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A uniSed +CD formulation of leptoproduetion of massive quarks in charged current aiid neutral
current processes is described. This involves adopting consistent factorization and renormaliza-
tion schemes which encompass both vector-boson-gluon-fusion ("Savor creation" ) and vector-boson-
massive-quark-scattering ("Savor excitation") production mechanisms. It provides a framework
which is valid from the threshold for producing the massive quark (where gluon fusion is dominant)
to the very high energy regime when the typical energy scale p is much larger than the quark mass

mg (where the quark scattering should be prevalent). This approach eS'ectively resums all large
logarithms of the type [a,(ti) ln(ti /m&)]" which limit the validity of existing fixed-order calcula-
tions to the region y, O(mg). We show that the (massive) quark-scattering contribution (after
subtraction of overlaps) is important in most parts of the (z, Q) plane except near the threshold
region. We demonstrate that the factorization scale dependence of the structure functions calcu-
lated in this approach is substantially less than those obtained in the fixed-order calculations, as
one vrould expect from a more consistent formulation.

PACS number(s): 13.60.Hb, 11.10.Gh, 12.38.Bx

I. INTRODUCTION

The production of heavy quarks in photo-, lepto-, and
hadroproduction processes has become an increasingly
important subject of study &om both the theoretical and
experimental points of view. However, there are some
outstanding problems with existing perturbative QCD
calculations of heavy quark production: sizable (spuri-
ous) scale dependence of the predictions, apparent dis-
agreement with the observed b production cross section
at the Fermilab Tevatron, etc. See Ref. [1] for a recent
review of the theory and phenomenology of heavy quark
production. As will be discussed later in this paper, there
is also an inconsistency in most theoretical calculations
of the cross sections: the schemes used in the next-to-
leading order calculations are not the same as those used
in determining the parton densities &om global analyses,
such as in Refs. [2—4]. In this paper we will spell out the
details of a more complete and consistent formulation of
heavy quark production. For the sake of clarity, we shall
focus on the case of leptoproduction, although the same
principles apply to hadroproduction as well.

Perturbative QCD calculations rely on factorization
theorems [6]: DifFerent factors involve different scales of
virtuality, and a factor that involves only physics on a
scale m can be efFectively calculated in a power series
in a, (m). The simplest factorizations, like the operator
product expansion, are for certain two-scale problems:
One scale, about the bound-state nature of hadrons, is
of the order of A or the mass of a typical hadron; and
the other, defining a scale of large virtuality, can be q2
in deep-inelastic scattering or the transverse momentum

of a measured jet.
Processes involving heavy quarks are a good example

of a multiscale process, for in practice we may then have
to deal with at least four scales (which we denote by p,;):
A, q2 (as above), and the masses of the charm and bot-
tom quarks, m, and mg. When one uses conventional
calculational schemes designed for two-scale problems,
the presence of more than one large scale results in log-
aritbins ln(p;i@~) of the large ratios in the higher order
correction terms. These logarithms vitiate the very basis
of the original perturbative calculation, because of the
large size of the yet higher order terms beyond the order
included. In view of the high energies at present colliders,
this problem can defeat the large effort put into existing
fixed order calculations [1].

The basic principles for treating this situation were
constructed a long time ago by Witten in his work [7] on
heavy quarks in the operator product expansion (OPE).
But his methods as they stand do not provide a sufficient

algorithm for calculating the processes in which we are
interested. An important practical concern is that the
methods of calculation should be applicable when some
of the scales of interest are comparable to each other

To avoid circumlocutions, we will often use the terminol-

ogy of the operator product expansion when discussing fac-
torization theorems. In particular, we will use the term "Wil-
son coefFicient" to denote the short-distance coefFicient in the
standard factorization theorem for deep-inelastic scattering
etc.
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FIG. l. Axnplitudes for heavy quark production: (a) order
n, quark-scattering; and (b) order a, gluon-fusion contribu-
tions. At least one of the quarks, say Qz, is "heavy" and
corresponds to the "Q" used in the text. For Savor changing
currents, the two quarks qi and Q2 are different. For neutral
currents, they are the same.

as well as when they are very different. Simple-minded
methods involving "integrating out the heavy quarks" are
not suRicient, but, as Collins, Wilczek, and Zee (CWZ)
[8] pointed out a long time ago, the problem can be con-
veniently considered as one of choice of the subtraction
scheme (for renormalization and factorization). We shall
refer to this work as CWZ in the following.

Consider the case of deep-inelastic scattering, with Q
denoting the invariant mass of the exchanged boson, and
with one heavy quark, of mass m. Three kinematic re-
gions are of interest.

(i) m » Q: The quark mass is larger than all other
scales in the problem, so that the decoupling theorem [9]
applies: All graphs involving the heavy quark may be
dropped, at the price only of a possible finite renormal-
ization of the parameters of the theory, notably a, .

(ii) m = O(Q): The heavy quark mass must be treated
in the same way as Q: as a large parameter. Heavy quark
lines appear in the Wilson coefficients or in finite renor-
malizations of exactly the same kind as in the decoupling
theorem.

(iii) m (( Q: As far as the OPE is concerned, the
"heavy quark" is to be treated as light: its mass is to
be neglected in Wilson coefBcients, and there are parton
densities for the heavy quark. Since the quark is heavy
on an absolute scale, i.e., m » A, Witten's methods may
be used to calculate its density in terms of the densities
of light partons.

The method we will describe will give a unified treat-
ment that will cover all ranges of mass. Furthermore, the
CWZ method also allows us to treat the case in which
there are several heavy quarks, whose masses may or may
not be strongly ordered.

