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We demonstrate that the distinctive features of the forward differential cross section of diffractive lep-
toproduction of a vector meson can be legitimately calculated in perturbative QCD in terms of the light-
cone gq wave function of the vector meson and the gluon distribution of the target. In particular, we cal-
culate the Q2 and nuclear dependence of the diffractive leptoproduction of vector mesons and estimate
the cross section. The production of longitudinally polarized vector mesons by longitudinally polarized
virtual photons is predicted to be the dominant component, yielding a cross section behaving as Q .
The nuclear dependence of the diffractive cross sections, which follows from a factorization theorem in
perturbative QCD, provides important tests of color transparency as well as constraints on the shadow-
ing of the gluon structure functions and the longitudinal structure functions of nuclei.

PACS number(s): 13.60.Le, 12.38.Bx, 13.60.—r

I. INTRODUCTION

We shall consider in this paper the small momentum
transfer coherent electroproduction of vector mesons,
v*(q)+p—V(qg+A)+(p —A), where the target p can be
either a nucleon or a nucleus, and where the state (p —A)
is identical to p except for a small momentum transfer.
Here V can be any possible vector meson, p°,a>,¢,J /P, Y.
We shall be concerned with the kinematic region where
x =Q?/s, and M} /s are small while Q%/Acp is large.
Small x means that large longitudinal distances, in the
rest frame of the target, are involved. The effective longi-
tudinal distance during which the process takes place is
large: Az=(1/M)(s/Q?) [1], where M is the target mass
and s =(p +¢)%. Our interest is in the possibility of ap-
plying perturbative QCD (PQCD) to the calculation of
hard processes characterized by large longitudinal dis-
tances. We demonstrate an interesting interplay of per-
turbative and nonperturbative QCD effects in the region
where the coupling constant is small but distances are
large, which leads to a new way to probe light-cone wave
functions of hadrons. In the case where Az >>2R, with R
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the radius of a nuclear target, we predict that interesting
color transparency effects will occur in diffractive elec-
troproduction of vector mesons. In the last section of the
paper, we briefly discuss QCD predictions for the nuclear
dependence of the diffractive cross sections and show
how such measurements can provide important con-
straints on the shadowing of the gluon structure func-
tions and of the deep-inelastic longitudinal structure
functions of nuclei.

In general, the physics underlying our PQCD calcula-
tion can be directly tested through the striking nuclear
effects predicted in vector meson leptoproduction which
differ from those that would result within the Glauber ap-
proximation. However, the thrust of the present paper is
not a detailed discussion of nuclear effects, but rather a
general description of the Q* dependence of the forward
differential cross section, an analysis of the rigor of the
PQCD calculation, a semiquantitative estimate of the
magnitude of the cross section, a prediction as to which
polarization dominates the large Q2 reaction, and a cal-
culation of the nuclear dependence of electroproduction
of vector mesons.

The main features of our perturbative QCD analysis
agree with those obtained in the nonperturbative ap-
proach proposed by Donnachie and Landshoff (DL) [2]
and discussed in more detail by Cudell [3]. In the DL
model, the Pomeron is represented by the effective ex-
change of two nonperturbative gluons coupling via an
effective constant coupling and the p wave function is ap-
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proximated as a nonrelativistic vertex where the quark
and antiquark have equal four-momenta. In our analysis,
the two-gluon aspect of the QCD Pomeron emerges au-
tomatically at large Q? in a form directly related to the
proton’s gluon structure function. In addition we treat
the relativistic structure of the vector meson generally.
We find that the leading twist contribution to p leptopro-
duction is controlled by the p distribution amplitude
&(z,Q), the valence gg wave function which controls large
momentum transfer exclusive processes. As in the DL
model, PQCD predicts that the dominant leptoproduc-
tion amplitude couples a longitudinal photon to a longi-
tudinally polarized vector meson, and the leading cross
section o (s,Q?) falls as 1/Q° The agreement of the
data with this form is shown in Cudell’s paper [3].

We also predict that the cross section for production of
a transversely polarized vector meson will fall as Q % In
fact, it is the end-point contributions (which complicate
the analysis of elastic processes) that yield the dominant
contribution to the cross section for a transversely polar-
ized V. In contrast, we show that end-point
configurations are unimportant for the diffractive produc-
tion of longitudinally polarized vector mesons.

Our work is also closely related to that of Ryskin [4]
who has made detailed calculations of J /v electropro-
duction in leading logarithm in PQCD, employing the
constituent quark model. In this work we focus on the
dominant longitudinally polarized channels and find that
an analogous analysis can be applied to light vector
mesons. However, if in our formulas we take a nonrela-
tivistic approximation for the wave function of the vector
meson, then we find that the cross section for the produc-
tion of the J /¢ at large Q2 is a factor of 4 less than that
calculated in Ref. [4] in the nonrelativistic approxima-
tion. Unlike the heavy quarkonium case where the am-
plitude is controlled by the wave function at the origin
and the lepton pair decay constant, light hadron lep-
toproduction probes the shape of the minimal Fock-state
wave functions, i.e., the hadron distribution amplitudes
éy(2,Q) as defined in Ref. [5]. This dependence allows
tests of nonperturbative predictions from QCD sum rules
and lattice gauge theory. We also find that this sensitivi-
ty may help explain the pattern of SU(3)-flavor symmetry
breaking seen in the leptoproduction data.

