ( 2X ( 1-z j if0&z2&1,

(As)
1 ifz2 =0
~«»(l ~ l)i I

~
I

Finally the integrals I;~ can be expressed in terms of J;z (Eq. (19)).

J;;(k;) =-
4m; (1 —ia;)2

—(1 + a; ) + ——(1 + a; ) b; + a; C; d; —a; C; H~), (A9)

J23(k2) =— V'P2P3 + 2

2m2{1 —ia2)(1 —ia3) p2+ p3 iv)'b2b3(1+ a2)(1+ a3)
E

x Ha+ ~ a da(1+ a/)(ba —1) —dh(1+ ax)(ba —1) ) . (A10)

» (A9)»d (A1o),

E;=2 k +m2 C-= ' H. =—F C'.

and

(A11)

The nonrelativistic limit of the integrals (14) and (15)
can be obtained from (A9) and (A10) when m;
oo. Physically it means that the nonrelativistic limit is
achieved when both k; (i = 1,2) and P~ {j= 1,2, 3) are
much smaller than m;. Then

k;a;= —', b;= *, d;—:F(1 —b;), i = 1,2, 3. (A12)
1J„(k,) —— (A13)

In (All) and (A12) the m; are defined by (7) and k3 = k2.
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J (k )
2/P3P3

(P& + p3)(1 —za3)(1 io3)
' (A14)

Let us discuss the limit P3', oo. For very large P3
the integral J33 is proportional to P3.

lV=(4 ) 'I'[2 P( +P)]"/(& — ) (84)

is the normalization factor (see Ref. [18]). The root-
mean-square diameter defined by Eq. (48) for the wave
function (Bl) is given by

(A15)

3 oo

(r ) = 4zr — drr exp( —2p,r) = 3p,
0

so the root-mean-square radius

(85)

In order to compensate for too large values of J33 in
Eqs. (26-28) we can multiply it by a sufficiently small A33
value, which should be inversely proportional to P3. If
P3 ,'oo and A33P3 ——zrm„, then the terxn 1 —A33 J33
in Eq. (26) does not grow with p3.

In the limit P3 ', oo the integral J33 vanishes in
Eq. (28) and the Jost function Dzr(kz) is approximately
a product of two terms (1 —A33J33)(1 —A33J33) ~ The
zero of the first term can be attributed to the fo(500)
state as discussed in Sec. III. For the values P3 and A33
as given in Table III the second term (together with the
small J333 term) allows us to obtain the second Drr zero
relatively close to the real axis k3. In Table V we assign
this zero to the fo(1400) meson.

(86)

For p = 141 MeV we obtain (rs2, )x~3 = 1.2 fm. The cor-
responrling formula for the tzoo parameter wave function
(83) has been derived in Ref. [52]:

(„)~' = —,[-,~-3(q4+5q + 12' +5q+ 1)
~- (1+~)-] ~ (87)

This radius depends not only on the parameter o. related
to the binding energy E (n = gmlt E) but also on the
ratio ( = P/a. P is the range parameter, which is much
larger than xx (see Table II).

In the limit P/cz -+ oo we get, from (87),

APPENDIX 8 (r ) = 2 I&/(2n). (88)

Below we explain a difference between the root-mean-
square radii of the KK wave functions calculated in Sec.
IV and Ref. [25]. The value 1.2 fm of the root mean
square radius quoted by Close, Isgur, and Kumano in
[25] corresponds to the radial wave function

4(r) = (tz /zr)'~ exp( —pr).

From their value C(0) = 3 x 10 2 GeV3~3 one can
obtain p = 141 MeV. The constant p can be related to
the binding energy E of the fo(975) state:

p = &2mE, (82)

where

N
@NR(r) = —[exp(—~r) —exp( —Pr)]

T
(83)

where m is the KK reduced mass (m = 1/2m', mJc
being the kaon mass). If we take an average of the Ko
and K+ masses m~ ——495.69 MeV, then we get E = 40.1
MeV. This value is too large by a factor about 2, since
subtracting it from the average KK threshold mass 991.3
MeV we would obtain 951.2 MeV, which is substantially
lower than the fo(975) mass.

The nonrelativistic form of the KK wave function used
by us is difFerent from (81):

For n = 98.9 MeV corresponding to the binding energy
19.7 MeV the root-mean-square radius is 0.71 fm. If o, =
y, (corresponding to the same value of binding energy)
then the root-mean-square radii expressed by (86) and

(88) differ by a factor v 3/2 x~3 = ~6 = 2.45. If we wish
to keep the binding energy equal to about 20 MeV, then
we have to reduce p by a factor (40.1 MeV/20 MeV) I
~2, which leads to an increase of (r3&) x~ given by (86) to
a value 1.2 fm v 2 —1.70 fm. For the wave function (83),
however, we have to divide this value by the factor ~6, so
we obtain the root-mean-square radius 1.70 fm/~6 0.7
fm as written in Sec. IV.

We have seen that the difference between the root-
mean-square radii is due to a different shape of the
wave functions. The wave function (83), called also the
Hulthen wave function, has been used in nuclear physics
to describe the properties of the deuteron (see for exaxn-

ple Ref. [42]). It has no nodes, and for large values of r

this wave function behaves as r i exp( —ur), so asymp-
totically it is difFerent from the wave function (Bl). We
should remember that the wave function (81) is only a
one-parameter approximation to the KK wave function
known numerically (see Fig. 4 of Ref. [25]).

Finally let us remark that our present knowledge of
the KK spatial structure is not yet suKciently precise,
but generally we can agree that the radius of the KK
molecule is of the order 1 fm (and so is two times smaller
than the deuteron radius).
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