One can see the issues in contrasting treatments of
heavy quark production in lepton-hadron scattering in
existing literature [10]. For charged current interactions,
such as charm production in neutrino processes, most ex-
isting work focuses on the dominant underlying order-a,
parton process W + s -+ c [cf. Fig. 1(a), the quark-
scattering or "Savor-excitation" subprocess] [11—17]. In
contrast, for neutral current interactions, such as charm
and bottom production in electron- and muon-hadron
scattering, practically all calculations begin with the
order-ax parton process p/Zo + g -+ c+ c [cf. Fig. 1(b),
the gluon-fusion or "flavor-creation" subprocess] [18,19].
In both cases the initiating parton is a light parton, and
an appropriate scheme for computing radiative correc-
tions is what we will call a three-Bavor schexne, where

the heavy quark only occurs in the Wilson coefficients,
and where there is no parton density for the charm and
bottom quarks [20].

But at very high energies (such as are now available at
the DESY HERA ep collider [21—24] and beyond) charm
and bottom quark masses can become small compared
to a typical energy scale: we can have Q » m„mi, . It
is then natural to count these heavy quarks, especially
the charm quark, as partons. We then effectively use a
four-fiavor or five-flavor scheme (as is done in comxnonly
used parton distributions [2—4,25]). In particular, the
lowest order Wilson coefBcient for charm production in
the neutral current process is not gluon fusion, but fiavor
excitation p/Zo + c -+ c. Of course, the gluon density
is rather large compared to the charm quark density, so
that higher order gluon fusion process can be numerically
comparable or larger than the fiavor excitation process.
(It is misleading to argue that an order ax subprocess is
smaller than an order no subprocess merely by virtue of
its being higher order unless the initiating partons are the
same). Moreover, one must make the correct subtraction
&om the gluon fusion process to avoid double counting.

Evidently, for this purpose, the notion of a quark with
mass mq being "heavy" or "light" must be taken as
relativ" — with respect to the energy scale of the probe
p~h„. The latter view forms the very basis of the /CD
parton model for the well-known light quarks u, d, and
s (which do have nonzero, albeit small, masses). The
parton approach effectively resuxns large logarithms in
fixed-order calculations arising &om initial state collinear
singularities of the form (a, ln p~h„/mq)" to all orders in
as ~

On the other hand, one also has an absolute notion for
the terxn "heavy quark" —that its mass is sufficiently
large compared to A so that ix, (mq), the effective cou-
pling at the heavy quark mass, is in the perturbative
region. This notion then refers to the charm, bottom
and top quarks as heavy, regardless of the magnitude of
the typical energy scale (y~i,„) of the problem This view.
is taken in all next-to-leading order calculations on heavy
quark production in the existing literature [1,26,27].

As described earlier, the theoretical basis for a uni-
fied /CD treatment of heavy quark in the xelative sense,
suitable for all energy scales, already exists in the liter-
ature: it is based on the CWZ renormalization scheme
which naturally implements the intuitive energy-scale-
dependent light and heavy quark concepts [8,29]. This
scheme has been applied with good success to the cal-
culation of Higgs boson via heavy quarks and gluons, ef-
fectively unifying the corresponding quark-scattering and
gluon-fusion subprocesses in one consistent scheme which
is valid at all energies [30,31]. This approach clearly also
provides a natural framework for calculating the produc-
tion of heavy quarks, and it is particularly simple to im-
plement in lepto-production processes, as already pointed
out in a previous short coxnmimication [32].

The present paper presents details of the xnethod and
the main physics results. For definiteness, we shall refer
to this approach as the variable (i.e., scale dependent) fla--
vor number scheme, in contrast to the fixed flavor number
scheme used in conventional calculations of heavy quark
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production [26,27]. Since charged current and neutral
current processes are treated in one uniform &amework,
we shall use the most general couplings for the vector
gauge boson to the leptons and the quarks; we shall keep
the most general mass configurations for the quark lines
in the hard cross-section calculation. The resulting com-
plexity in kinematics, in the application of the factor-
ization theorem of /CD, and in the calculation of hard
matrix elements can be electively handled using the he-

licity formalism. This aspect of the problem is formu-
lated and presented in a separate paper [33], hereafter
referred to as I. Section II provides an overview of the
scale-dependent parton Bavor number scheme. Section
III gives the detailed results on the order o,, gluon-fusion
amplitudes. Section IV discusses the subtraction proce-
dure needed to make quark-scattering and gluon-fusion
mechanisms consistently coexist. Section V presents the
main physics results to show the relative importance and
interplay of the various contributions, as well as the re-
duced scale-dependence of the predictions. Finally, Sec.
VI recapitulates the theoretical issues and points to po-
tential applications.

Since our approach effectively resums all large log-
arithrns of the type (cr,, lnyzh„/mq)" which occur in
fixed-parton-Savor-number calculations, it naturally ex-
tends the range of validity of the latter beyond the re-
gion II&h„o(mq) [34]. It does not, however, deal
with the class of logarithms of the type (cx, lns/p~h„)"
which is associated with the "small-x" problem (typi-
cally, z = p~h„/i/s). The latter has been the subject of
several recent studies and it requires an entirely different
method of resummation —the so-called kt factorization
[35—37]. These two approaches are compatible and com-

plementary: they both extend the region of applicability
of the perturbative /CD calculations, but to different re-

gions of phase space. This is illustrated schematically
in a map of the z-p kinematic plane, Fig. 2. Broadly

speaking, our approach is needed when the typical en-

ergy scale p~h„becomes large (compared to mq) for not-
too-small x; and the kq-factorization method is necessary
for very small-x and moderate diphy What values of x
must be considered as "small, " and rM~h„/mq as "large, "
to require these improvements are open questions with
no easy theoretical answers in perturbative /CD (cf., the
similar question: for what value of Q should Bjorken scal-

ing set in'?) However, these questions can be investigated
phenomenologically by comparing numerical results &om
the different approaches in their regions of overlap. Ex-
isting numerical studies of the small-x resummation and
conventional approaches suggest the latter may be valid

down to z 10 [38]. The results presented later in this

paper will shed some light on the comparison of scale-
dependent and fixed parton Qavor number schemes.