The electroproduction of vector mesons has also been
recently discussed by Kopeliovich, Nemchik, Nikolaev,
and Zakharov [6] (KNNZ) in the context of their constit-
uent quark model approach to high energy, small
momentum transfer processes in which the constituent
quarks interact perturbatively with the nucleon. Indeed,
there is much in common between the KNNZ approach
and the present discussion, including their use of Eq. (20)
for a nucleon target as derived and applied in Refs. [7,8].
However, the application of the nonrelativistic quark
model to hard processes is questionable for this applica-
tion, since in QCD hard processes should be calculated
through the distribution of current, not constituent
quarks [S5]. Moreover, we find that the application of
PQCD is only legitimate for the production of longitudi-
nally polarized vector mesons. Thus, in distinction to
Ref. [6] we expect a different nuclear dependence for the
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production of transversely and longitudinally polarized
vector mesons. Further, the eikonal approximation used
by KNNZ for the nuclear case is at variance with Eqgs.
(33) and (37), which are derived from factorization in
PQCD. As a result we expect that nuclear effects will be
leading twist—logarithmically decreasing at large 0?
and increasing at small x. In contrast, KNNZ suggest,
on the basis of their constituent quark model, that the nu-
clear effects in diffractive leptoproduction are a higher
twist effect.

In order to achieve a simple result for the forward
differential cross section, see, e.g., Eq. (34), we find it
necessary to work in the leading Inl/x and the leading
InQ?/ A(ZQCD limit. As discussed in the body of the paper,
we believe that it is also possible to calculate do /dt at
small ¢ in the leading Inl/x approximation in terms of
the unintegrated gluon distribution discussed sometime
ago by Catani, Ciafaloni, and Hautmann [9], without us-
ing the leading anZ/AZQCD approximation. However,
such a calculation is not likely to lead to such a simple re-
sult as Eq. (34), which follows in the leading-double-
logarithmic approximation. Thus, we have not pursued
the single-logarithmic calculation, although it is clearly
interesting to do so. At the same time we will explain at
the end of Sec. II B that corrections to the expression we
obtain are numerically small.

Our final results should be taken with some caution.
Since they are based on a leading-logarithmic, even
leading-double-logarithmic calculation, the normaliza-
tions may not be completely reliable. However, the Q ~¢
dependence, the dominance of longitudinal polarization
for both the virtual photon and the produced vector
meson, and the proportionality of the cross section to the
unintegrated gluon distribution in the target, and there-
fore the nontrivial dependence of the cross section on
atomic number, are firm predictions which should not de-
pend on our logarithmic approximations.

II. THE DIFFRACTIVE CROSS SECTION IN
QCD NEAR ¢t =0

In this section the near-forward differential cross sec-
tion for y*(q)+p—V (g +A)+(p —A) will be calculated
in QCD. The target, labeled by its momentum p, is scat-
tered into a state of momentum p —A which we assume
to be a particle of the same species as p. For example, p
and p — A may both refer to protons. ¥ is a vector meson
of mass my,. We assume s/m}>>1,5/Q?>>>1 and
—t=—A%<<Q? and s=(p +¢)%,q?>=—Q% We also
suppose Q2/Acp, and Q?/mj are both much greater
than one.

The differential cross section for the process described
above is

doy _ 1
dt 16ms?

where A is the polarization of the virtual photon and A’ is
the polarization of the final state vector meson. In the
large s and large Q? limit, but with s /Q2>>1, we expect
the amplitude M to be dominated by two-gluon ex-
change, a particular graph of which is illustrated in Fig.

|Myy1? 2.1
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FIG. 1. A typical two-gluon exchange contribution to the
amplitude for y*(q)p— V(g +A)(p —A).

1. We will prove this statement for the production of a
longitudinally polarized vector meson. In Fig. 1, lines
k’'+A and g —k' are the quark and antiquark making up
the vector meson.

A. Setting up the calculation of the matrix element

In proceeding to calculate M1 it is useful to view the
process in a physical way. To that end, we choose a
frame where p is essentially at rest (i.e., p, <<g.) and
where

2

q=(‘1+79—:ql)= Q+,:-Q-,0 (2-2)
9+

with ¢, =go+¢3,9_ =qo—¢g3. Then (g +A)?=m} and

(p —A)=M?give

2+mp+A A?
A_z—g—y—i, +z——p+———lz— (2.3)
q+ M
The polarization vectors are
€(1)=(0,0,e7), enL)= |1, L o, 2.4
Q g4
for the virtual photon and
g+ tA, —my
€"(1)=(0,0,e}), €"(L)= , ,
my g tA
2.5

where we have dropped terms proportional to A, in (2.5).
The process illustrated in Fig. 1 takes place, sequential-
ly in time, as follows.
(i) The virtual photon breaks up into a quark-antiquark
pair with a lifetime 7; given by
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Here m is the current quark mass. This estimate is valid
for the production of a longitudinally polarized vector
meson only. In the case of a transversely polarized vec-
tor meson, the end-point nonperturbative contribution
arises from the kinematical region where z is close to O or
1: z,1—z~m?/Q? as in the aligned-jet model of Ref.
[10] adapted to QCD in Ref. [11]. (See also the discus-
sion below.)

(ii) The quark-antiquark pair then scatters off the tar-
get proton.

(iii) The quark-antiquark pair then lives a time 7,
determined by

o ki+m?
q+Tf z(1—2) (2.7)

before the final state vector meson is formed. We note
that 7, > 7;. Thus, the amplitude /M can be written as a
product of three factors: (i) the wave function giving the
amplitude for the virtual photon to break into a quark-
antiquark pair; (i) the scattering amplitude of the quark-
antiquark pair on the target; and (iii) the wave function
giving the amplitude for the scattered quark-antiquark
pair of flavor f to become a vector meson. Following the
conventions of Ref. [5], we have

d*,d%)

‘/nf ‘/N AEf (1673)? f

f dz’
1Ay

><¢Al§2(k1,z’)va(ki,z’;kl,z)ﬁlkz(kl,z), (2.8)
where A, and A, are the helicities of the quark-antiquark
pair which are conserved during the scattering off the tar-
get. ¥¥ and 7 are the light-cone wave functions in the
notation of Ref. [5]. We have explicitly extracted the
sum over the N, colors of the quark and the 1/V/'N, N,
from the color singlet normalization of ¢*. Thus, ¢” and
T correspond to the wave function and scattering ampli-
tude for a quark-antiquark pair of definite color.