II. OVERVIEW OF THE SCHEME AND THE
CALCULATION

%e consider a general lepton-hadron scattering pro-
cess:

~i(~i) + N(P) ~ t2(&2) + Q(pq) + X(PX) (&)

to lowest order in the electroweak interactions, as de-

picted in Fig. 3. In the final state, we have required that
there be a heavy quark Q of momentum p~q. s We label

the exchanged vector boson (p, W, or Z) by B and its
momentum by q.

A. Hadron structure functions and factoriration

After the calculable leptonic part of the cross section
has been factored out, we work with the hadronic process
induced by the virtual vector boson B:

B(q) + N(P) w Q(pq) + X(Px), (2)

Two large scale
small-x:resummation MultJ large scale

iegion . r region

(Tn)11@}~p 1}
/

~ ~
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~ M ~ W ~ W ~ ~ ~ ~ ~
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'
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l

and the cross section is expressed in terms of the hadronic

m() Typical Energy Scale p FIG. 3. General lepton-hadron production amplitude for a
heavy quark.

FIG. 2. Regions of the x diphy kinematic plane for a typical
physical process involving a heavy quark with mass mg and
the natural +CD calculational schemes for each region.

A uni6ed treatment is a topic for the future.

3We mean here a heavy quark in the absolute sense: mg &)
A, so that n, (m )ois small enough to be in the perturbative
regime. The heavy quark will be detected by its hadronization
products.
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tensor

+" = —) (P]J"]Pq, Px) (2vr)
4g ~x(Px ),spin

6"(P+ q
—Pq —P )(P,Pql J"'IP) (3)

where g denotes a sum over all hadronic states contain-
ing the final-state quark Q of momentum p~q.

The factorization theorem asserts that the hadronic
tensor has the form [6]

&aN(q»" ) = 5 &a.
g pv= ) fm—(f, p) ma~ (q, k~, . . . , a, (p) ),

a

(4)

to the leading power of q2. Here fN((, y) is the dis-
tribution function of parton a in the hadron N, and
~a" (q, k, . . . , a, (p)) is the Wilson coefficient. That is,
u&" is the same kind of object as the hadronic tensor
Eq. (3) except that it is evaluated on a parton target,
and that the long-distance contributions are subtracted
ofF. The proof of the factorization theorem is to show that
these long-distance pieces are all correctly taken account
of by the factor of the parton density in Eq. (4).

The scale p is the renormalization and factorization
scale. 4 Roughly speaking, p sets the separation between
the parts of the process that we attribute to long- and
short-distance phenomena. The predictive power of the
factorization theorem Eq. (4) arises when we set )Lt to a
value of the order of a large physical scale in the prob-
lem, say p = prac = pren ppt, y g—q . Then the
hard scattering (or Wilson) coefficient u may usefully be
expanded in powers of the small coupling a, (y,). The p
dependence of the parton densities fN is given by the
Altarelli-Parisi equation, whose kernel is also perturba-
tively calculable in powers of a, (p).

As explained in I [33], in the presence of nonzero
masses, it is the helicity amplitudes which provide the
simplest connection between the physical (scalar) struc-
ture functions W~~ and the corresponding parton-level
quantities ~~ . The factorization formula then reads:

&am(Q' q. p) = f% &ao
= ) fgr(( v)—

and e„(q,r) is the polarization vector of the vector bo-
son with momentum q and helicity A(= +, 0, —) defined
with respect to the reference vector r [.Since r is differ-

ent in the definition of S'" and u", the simple relation
Eq. (5) is not an obvious consequence of Eq. (4); it fol-

lows only because the two reference momenta p and k
are collinear, cf. I.] Figure 4 depicts the factorization
formula, Eq. (5), in a familiar form.

B. Masses and factorisation schemes

The conventional method of calculation of the short-
distance coefficients in this and other /CD processes is to
set to zero the masses of internal lines and external par-
tons in graphs for the partonic subprocesses. Then the
resulting infrared poles (in dimensional regularization)
are subtracted according the modified minimal subtrac-
tion (MS) scheme. It can be shown that this implies that
the ultraviolet divergences in the definition of the parton
densities are renormalized by the MS scheme also.

Setting quark masses to zero gives the leading term in
an expansion of the short-distance coefficient in powers
of mq/p»„. This is obviously inapplicable for a heavy
quark if we want to treat the region where pphy is not
much greater then mg. However, it is perfectly sensi-
ble to leave the heavy quark mass in the calculation of

We will later show how this works in a calculation,
and we will verify that the mq -+ 0 limit of the coefficient
agrees with the standard zero mass calculation. The par-
ton densities, including the one for the heavy quark, will
continue to be defined by the MS scheme. In the case
that the heavy quark is the charm quark, we will call
this the "four-Bavor scheme. "

On the other hand, when p,phy &( mq, one finds that
there are large logarithms of the heavy quark mass in
all perturbative calculations. That is, the four-Savor
scheme does not manifestly exhibit decoupling of the
heavy quark. One obvious possibility is to use ofF-shell
momentum-space subtractions (which exhibit explicit de-
coupling) instead of MS. But this makes for much more
complicated calculations, especially because of the com-
plicated oK-shell structure of the renormalization coun-
terterms for gauge-invariant operators (such as are used

where

fz s mqx cata ~. . .a, (p,)
)

~A (A) e
( )

~gsv (A)
(

QJ = e~ '(q, k) .~"" e(")(q,k),
FIG. 4. Graphical representation of the factorization for-

mula, Eq. (5).