We only obtain a simple result, in terms of the gluon
distribution of the proton, in the leading-logarithmic ap-
proximation (in longitudinal and transverse momentum)
for T. In this leading-logarithmic approximation, the
time of scattering of the quark-antiquark pair with the
target is much less than 7; so that T is effectively given as
the on-shell scattering of a quark-antiquark pair off the
target. Our task now is to evaluate 3" and T and thus to
express the amplitude, /M £» In terms of integrals over the
exclusive wave function .

B. ¢” and the scattering
of the quark-antiquark pair by the target

The evaluation of ? at lowest order in e is straightfor-

(2.9

P k2+m? ) 2.6
+7i =0 z(1—2z) ~Q". ’ ward. In the convention of Ref. [5],
|
Ekl(k)y-eyvlz(q—k)
Yl (ky,z)=eef ’ 7 —_—,
™2 1/k {g_—[(k}4+m?)/k  1—[(ki+m /(g —k) 13V (g —k) 4

which leads to
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i, (k)y-€'v, (g —k)
Y 5 (k) ,2)=—eep———= ’ 3 3 2 > . (2.10)
1”2 Vz(1—2){Q*+[(ki+m?)/z(1—2)]}

In Eq. (2.10), e is the charge of the proton and e is the
charge of a quark of flavor f, as a fraction of the proton’s
charge. We omit the label f on ¢ for simplicity of nota-
tion. We see from (2.4) that longitudinal polarization ap-
parently gives the dominant contribution, though we
must wait until we have calculated ¥ to see that this is
indeed the case. Anticipating this result we set € =¢€"(L)
and, using (2.4), obtain

ee;Q8y .,
Q*+[(k2+m?)/z(1—2)]

¥ 5 (k1,2)=— (2.11)

Now consider the scattering of the quark-antiquark
pair by the target. The relevant light-cone perturbation
theory graphs are shown in Fig. 2. (It is important to

Ty, (k1,2 ,,2) =167 [ {260k =k )—8(k | —k, +1,)—8(k{ Kk, —

where J(I) represents the gluon propagators and zero-
angle gluon-nucleon scattering amplitude shown in Fig.

Before attempting to evaluate the d?/,dl, integral in-
volving J, let us first do the integrations over
d*k'dz' /16x* indicated in (2.8). Using (2.12) one arrives
at the combination

2¢K1x2(k1,2>—¢K,A2(k1 +1,2) =) ) ( ki _11>Z)=A'/’K1A2
(2.13)
which, using (2.11), gives
- 2eef81 —7» Qli
i, (Q*+[(k2+m?)/z(1—2)}2(1~2)
q-K q-K-2-A q-K
K k'+A K+24A SKra
! 9+A 2 +A
P p-a P p-a
(a) (b)
q-k'+9 q-k' q-k'-A q-k
k-0  K+A S.,’ K'+A ;"
9 2+A 2 +A
p p-A p p-A
o4 (c) (d) o108

FIG. 2. Light-cone perturbation theory graphs for the
scattering of a quark-antiquark pair by a colorless target.

[

note our convention of using the momenta ¢ —k’ and
k’'+A that enter " to define the momenta of the lines.)
As we have mentioned before, a simple result emerges
only in the leading-logarithmic approximation in InQ?/s.
In that case, /| /k <<1 and the dominant couplings of
the lines / and / +A to the quark-antiquark pair occur
with a ¥, (in a covariant gauge). Thus, the vertices of
the lines / + A and ! with the quark-antiquark pair are ex-
actly the same for each of the graphs in Fig. 2. Further,
all energy denominators are dominated by the / and / + A
lines so that the energy denominators are also the same
for each of the graphs in Fig. 2. The differences between
the different graphs in Fig. 2 are only in the labeling of
the momenta on the left-hand side of the diagram as they
emerge from the " wave function. The result obtained
in the A, <</, limit being considered is very simple:

d,dl,
1)}z’ —2)5(1)— ) (2.12)
1673
[
when /2 /Q? << 1. Thus (relabeling k| —k,),
M =‘/F 2 fd_zﬁfldzd}l’t (k,,z)
4 ch[rkz 1617'3 0 Ay L0
x g2l A, -
(2.15)

If instead of a final state vector meson we were consid-
ering a virtual photon identical to the initial state photon,
the exact same dependence on /, and /, would appear.
This allows one to identify an integral over J(I) with the
gluon distribution. Indeed, in the leading-logarithmic ap-
proximation in Inl/x and InQ?/A?%, where J is purely
imaginary,

d*,dl 2T
f__l_+125(1 _,_Ras

2 2
167 N, (s +Q°)xG(x,Q0°),

(2.16)

where the factor of Ty /N, arises by virtue of averaging
over the color and matching anticolor of the initial quark
and antiquark. (In the usual convention T =1.) The
simplest way to determine the normalizing factor in Eq.
(2.16) is to compare the integral on the left-hand side of
(2.16) with the known relation of the longitudinal struc-
ture function with the gluon density. Once one is sure
that the gluon distribution should emerge from the in-
tegration on the left-hand side of (2.16), the normaliza-
tion is most easily set by taking the target to be a quark
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and calculating the lowest-order contribution to J. How-
ever, to establish that x =Q?/s and Q? are the appropri-
ate arguments in xG (x,Q?) requires employing the lead-
ing In1/x and InQ?/A}cp approximations.