For simplicity, we do not distinguish between the factoriza-
tion scale pf and the renormalization scale p, „;we set them
equal to the same value p.

By keeping mg non-zero in the Wilson coefBcient, the "the-
oretical inconsistency" described by Gliick et aL [39] does not
occur in our approach. See further discussions in Sec. IV A.
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to define the parton densities). The inethod of CWZ [8]
oHers a natural and simple way: switch to a "three-flavor
scheme" in this region.

Technically, the CWZ scheme is a hybrid of MS for the
light partons and zero-momentum subtraction for graphs
with a heavy quark line. The scheme has the follow-

ing advantages: It satisfies manifest decoupling, and pre-
serves gauge invariance. The evolution equations for the
coupling and the parton densities are the same as for
/CD with three Savors of quark and pure MS subtrac-
tions. Calculations are quite simple compared with the
off-shell scheme. Finally, the charm quark density is zero
to the leading power in A/m„so that the charm quark
mass only appears in Wilson coefBcients.

The three-favor scheme is appropriate when @~i,„ is
comparable to or less than about m . When other heavy
quarks are present, one defines a series of schemes: three-
flavor, four-flavor, five-favor etc. The N-flavor scheme
is defined to treat the first N flavors of quark as light,
and the remainder as heavy. It is appropriate when the
physical scale of the process, p,pgy, is above the mass of
quark N and below that of quark N + 1. We will call N
the number of active quarks.

The relation between schemes with diferent numbers
of active flavors is just a case of a transformation between
di6'erent renormalization and factorization schemes; and
the matching conditions between the schemes have been
calculated [29,40,41]. At the one-loop level in the MS
scheme, these are [29] just that the decoupling and par-
ton densities are the same in the two schemes at p = mq.
Thus a convenient way of implementing them is to use
three-flavor evolution below p, = m„ to use four-flavor
evolution above that point, with continuity at the break
point. In this scheme, the use of p, = mg rather than,
say, p = 2m', is a matter of explicit calculation using

MS subtraction, and is not a matter of arbitrary choice.
There are higher order corrections to the matching con-
ditions. Two-loop matching has been calculated [41] for
the coupling, but not yet for the parton densities.

It is worth noting that existing NI 0 calculations of
heavy quark production [26,27] essentially use the three-
flavor scheme as described above —for all energies, irre-
spective of the order of magnitude of diphy.

C. Contributing partons and parton distributions

We use the terms "variable favor number scheme" to
denote the scheme just described. It is implemented [29]
by using MS evolution with a number of active favors
that changes as one crosses the boundaries p = mg,
where mg is the mass of a heavy quark (charm, bottom,
etc.) The Morfing-Tung (MT) [2] and CTEQ series [4,5]
of parton densities are defined using this method. Thus
for a given scale p for the parton densities, all quarks with
mass less than p are treated as partons (and thus have as-

sociated /CD-evolved parton distributions). For a quark

Q with nonzero mass mg (» AqcD), fg ((, p, ) vanishes
when y, & m~ (i.e., all the heavy quark dynamics in this
region is in the Wilson coeKcients). But when p & mg,

fg ((,p) satisfies the usual MS /CD evolution equation

(with massless kernel functions) above threshold. Thus,
there is no fixed restriction on the sum over parton fla-
vor label a in the basic factorization formula Eq. (5):
depending on the value of the relevant p, ( pzhr) of the
physical process, the correct number of quark flavors ap-
propriate for that energy scale will contribute.

This conceptual and calculational simplicity has an as-
sociated price. In the region just above the quark mass

(p mq), defining a parton distribution function for q
with massless evolution kernel appears to be somewhat
artificial. Indeed the use of f~((, p, ) in a lowest order
parton model formula for a cross section tends to overes-
timate the cross section, because the parton density does
not contain the physical threshold behavior. The errors
are compensated when one brings in higher order terms
in the Wilson coeKcient, as we will see. Although both
schemes are equally correct, in principal, it would seem
better to use a fixed parton flavor number around thresh-
old, e.g. , three favors for charm production. But as one
goes higher in scale, one is genuinely in the overlap re-

gion, where the three- and four-flavor schemes are equally
valid. Eventually, the four-favor scheme becomes the one
which describes the underlying physics more accurately.

D. Parton structure functions and hard scattering
mechanisxns

In the variable flavor number scheme, for both charged
current and neutral current production of heavy quarks,
initial state quark-partons contribute through the vector-
boson quark scattering (favor excitation) subprocess,
Fig. 1(a) and its higher-order corrections; the gluon-

parton contributes through the vector-boson gluon fusion

(favor creation) subprocess, Fig. 1(b), and its higher-

order corrections. The order a, quark scattering hard

amplitude ~& is easy to calculate. Since it is obtained
from a simple tree diagram, we can identify it with the

corresponding hard amplitude cu& which enters the fac-A(0)

torization formula, Eq. (4). In our framework, the ex-

plicit results are given in I (Sec. V and Appendix C).
The order a, parton level gluon fusion amplitudes ~&1 x(x)

are also relatively straightforward to evaluate since they
are &ee &om singularities when all the quark masses are

kept finite. 6

Note the distinction between the notations u and ~
for the structure functions for the partonic subprocesses.
The unadorned w mill be o partonic structure funetion7

In the conventional calculation of photo- and leptoproduc-
tion of heavy quarks in the 6xed parton Havor number scheme

[26,27], these are sometimes called Born terms because they
represent the leading order contribution to the Savor creation
mechanisms. Since the Haver excitation mechanism actually
come in with one less power of n, we shall state the explicit
powers of n, to avoid confusion.

We make a clear distinction between the concepts of "struc-
ture function" and "parton density, " contrary to common

usage.
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unthout subtructiona, but toitA, nonzero quark masses. In
the zero mass limit ~ will be divergent. The hatted quan-
tity cu will have subtractions to remove the in&ared de-
pendence. It is the subtracted partonic structure func-
tion cu that is to be used in the factorization theorem Eq.
(4).

We will present the detailed formulas for cu and cu, in
the helicity formalism we use, later in Sec. III. Here we
focus on the relation between the unsubtracted ~ and
the subtracted ~ at order o., in order to elucidate the
underlying principles. As is well known, this relationship
is established by applying the factorization formula at the
parton amplitude level. This provides the exact relation,
to this order:

This is the basic QCD equation for leptoproduction of
heavy quark production in our approach. The subtrac-
tion term is placed in the middle to emphasize its sirni&ar-

ity both to the quark scattering (left) and to the gluon-
fusion (right) contributions. On one hand, this term over-
laps with the fust (quark scattering) one due to the com-

mon factor u&q and the approximate equality

f'((, ~) = f,'("f'
when p, )mq and a, ln & 1,

mQ

) (fa(O) @ A(1) + fs(],) @ A(0))

a
A(1) g(1) P(0)=~~s +fs ~~q (6)

where we made use of the fact that f& (() = hPb(1 —(),
, and Bg scattering begins at order 1. The

.A(0) A(0)

order a, quark distribution inside an on-shell gluon fsq( )

is given by

fq(x) ~~(P) lg
—

2
n 2 gQ~

Q
(7)

where we have used the MS prescription to renormalize
the ultraviolet divergences in the quark density. Since
we have kept a nonzero quark mass, there is no in&ared
divergence. In this formula, Psq is the familiar g ~ QQ
splitting function Psq(() = 2(1 —2(+ 2f ). Equation
(7) follows from the Feynman rules for parton densities,
and it is quite accidental that there is no constant term,
but only the logarithm times the splitting function. By
inverting Eq. (6), we obtain the formula for the requisite
hard amplitude:

where fs is given by Eq. (7). On the other hand,
its close connection to the last (gluon fusion) term orig-
inates from Eq. (8). Since it represents the part of the
gluon-fusion term which is already included in a fully
QCD evolved quark-scattering term, a consistent formal-
ism must lead to its subtraction to avoid double counting,
as naturally happens here. Figure 5 illustrates the same
point graphically. (For clarity, we only show one-half of
the cut diagrams for this process, cf. Fig. 4.) The x
on the internal quark line in the subtraction term de-
notes the following operations: In the hard scattering
part of the middle graph, that is, the upper part of the
graph, the incoming quark's momentum is replaced by
an on-shell value with zero transverse momentum. This
replacement gives a good approximation when the quark
is collinear to the gluon, and results in a factor of the
order a, distribution of a quark in a gluon, Eq. (7).

The physics behind this formula should be well known
to students of the conventional QCD parton model for
light quarks. 9 However, this formalism has not been

A(1) A(1) g(1) A(0)
tdg = (alp

—fs gl (dgq (8)

The second term on the right-hand side (henceforth re-
ferred to as the subtraction term), represents that part of
the gluon fusion term which at large p, phy has the internal
quark line relatively close to the mass shell and almost
collinear to the gluon.

E. Complete next-to-leading order (order a, )
hadron structure functions

FIG. 5. Graphical representation of the three terms vrhich
enter the master equation, Eq. (9), for the physical struc-
ture functions: the subtraction term is placed in the middle
to emphasize its sing&arity both to the quark-scattering (left)
and to the gluon-fusion (right) contributions. The x on the
internal quark line in the subtraction term indicates it is close
to mass-shell and collinear to the gluon and the hadron mo-
menta.

Combining these results, we obtain the formula for the
physical helicity structure functions for heavy quark pro-
duction on a hadron target:

~»=4&aq —4fs 8&aqQ A(0) g g(p) A(0)

+fz ~zs +O(a, ) .

It is straightforward to demonstrate that this expression
satisfies the leading order +CD evolution equation with the
correct boundary condition fg ((,p = mq) = 0.

Although the nature of the subtraction term is usually not
transparent to most nonexperts since, for zero-mass quarks,
it is usually identified only as the coetficient of a 1/s pole in
the most commonly used MS calculational scheme.
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invoked in existing calculations of heavy quark produc-
tion [1,26,27]. Rather, they typically use the scheme in
which the heavy quark only appears in the Wilson co-
efficients (e.g., a three-Savor scheme for charm produc-
tion and a four-fiavor scheme for bottom production). In
that case, the quark-scattering (favor-excitatioa) contri-
bution is excluded whenever mg g 0, no subtraction
&om the gluon-fusion contribution is applied in those
calculations. There are calculations that allow the heavy
quark to have a parton density, and thus work well above
the quark threshold B. ut these normally set the quark
mass to zero in the Wilson coeKcients and thus are not
good approximations when the process is not sufficiently
far above the quark threshold (cf. Ref. [39].)

The variable parton-favor-number scheme for calculat-
ing heavy quark production thus represents a natural and
correct extension of the usual zero~uark-mass /CD par-
ton framework to the case of nonzero quark mass. (We
avoid using the word "heavy, " at least temporarily, since
at this point "light" and "heavy" are relative with re-
spect to the typical energy scale in this approach. ) This
scheme contains all the ingredients of a consistent /CD
theory of heavy quark production over a wide range of
energy scales as mentioned in Sec. I. In particular, if the
initial-state quark [labeled by Q in Eq. (9)] is massive
and the typical energy scale y~h„ is of the same order as
mg, then Eq (10). implies an approximate cancellation
of the first two terms on the right-hand side of Eq. (9).
Thus we arrive at W&N fN 8&@& —i.e., domiaaace of
the gluon-fusion mechanism, which reproduces the usual
picture of heavy quark production in the 6xed parton
favor an~her scheme. (This is the region labeled "one
large scale (mq p~h„)" in Fig. 2.)