We can understand these values from the simple pic-
ture on which Egs. (2.8) and (2.15) are based. Namely,
we must have a strict sequence of events in which (i) the
virtual photon breaks up into an approximately on-shell
quark-antiquark pair, followed by (ii) the scattering of the
on-shell quark-antiquark pair by the target, and, finally,
(iii) the scattered quark-antiquark pair turns into the vec-
tor meson. This picture requires that the time of scatter-
ing of the quark-antiquark pair must be much less than 7,
and 7, defined earlier: ie., 7<<7;<7,. Using (recall
that we employ the time-ordered perturbation theory
here)

T~ = (2.17)

(2.18)

Meanwhile, the dominance of the imaginary part implies
that the — components of the four-momenta are approxi-
mately conserved from the initial to the intermediate
state where the p +/ line is cut, leading to (p +1)_~p_
(neglecting — components of order 1/qg ). With this, we
compute §=(p +1)*=M?*+p_I, <<l /Q?% with the
last inequality coming from employing (2.18). In the
leading Inl/x approximation we allow integration over
the parton-gluon scattering subprocess energy, §, up to
this upper limit. Recalling that the x, argument of
G(x,,Q72) is set by x,8~I}, we see that in the leading
In1/x approximation x, should be identified with
x =Q%/s. To determine the appropriate argument Qg,
we note that the simple form for Ay? given in (2.14) de-
pends on

1t

—Q—z <<1. (2.19)
In leading InQ?/A%cp we integrate /3 up to the max-
imum allowed by this relation, and it is this maximum
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which determines the argument Q; appearing in G. The
result is obviously Q2 ~ Q2. [We note here that so long as
A2/A%cp <<1, the left-hand side of Eq. (2.16) does not
depend on A. From (2.3), we see that A_ is comparable
to I_=12/1, only when [?/l, reaches its smallest
value, Q?/q, ~A_.] It is useful to note that these con-
clusions match closely those obtained in Ref. [7] where
the scattering of a quark-antiquark pair off a target is
given by

272 _ -
U(bz)z—;T_[bza’(Qz)xGN(x’QZ)]§=1/sb2,Q2=1/b2 ’

(2.20)

where, for simplicity, the result has been stated for the
case x, ~x.~1/2.

Can one do better than the leading double log approxi-
mation? The answer should be yes. One should be able
to eliminate the restriction (2.19) and derive an expres-
sion for M in terms of integrals over the unintegrated
gluon distribution and the vector meson exclusive wave
function. The result, however, will be significantly more
complicated than the answer we are about to give for the
leading double-logarithmic approximation. At the same
time, the corrections to (2.16) resulting from the elimina-
tion of the restriction (2.19) are numerically small. A
simple way to justify this statement is to perform the cal-
culation in impact parameter space where non-
InQ?/A}cp corrections arise from the decomposition of
the matrix element of the real part of e" " 1 between
the wave functions of the virtual photon y* and a vector
meson in impact parameter space. Here b, is the inter-
quark distance in the meson wave function and /, is the
transverse momentum of the gluon shown in Fig. 2. The
second-order term in (/,-b,) leads to Eq. (2.15). The
corrections in question arise starting at the fourth order
in the expansion, they contain a factor of 1/4! and are
therefore small.

C. The final state vector meson wave function

Using (2.16) and (2.14) in (2.15), and (s +Q2):s, one
obtains

(2.21

—8ismlee;a, Ty dk,
M= —xG (x,Q?
d o’ VN, (0" [ 167
where
ﬁ_;‘(q_k) uh(k) 1
¥} _a(ky,2)=Ny Vi y-€” e 1/’V(kpl)7V“-
(2.22)

Here, we have introduced a normalization factor Ny for
the particular spin state of ¥ being considered. (In the
conventions of Ref. [5], N,,=1/V2 for e, (L).)

1 dz 14
fo z(1—z2) % Yralknz),

We are now in a position to verify that longitudinal po-
larizations give the dominant contribution. From (2.10)
and (2.22) it is straightforward to see that longitudinal
polarizations give the leading contribution so long as Q is
much larger than all quark and vector meson masses. In
this case, using (2.5) in (2.22) gives

YAk, 2)=—Nyy¥(k,,2)
which yields (after performing 3, and setting T =1/2)

(2.23)
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8ism’ee ;a 1 d v 15 v o o0
— f Z 17 (34 — z(1—2z)(1—22)*. (2.32)
=g, *G Ny [ S y4"02) V2N, V'N, ¢
2.24) Here ¢, is the asymptotic form [5] of the distribution am-
plitude, while ¢, is of the form suggested by Chernyak
where and Zhitnitsky [12] for pions. The normalizations of ¢}
d2k and @) are chosen for consistency with Eq. (2.28). A sim-
#"(Q,z)= f P ; Yk, ,z) (2.25)  ple calculation gives 1,,=3 for ¢, and 7, =S5 for ¢,. We
T

is the distribution amplitude for longitudinally polarized
vector mesons with the restriction k? <Q? understood
for the integration in (2.25). In getting the correct nor-
malization for the cross section, it will be important to
note that this result does not yet include the flavor nor-
malization for the ¥V wave function. (The spin normaliza-
tion factor is contained in Ny.)

In order to obtain an absolute normalization for M , it
is necessary to relate ¢” to the experimental observable
[y defined by

\/iefy

(olJe V)= e, (2.26)

my

in terms of which the decay width for ¥ —e Te ™ is given
by

8malf}
y= —:—mﬂ 227
14
We demonstrate in the Appendix that
fv
dz¢¥(z)=———F7—. (2.28)
Jazé V'N.e;2V2N,
Defining 7, as
y [ldz/z(1—2)]¢"2) 229
=— 2.29
T2 [azete)
we obtain
8isﬂzfyeas17y
=——7—xG(x,0) . (2.30)
f ‘/EQJNC

The parameter 7, is the effective inverse moment of the
vector meson distribution amplitude that controls the
leading twist contribution to the leptoproduction ampli-
tude. Higher particle number Fock state amplitudes,
such as ggg, in a physical gauge have a suppressed cou-
pling to the small-size quark pair; in order to compensate
their higher mass dimensions, they must be accompanied
by further powers of 1/Q. Note that both e, and N} have
canceled out in relating M, to the experimental observ-
able f.

In order to estimate the cross section it is convenient to
consider two extreme examples for the shape of the p dis-
tribution amplitude:

V— 3 fV

—z(1—2), (2.31)

emphasize that in QCD amplitudes for hard processes are
expressed in terms of the minimal Fock component of the
light-cone wave function of the meson [see, e.g., Eq.
(2.21)], not in terms of constituent quark model com-
ponents. This is important when the physics of color
screening, which is relevant to the transition from the
nonperturbative to the perturbative regime, is accounted
for (cf. the discussion in Sec. II F regarding the difference
between the production of transverse and longitudinally
polarized vector mesons, and the discussion of color
transparency in Sec. II H).

D. The flavor dependence of the cross section

Thus far, we have not discussed the flavor dependence
of the wave function of the final state vector meson. If V'
refers to a neutral p meson, then the relevant wave func-
tion is 1/V2(|u& ) —|dd )). This would imply a replace-
ment of e, in our calculations of both M, and f), by
e,—1/V2e, —ez)= 1/V2. However, since e, cancels
out when /M is expressed in terms of f, as in Eq. (2.30),
the result is that we may use Eq. (2.30) for the total am-
plitude without change provided we employ the appropri-
ate value for f,. With our normalization conventions,
f,=107 MeV for the p°. If V refers to a J /3 one can
simply use e, =e.=2/3. Again, the explicit value of e,
disappears if M/ is expressed in terms of f;,,. However,
for the J /¢ the value of 7, is expected to differ substan-
tially from that for the p since neither of the wave func-
tions given in (2.31) and (2.32) is appropriate; a wave
function having z =1/2 would be more suitable.

E. The differential cross section

We shall now write the differential cross section for p°
production. Modifications for other lepto-produced neu-
tral vector mesons are straightforward and involve choos-
ing a distribution amplitude to replace (2.31) or (2.32).
Using Eq. (2.30) in Eq. (2.1) gives

do 87t fla mat(Q)n%[xG (x,0)]?
dr |- Q°N? '

(y*N—VN)=
0

(2.33)

It is important to keep in mind that this result gives the
differential cross section for a longitudinally polarized
photon to produce a longitudinally polarized p% i.e., it is
not spin averaged over initial photon states. As an aside,
we note that the ¢ dependence of this diffractive cross sec-
tion is controlled by the quasilocal two-gluon matrix ele-
ment of the nucleon; in principle, it could have a different
fall-off than the elastic form factors since the momentum
transfer is shared by the two gluons.
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It is convenient to rewrite Eq. (2.33) in terms of the
leptonic width, I';, using Eq. (2.27),

37T ymypaX (@)% [xG (x,Q)]?
49 | ey yy= 2T Lty X6 % 0))
dt |i=o anQ°N;

(2.34)

since the coherent sum over the contributing flavors is
identical for the diffractive amplitude and the decay am-
plitude. Our prediction for the J/y¥ leptoproduction
cross section using Eq. (2.34) is smaller than the one ob-
tained in Ref. [4] by a factor of 4, if we assume, as in Ref.
[4], a nonrelativistic form ~&(z—1/2) for the J/¢
meson wave function so that 7,~2. Equation (2.34)
shows that the relative contribution of the higher twist
effects in the ratio do/dt(y}N—VN )/a;f} y should
quickly increase when x —0. The large power of Q2 in

|

L
da‘y*N—»VN
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the denominator is compensated to a large extent by the
fast increase of G(x,Qz) with Q2 at small x. Moreover,
since the leptoproduction of vector mesons is proportion-
al to the square of the gluon structure function, its nu-
clear shadowing is enhanced by a factor of 2 compared to
the nuclear shadowing of the virtual photoabsorption
cross section. Equation (2.34) also describes the
diffractive leptoproduction of hadron states (77, KK,pp,
etc.) with invariant mass squared <<Q?2, negative C pari-
ty, and positive CP parity. The only modification that
needs to be introduced is the substitution of the p distri-
bution amplitude by the light-cone wave function of the
produced hadron state in Eq. (2.29).

We can also use dispersion relations to determine the
real part of the amplitude. For small enough x and large
Q? the contribution of the real part is not negligible since
the effective QCD Pomeron intercept is above 1. Includ-
ing the real contribution as a perturbation we get

_ 30°TymyaX(Q)myl[1+i(7/2)(d /d Inx)]xGr(x, Q)|

dt =0 aemQ6Nc2

Since the gluon density rises rapidly at small x in the
large Q? domain, we predict a very substantial rise of the
diffractive cross section with energy at large Q2. For ex-
ample, for Q2~10 GeV? we predict a rise of the
diffractive cross section at small x by as much as a factor
of 100 at energies reached at the DESY ep collider
HERA as compared to the cross section measured at
CERN. Obviously this effect would also substantially
modify the Q? dependence of the cross section at large
energies.

Let us now compare Eq. (2.33) with experimental data
for p-meson production at large Q% and small x. Such
data are available from the European Muon Collabora-
tion (EMC) [13] and New Muon Collaboration (NMC)
[14,15] and also from the E-665 Fermilab experiment
[16]. We will use the latest data of NMC [15] which were
obtained at the highest Q2 with special attention to re-
moving backgrounds due to inelastic processes. We also
note that the data of E-665 [16], which extend to some-
what smaller Q2 are generally consistent with NMC
data. All of these data confirm the important role of the
longitudinal contribution at large Q2 from the measure-
ment of the polarization of the p. If s-channel helicity
conservation is assumed in the transition y* —p, this also
determines the ratio of o, /o 7.