On the other hand, if either Q is a usual light quark
(i.e., mq 0) or Q is massive but y~h„&& mq, Eq. (10)
does not hold; instead, the subtraction term becomes the
dominant piece of the gluon fusion contribution (because
it has the large logarithmic factor (a, (p)/2rr) ln(p2/m&2)

embodying a "collinear divergence"), hence the last two
terms almost cancel (leaving only a correction tenn of
order a, (y)/2rr with no large logarithm factor) and we

obtain W&N ——fNq 8ujs& + O(a, ), which reproduces the
leading order /CD parton model picture appropriate for
energies much higher than all masses. (This is the region
labeled "two large scales (1 » mq/p~h„)" in Fig. 2.)

Equation (9) provides a smooth interpolation between
the two kinematic regions described above, and contains
both as special cases. Because the subtraction term rep-
resents precisely the overlap of the other two, a change
in the factorization scale amounts explicitly to a reshuf-
Qing between the three terms on the right hand side of
Eq. (9). The diff'erences arising from a change ia the
factorization scale are genuinely of higher order in n„
and hence are smaller by a factor a, than if one or more
terms are left out. Vfe will demonstrate this point in

detail in Sec. V. The HAH'erences can be made smaller by
using higher order terms in perturbation theory.

Strictly speaking, Eq. (9) is incomplete: we should
also add order a, quark-scattering contributions of the

form fN 8u~q —f~ 8 fq 8u)~q, . The ideas are exA(z) q g'(x) A(0)

actly the same as discussed above for the order o,, gluon
contributions, but thee terms are numerically less im-
portant because we have many more gluons inside the
hadron then sea quarks. (In this sense, the order u, Bq
scattering terms are electively one order tugher since,
for sea quarks, fNq ~ fNs f~

t l is of order a, compared
to the gluon distribution f~~ )W.e should also mention
that Eq. (9) can be generalized to higher orders by the
systematic application of the above scheme. The order
a, hard amplitudes will be given by formulas general-
ized from Eq. (8). The differences between these and
the corresponding ones already calculated in the conven-
tional fixed-number-of-favor scheme are finite pieces at-
tributable to the change of renormalization scheme.

III. ONE-LOOP GLUON-INITIATED
PARTON STRUCTURE FUNCTIONS

The one-loop forward hard amplitudes for the 2 ~ 2

vector-boson-gluon scattering process

B(&) + g(I ) ~ &~(pi) + g2(p2)

are given by the cut diagrams shown in Fig. 6. As in-

dicated, we use q to denote the momentum of the vec-
tor boson, k the momentum of the gluon in the initial
state, and (pq, p2) the momenta of the quarks in the fi-

nal state. For Bavor changing charged current processes
(vector boson B = W+), the subscript 1(2) will be asso-
ciated with the light (heavy) quark; for neutral current
processes (B = p, Z), both are associated with the heavy
quark.

Siace we keep the masses of the quarks (mq, m2)
nonzero, these diagrams do not contain any singularities:
they are in&ared 6nite since the gluon only appears in
the initial state; and the internal virtual quark lines never

go on mass-shell due to the 6nite masses. Thus it is safe
to perform the calculation in four-dimensional spacetime.
The parton tensor (cut) amplitudes are represented by

where i labels the diagrams; dI'2 is the two-particle Bnal-
state phase space difkrential; and P&P2 denotes the two

But remember that the gluon distribution is often much
larger numerically than a quark distribution.

FIG. 6. Cut diagrams for order n, vector-boson gluon scat-
tering.
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N;" = e~"l'(q, k) . N;"" . e~"l
(q, k),

(is)

where e„(q,k) is the polarization vector of the vector
boson with helicity A(= +, 0, —) defined with respect to
k. For the general case, the helicity amplitudes exhibit a
natural symmetry if we express the vector-boson-quark
vertex in terms of the two chiral coupling constants: gR L.
The amplitudes ur" (and N;") are quadratic in the g's, and
we can write

(14)

with the chiral coupling combinations (symmetric, anti-
symmetric, and crossed):

+e,a —gR + gL) +a = 2gRgL ~

2 2

It is convenient to express the results in terms of
center-of-mass variables of the parton process. We have

propagator factors appropriate for diagram i.
As mentioned earlier, we find it most convenient to

work with helicity structure functions. They are:

N."
(u" (Q, s, m„m2) = —) di'2

where the initial state energy and momenta are

k = (s+ Q )/(2v s),

and the final state variables are

p = b.(s, m'„m2, )/(2v s),
E, = (s —m2+ m~)/(2+i),
Eq ——(s + mz —m, )/(2v s)

(16)

f E~+» l
&E -p)
(i —m', + m', + h(s, m', , m', ))''I

m~8

.(E.+pl
IE -pr
(i + m2 —my + &(s, m2, my))

with b, (a, b, c) = ga + b + c —2ab —2bc —2ca.
There are two types of logarithmic terms arising &om

the phase space integration of the propagator factors in
the t and u channels, respectively:

k" = (k, 0, 0, k),
q"=(Eq, 0, 0, —k),

p~ = (Eq, psm8, 0, pcos8),
p2 = (Ez, —psin8, 0, —pcos8),

A. General mass case (Flavor changing charge
current interaction)

For general masses (mq, mz), the independent right-
handed helicity structure functions are