To convert the leptoproduction cross section
d?0 /dQ%v from uN to the virtual photoproduction
cross section, we use the standard relation
a#N(Qz,v)=I‘cr .N(Qz,v), where TI'=qa,[v—0?%/
(2M)]/[27Q*E*(1—¢)] and U,,*N_—'UT"'GUL- Using
Oot7*N —pN) as determined by NMC from pD data,
the slope of the ¢ dependence of the cross section,
b=4.3140.61+0.7 GeV 2 as measured by NMC, and the
NMC estimate for 0cop/0i=0.55+0.08 and of

L T
o /o
y*N—pO'N’ Y y*Np0

we can estimate

y ~2.0at 0*=6 GeV? and €=0.8,

L experiment
do Y *N_. poN

dt =0

_14—27nb
GeV?

for Q=10 GeV2 (In deriving this range we also as-
sumed that o, /o1 is either the same at Q?=10 GeV? as
at Q22=6 GeV? or increases linearly above Q*=6 GeV? as
~Q*°)

Let us now compare this result with the leading-
logarithmic prediction of Eq. (2.33). The Harriman-
Martin-Roberts-Stirling set DO’ (HMRS DO0’) parametriz-
ation of the gluon distribution in the proton [17] gives the
value a,(Q)[xG(x,0)]=0.67 at the NMC kinematics
x=0.06, Q=10 GeV2 The sensitivity of the parame-
trization to uncalculated higher order terms and the un-
certainty in the evolution scale is illustrated by noting
that a,[xG]=0.76 if we use 1Q? instead of Q? for the ar-
guments of a;, and G. Thus we obtain a range of predic-
tions:

L
de‘N—»pON

_(13—17)—(36—47) nb
dt =0 )

GeV?

The lower range corresponds to 7,=3 assuming the
asymptotic form of the p; distribution amplitude
~z(1—2z). The upper range corresponds to 7,=5 assum-
ing that the p; distribution amplitude is similar to the
Chernyak-Zhitnitski (CZ) wave function of a pion. The
distribution amplitude suggested by Chernyak and Zhit-
nitski [12] from QCD sum rules for the p; actually corre-
sponds to a narrower quark distribution than for the
pion, but it is still broader than the asymptotic form.
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Thus 757~3.3-3.5. If we trust our leading-order esti-
mates, then this value of Mo, leads to

L
dUY.NﬁpoN

_16—23 nb
dt r=0,n %

GeV?

which is close to the empirical diffractive p leptoproduc-
tion cross section. More generally, p electroproduction
will allow us to test determinations of the meson distribu-
tion amplitudes from lattice gauge theory or other non-
perturbative QCD computations.

Equation (2.34) also allows us to predict the ratio of
the yields of various vector mesons at Q2>>m?:

do(y +T—V,+T)/dt
R(V], Vz)E
do(y,+T—V,+T)/dt |,_,

2
_Dvmy, My, 2.39)
C,m 2 )
v,"*v, 77V2

It can be seen from Eq. (2.35) that we predict
R (¢,p)~1.0Xef($)/e}(p) for M4/M,~0.9 as suggested
by CZ [12). We also find R(J/¢,p)~1.2
Xej(J/¥)/ef(p) for m;,,=2 corresponding to ¢,
~&8(z —1/2). Here, we have extracted from these two
R results the ratios of the effective charge squared,
where e?(V)=1/2,1/18, 1/9,4/9 for the p,w,$,¥, re-
spectively [for standard SU(3) wave functions], which
might naively be expected to determine the R’s.

Another interesting feature of the QCD prediction for
the production of a vector meson at large Q2 is the
universality of the ¢ dependence of the process—it is
determined by a universal two-gluon form factor, in-
dependent of the vector meson type. The upper part of
the amplitude corresponding to the transition y*—V is
effectively dipolelike at large Q2; i.e., it should depend
weakly on ¢ so long as —t <<Q?, implying that the ¢
dependence of the leptoproduction cross section primari-
ly reflects the ¢t dependence of the gluon-nucleon scatter-
ing amplitude. The slope of this ¢ dependence should in-
crease slowly with the incident energy due to the Gribov
diffusion shrinkage of the diffractive cone. The data on
exclusive production of vector mesons at high energies
support this prediction—the large Q%p-meson leptopro-
duction cross section has a slope do /dt = e® correspond-
ing to b =4.3 GeV 2 [14], which is similar to the small
slope b~3.5-5.5 GeV ™2 observed for exclusive J /1-
meson photoproduction.

F. Nonperturbative QCD effects

The Q? dependence of the diffractive vector meson lep-
toproduction amplitude in the PQCD analysis reflects the
overlapping integral between the light cone wave func-
tions of the ¥* and the vector meson. Since the wave
function of y7 is <z or (1—2z) when z or 1 —z vanish, the
end-point contributions to the cross section for the pro-
duction of longitudinally polarized vector mesons, arising
from Eq. (2.8), are small and of order ~Q%/mZ(Q?)°.

Since the wave function of a vector meson bound state
should be less singular at z~0 and 1 than the wave func-
tion of the y*, we conclude that for o; the end-point
contribution may be neglected. Thus the longitudinal
cross section can be safely calculated in terms of PQCD.

The situation is the opposite in the case of the produc-
tion of a vector meson by a photon with transverse polar-
ization. The wave function of a transversely polarized
photon is constant at z~0 and 1. As a result, in this case
the end-point contribution is enhanced. To demonstrate
the importance of the end-point contribution, let us con-
sider the process where a final state photon is produced
instead of a vector meson; i.e., the process

y*+T—y+T.

For this reaction, the end-point contribution leads to the
cross section

*
do? +T—-y+T 1
dt =0 Q*

Now note that the wave function of a transversely polar-
ized vector meson is less singular than that of the photon
as z—0,1. In fact, PQCD predicts that the gg com-
ponent decreases at least as fast as <z or (1—z) when z
or 1—z are small. Consequently, the cross section for
electroproduction of transversely polarized vector
mesons should fall at least as fast as 1/Q8. (This contri-
bution is additionally suppressed by a double logarithmic
Sudakov-type form factor.) A similar dependence of the
cross section arises from other kinematical regions. Thus
the experimental investigation of the ratio of longitudi-
nally and transverse polarized vector mesons would help
to clarify the relative roles of nonperturbative QCD end-
point contributions and hard physics.

(2.36)

G. Diffractive leptoproduction on nuclei

A key feature of the predictions of PQCD for forward
diffractive = vector meson leptoproduction with
1/2myx >>2R 4 is the dominance of small size wave
function configurations. The fact that the integration
range of k? in the vector meson light-cone wave function
in Eq. (2.25) extends to ~Q? implies that the important
qq configurations coupling to the virtual photon have
transverse separations b, ~1/Q. Thus, even in a nuclear
target, color screening implies that the coherent ¢g sys-
tem can only weakly interact, and in leading-logarithmic
approximation only two gluons in light-cone gauge con-
nect the photon-vector meson system to the nucleus, as il-
lustrated in Fig. 2. Thus, as predicted by PQCD color
transparency [18,11] the outgoing vector meson in effect
suffers no final-state absorption, and the nuclear depen-
dence of the y* 4 — V A4 forward amplitude will be identi-
cal to that for the case where the final state system is a
virtual photon, y* 4 —y* 4; i.e., it will be close to addi-
tive in the nucleon number 4. We can also understand
this remarkable feature of QCD from the space-time ar-
guments given above: the final state vector meson is
formed from the compact gg pair over a long time Tss
and thus it does not attain its final physical size and its
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normal strong interactions until it is well outside the
domain of the target nucleus. In fact, much of this phys-
ics was anticipated before the advent of QCD. The possi-
bility that the outgoing absorption of the p in the nucleus
would be effectively small in large Q? leptoproduction
was actually first proposed by Yennie in 1975 [19]. The
observation that the incoming photon has pointlike
behavior and diminished absorption was discussed in
terms of a “shrinking photon” by Cheng and Wu [20]
and by Bjorken, Kogut, and Soper [21].

We emphasize that the above reasoning is applicable
for a longitudinally polarized vector meson only—the
effective transverse size of a produced transversely polar-
ized vector meson is considerably larger (although still
smaller than for ordinary hadrons; cf. the discussion in
Sec. ITF).

Although the vector meson suffers no final state in-
teractions, the forward amplitude M(y* 4 —V 4) is not
strictly additive in nuclear number since the gluon distri-
bution itself is shadowed. (This effect is similar to the
shadowing of diffractive production of high-p; jets in the
7+ A —2 jets + A reaction, discussed in Ref. [8].) In
fact, we see from Eq. (2.33) that

do . « 2 2

—(y*4—>VA) < a(Q)[xG 4(x,Q)]°,

dt t=0
ag(x,Q)

(2.37)

where G ((x,Q)= A4 Gy(x,Q) is the gluon distribu-
tion in the nucleus. Thus, the analysis presented in this
paper predicts identical nuclear dependence for the for-
ward vector meson diffractive leptoproduction cross sec-
tions, the longitudinal structure functions F4(x,Q), and
the square of the gluon structure functions:

do/dt(y* A—VA),—g
do /dt(y*N —VN)|,—,

Fi(x,0) |
F%(x,Q)

_ G%(x,Q) _ %0
G3(x,Q)

(2.38)

(Note that at finite energies one has to interpolate the
cross section to the unphysical ¢ =0 kinematical point.)
The nuclear gluon distribution is expected to be more
strongly shadowed than the nuclear quark structure func-
tions at intermediate Q2 because of the larger color
charge of the gluon in QCD and thus its stronger internu-
clear interactions. Numerical estimates [22] lead to
xG 4(x,03)/ AxGy(x,03)~0.7-0.8  (0.4-0.5)  for
A =12 (200) and x ~0.01-0.03, a result which seems to
be supported by the recent Fermilab data of E-665 [23].
However, at fixed x ~0.01-0.03, shadowing substantially
decreases with Q? due to scaling violation effects [22],
which should lead to an effective increase of transparency
for p leptoproduction at fixed x with increasing Q.

A nuclear dependence similar to Eq. (2.38) is also ex-
pected for forward diffractive Y and, possibly, J /¢ lep-
toproduction cross sections even at small Q?2, although in
this case the value of x and the evolution scale of G (x,Q)
is controlled by M7 rather than Q2. Thus both heavy
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and light diffractive vector meson leptoproduction can
provide basic information on the nature of the gluon dis-
tributions in nuclei.

The calculations given above are applicable to the
near-forward production of vector mesons. It should be
noted that the physics relevant to the nuclear dependence
of the leptoproduction cross section will change with in-
creasing t. We shall give here a semiquantitative descrip-
tion of the expected behavior. At —tR2/3<<1,
coherent processes dominate the leptoproduction of vec-
tor mesons. The nuclear dependence of the diffractive
cross section at small 7 (within the diffractive peak) can be
estimated by multiplying Eq. (2.38) by the square of elec-
tromagnetic form factor of nucleus normalized to 1 at
t =0. However, if —tR% /3>>1, incoherent processes, in
which the leading vector meson is accompanied by the
production of other hadrons from nuclear disintegration,
will dominate the cross section. The existence of nuclear
shadowing implies that gluons at small x cannot be asso-
ciated with individual nucleons. Thus one can have
events where momenta —t >0.1 GeV? are transferred to
each of several nucleons which subsequently fragment.
The effect can be a slower ¢ dependence of the cross sec-
tion and a smaller energy transfer per interacting target
nucleon than for the scattering off a single nucleon. The
expected A dependence is intermediate between that ex-
pected for shadowing of G 4(x,Q?) and 4.