1~+ =Is

(d~ = (Lg +

1~+ = I

Eg (Eq il 2p f Eql 1 Ez (E2

Ex fEz il + m~(m2 —m~) p(mz —m~) 1 E2 (E2 il mz(my —m2)

(18)

where the subscripts (s, z, a) refer to the chiral combinations of Eq. (14).
The longitudinal helicity ones are:

(mz+mz)(Q —(m2 —mz) —2ik ) Eq ~f 2 2 (m, —m, ) l m2m,'

0 1 s —(m2 + m~) 2mqm2p
(u = —(Lg + L )mymz + „+2kzs k2 s

The left-handed helicity structure functions ~„are re-
lated to the right-handed ones by the symmetry relations:

B. Equal mass case (flavor non-changing neutral
current interaction)

—u+ co — (d+8 B (20)
When the masses are equal, mq ——m2 ——m, we obtain,

as a special case of the above,
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~s+ gs —4m2
L, =L„=L=2ln

2m

=~+ =0,

elnphasize that the remaining mass is associated with a
quark that is heavy in absolute terms (i.e., compared to
A). The arguxnents of the t a-nd u-channel logarithmic
factors become

+ — ~(&'+ s') (s —&')'&
(Q'+ s)' s(Q'+ s)' '

4m'(s —2m') 4m'S
(Q2 + s)2 (Q2 + s)2

(21)

K+P (&x+P)'
l

4P'
Lg ——ln = ln m ln' E. -p '

P l
(E2+P) sL„:ln =ln -+ lnE2-P m2 mq

(22)

where

2m2 (4ms ps + 3@4 —4Q's —s2)

Qs(ps+ s)2

4(Q' —m') b,

(Q2+ s)2

2ms( —4msQs + Q4+ 4Qss + ss) 4m Q
Qs(Q2 + s)2 ('+ s)' '

b. —:b, (s, m, m ) = Qs(i —4m2) .

where the magnitude of the quark 3-momenta is given by

p = (s —msq)s/(2s) We .note that Lq is the only fac-
tor which contains the mass sixxgxdarity associated with

mx m 0. It arises from the collinear integration region
of the t-channel propagator factor over the quark trans-
verse moment»x», Fig. 6. This is seen as follows: in the
limit under consideration, the singular factor in the inte-

grand of Eq. (13) is 1/(t —m2x) oc 1/(p~~ + m2x). We can
take the mx -+ 0 limit everywhere except in this factor
where it must be retained to cut off the collinear (i.e. ,

pq ——0) singularity. The leading behavior is obtained by
keeping the constant term of the Taylor expansion of the
nn~erator function in p~~. %e obtain therefore,

IV. MASS SINGULARITIES, COLLINEAR
DIVERGENCES, SUBTRACTIONS

AND INFRARED-SAPE AMPLITUDES
x t mar Pt l Pc L +(

0 pg + m~ m~
(23)

In the fixed parton-Savor-number calculational
scheme, the results of the last section represent the full
answer to the vector-boson-gluon fusion production of
heavy quarks at the order a, level. These results con-
tain terms which become large as one (or both) of the
quark masses are small compared to the characteristic
energy scale. These mass singularity terms are isolated
by taking the mx(m2) ~ 0 limits of Eqs. (18)—(20).
They arise &om the conflguration in the phase space in-
tegration when an internal quark line becoxnes alxnost
on-shellxx and collinear to the initial state gluon. In
our scheme with scale-dependent parton-flavor-number,
these terms are included in the quark scattering contri-
bution with properly evolved quark parton distributions.
As explained in Sec. IIE the /CD formalism provides a
natural procedure to subtract these terms &om the gluon-
fusion amplitudes to avoid double counting. In this sec-
tion, we identify the subtraction terms in some detail.

A. Unequal mass (Savor-changing) case (m& w 0)

In the limit mq —+ 0, we drop all mq dependencies
in Eqs. (18)—(20) except inside the logarithm where the
xxuLss singularity resides. We also replace m2 by mg to

Relative to Q .

Ieolation of injrered-seneitiee terms

We can isolate the mass (collinear) singularity &om the
(process-dependent) dynamics by writing

f +l tmaxp 4p2

m2
1 p2f

(24)

where we have introduced an arbitrary scale parameter

py —the factorization scale which separates the low pq

collinear region &om the true Ixard scattering regi«. F«
an appropriately chosen yy (e.g., some external physical
scale independent of s), the flrst term on the right-hand
side (the collinear term) contai»m the mass singularity
which is to be subtracted &om the gluon-fusion contri-

bution (to make it in&ared safe) and res»x»»xed in« the

+CD evolved quark distribution function in the quark-

scatteri»g contribution.
The i»frared sensitive terms can be collected by sub-

stituting Eq. (24) in Eqs. (18)—(20). We obtain the
following nonvanishing amplitudes:

where we used p = p& for the quark lines, and explic-
itly displayed the role of mx as the cutoff for the collinear
singularity.
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2

1)
(25)

m', (P', )x Pg q(z )&
Q ( 1)

(25)

(p,~)
(u,

' = x Pg~q(z ) ln
(mg )

with x denoting the scaling variable,

qlz =z 1+ 2, z=')
Q2

g+ Q2 (26)

and Pg~q the usual gluon to quark splitting function,

Pg q(z) = 2[(1—z) + z ] .
1

(27)

They are exactly proportional to the leading order quark
scattering amplitudes in the same limit. Comparing Eq.
(25) with the order ao result from paper I, we obtain

term in Eq. (28) must agree with the scheme used to
define parton densities.