The recent nuclear target p leptoproduction measure-
ments from the E-665 experiment [16] appear to indicate
onset of the color transparency predicted by PQCD for
incoherent y*4—->pN(A —1)" reactions. The onset of
this phenomena is again for Q?~ a few GeV?, the same
scale at which Bjorken scaling is observed in deep inelas-
tic lepton scattering reactions. Preliminary data [15]
from the NMC also confirm higher values of the trans-
parency ratio for Q2> 3 GeV? observed in [16], although
the NMC data do not indicate a Q? variation of trans-
parency in their 10> Q2> 3 GeV? range. One needs to be
cautious in interpreting these data directly in terms of
PQCD color transparency of the outgoing p. We note
that the high-Q? NMC data correspond to a range of x
where the essential longitudinal distances are smaller
than the nucleus size. Thus transparency in this range of
kinematics will reflect to some extent the fact that the
virtual photon can penetrate deeper into nucleus without
interaction. As we have emphasized, the nuclear depen-
dence of forward diffractive p leptoproduction which is
completely coherent on the nucleus can provide a de-
cisive test of color transparency.

III. CONCLUSIONS

The analysis of diffractive leptoproduction cross sec-
tions presented in this paper extends the domain of
PQCD predictions to a new domain of exclusive hadronic
reactions. The central focus of this analysis is closely re-
lated to the calculations of the order a,(Q?) leading twist
perturbative contributions to o L(v,QZ) and the violation
of the Callan-Gross relation. Although the momentum
transfer to the target is small, the virtuality of the longi-
tudinally polarized photon provides a pointlike probe of



the diffractive y*N — VN process. At high Q2 the ampli-
tude factorizes in terms of separable components: the
perturbative distribution amplitude of the virtual photon,
the nonperturbative distribution amplitude of the outgo-
ing vector meson system, and a nonperturbative two-
gluon matrix element of the target closely related to the
gluon structure function. The momentum transfer
dependence of the diffractive amplitude is thus controlled
by a new type of nonlocal two-gluon form factor. We
note that since the momentum transfer to the nucleon is
shared by two gluons, the fall-off can be different from
the fall-off of elastic electromagnetic form factors.

The factorization analysis can be extended to the
diffractive production of any vector meson system of
mass J as long as Q%> M2 The longitudinal cross sec-
tion always falls as 1/Q° at fixed /M, ¢, and s. The energy
dependence of the forward diffractive cross section is also
universal, reflecting the behavior of the square of the
gluon structure function at x ~Q?2/s. Related formalisms
have also been applied to exclusive heavy quarkonium
photoproduction [4], exclusive pion dissociation to two
jets [22], and to two-photon diffractive reactions [24].

The existing data for diffractive p leptoproductlon ap-
pear to be consistent even at relatively low Q2 of a few
GeV? with the leading logarithmic predictions in both
magnitude and in the kinematic dependence. A crucial
feature of the PQCD predictions, which is clearly evident
in the data, is the increasing dominance of the longitudi-
nal photon and vector meson production amplitudes with
increasing Q2. More careful studies of the longitudinal to
transverse polarization ratios can lead to insights into the
transition between soft and hard components in QCD
amplitudes. As we have emphasized, precise measure-
ments of the A dependence of the diffractive leptopro-
duction reactions can lead to new insights into nuclear
shadowing of the longitudinal structure function.

In our discussion we have noted only a few of the many
empirical tests of PQCD possible in diffractive leptopro-
duction. In principle, the study of these reactions at
HERA will allow tests of the theory over a huge dynami-
cal range in x and Q2. The intercomparison of the vari-
ous vector meson channels can also lead to new tests and
understanding of the nonperturbative structure of ha-
dronic wave functions and their flavor-symmetry proper-
ties.
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APPENDIX

The y — V transition is defined by

‘/Eefyel':

|4

(0lJ,1v)= (A1)

In the frame defined by Eq. (2.2) (where we shall take
Q?=—m}), and employing the time-ordered formalism
outlined in this paper, we find

V2efye'-e” d*,d’k’,
Ty VN %zf err %
x [dz'y] 5 (k,2)TY), (ki,2") (A2)
where the amplitude T is trivial,
T=16m8(k| —k )8(z'—z) , (A3)

and ¢ and ¢" are given by Egs. (2.10) and (2.22), respec-
tively. In the chosen frame, it will be most convenient to
isolate f,, by considering a longitudinally polarized V,
with polarization vector as given in Eq. (2.5), while tak-
ing €. =1 and all other components of €’ to be 0, imply-
ing that
39+
7.eV= Ly=2""
e =2 e+( )= my
Meanwhile, in Eq. (2.10) y-€”=1y, while in Eq. (2.22),
for L polarization, y-€” can be approximated by

(A4)

ly,eY=—1y.my,/q,. Using the fact that
u, (k) | vylg—k) v;‘z(q—k)1 uy, (k)
vz 27V Vi—z | Vi-z 2V vz
=Q+8A1—AZ

we obtain from Eq. (A2) the result [with Q?>=—m} in
2.10)]

V2ef,(iq,) d*k ki,z) | —my/
349+ —\/N eefNy(q+ 2.{ 1 f '/’ 1 |4 2‘1+ . (AS)
mV —my
With 3, =2 and using the definition Eq. (2.25), we obtain
flelf)V(Z):—_—f—“V—“_——‘ . (A6)
0 \/Ncef2\/2NV
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