There is a certain amount of choice possible. We con-
sider the case of unequal masses, one large and one small:
m2 prf:pphy » mz » Ag&D . Then the parton den-

sity that is needed for quark 1 is defined by MS. Consider

, which is given by the Born graph for scatteringBqx ~

off the relatively light quark 1 to make the heavy quark
2. There are two obvious choices for the value of mq in

either replace the mass mz of the lighter quarkBq
to zero, or leave it at the physical value. When mq is
small compared to the physical scale of the hard scatter-
ing, pgh„, it certainly does not matter what we do, since
Wilson coefBcients have a finite zero-mass limit. But our
formalism also extends to the region where mq is not neg-
ligible. Then the physics is correctly given by the order

a, graph for Bg fusion, the third term uz in Eq. (9),
with the mass mz kept at its physical value. (This is the
region where the three-flavor scheme applies and it treats
mq as "heavy. ") For consistency, it is then advantageous
to keep mq also nonzero in the order ao Wilson coefB-

cient ~zf 1 even if this is not absolutely required by the
formalism —the first two terms in the nmster equations
are guaranteed to cancel near threshold (cf. Sec. II E) as

long as the same choice of u&~ 1 is made in both terms.
Thus we shall define the subtraction term as

wag"
—

u~q (mq ——0)—'Pg-+q(zm)
Sub A &(o) 2 Ag= +zq (Q, mq, mq) Pg~q—(zm)2'

xe(IJg —mg) ln z (for all A) .Py

1
xe(py —mz) ln 2 (for all A) .Ijy

1
(29)

This is anticipated in the discussion of the factorization
theorem in Sec. II, cf. the second term on the right-hand
side of Eq. (6).

Mage (Collinear) subtraction and infrared eafe-
amplitudee

As explained in Sec. II, the collinear configuration
&om which the above in&ared sensitive amplitudes orig-
inate corresponds physically to the overlapping region of
the quark shattering and gluon fusion production mech-
anisms. We need to subtract these amplitudes &om cuBBg
to avoid double counting and to obtain infrared safe hard
gluon scattering amplitudes u~& [cf. Eq. (8)]. We have
a certain &eedom in choosing the subtraction terms: as
long as they contain the leading in&ared sensitive terms
identified above, any specific choice made for these over-
lapping terms electively defines the factorization scheme
inherent in the master (factorization) equation, Eq. (9).
However, this &eedom must be constrained by two con-
sistency requirements. On the one hand, the order a,
quark e~phtude cuB should be identical in its two oc-A(O)

currences in Eq. (9). On the other hand, the logarithmic

with the full mass dependencies in u& (s, mq, mq), and

with the understanding that the same choice of cuB is
to be made in the order o., quark-scattering term in the
master equation, Eq. (9). The choice of the MS scheme
for the parton densities implies the precise formula given
in Eq. (29), which has a logarithmic term, but no con-
stant term. This follows from a calculation of the one-
loop density of a massive quark in an on-shell gluon.

The properly subtracted, infrared safe hard gluon s-cat

teeing amplitudes are then given by

~~ (s, Q, mg, mq, py)

= or~ (s, Q, m~, mq) —sr~" "(Q,mg, mq)yy) (30)

with ur& (a, Q, mq, mq) given by Eqs. (18)—(20) of Sec.
IIIA and ur&" "(Q,mz, mq, p,y) by Eq. (29) above re-
spectively.

The explicit expressions for CuB in the general case is
not particularly ilb~minating. We give below the results
in the mq —+ 0 limit:
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u+ =P~~(z )ln ™x— +L„Ps~~(x )+2z(1 —2z)
Pf 1 —x

~+ = Ps q(z ) ln '2 + (2z2) —L„Ps q(x ) + 2z(l —2z), —2x2
Pf (31)

mq 1 + 6x —14X2
+L„

QJ0 ~ 0C O

—x(1 —2x), +x'
)

Of course, for energy scales much larger then m2 (mq),
there is also a mass singularity associated with the fac-
tor ln(ms/py) which resides in I„In o.ur approach,
an in&ared-sensitive term analogous to Eq. (28) with
mq ~ m2 should then be subtracted &om the order a,
gluon-fusion amplitudes. The subtracted part, again, is
included in the corresponding order o;o quark scattering
amplitude with incoming quark "2"—which represents
the resummed results of all such terms to arbitrary or-
ders. The resummation is performed by the Altarelli-
Parisi evolution of the parton densities.

B. Equal mass case (m~ ——m~ ——m m 0) and
comparison w'ith MS scheme results

I

These correspond to the Wilson coeKcients" for deep in-

elastic scattering, as usually calculated in the MS scheme.
It is straightforward to verify that they, indeed, are iden-
tical to the MS Wilson coefficients [42]. Hence, our sub

traction prescription (applicable to the general mass case)
mduces to the MS scheme of subtraction of collinear sin-
gularities in the zero-mass limit. This is simply a con-
sequence of our choice of the MS scheme to define the
parton densities, which then resulted in Eq. (7) for the
one-loop value of the quark density in an on-shell gluon.
A change of definition of the parton densities would have
added an in&ared-safe term to Eq. (7), and there would
be corresponding terms to be added to the other terms
in the formulae we have written.

Corresponding results for the case of Savor-nonchang-
ing neutral current interactions can be obtained &om the
above general results by setting mq ——m2 ——m and choos-
ing the appropriate couplings. We give a few explicit
formulas for illustrative purpose and for establishing the
relation of our subtraction scheme to the MS scheme.
For the equal mass case, the in&ared-sensitive logarithm
factor is

= 2Ps q(x) ln —(1 —2x) (32)

(u, = 4(1 —x)x .

After subtracting the mass-singularity, we obtain the
in&ared-safe hard amplitudes for zero mass quarks

= 2Ps q(x) ln s + ln —(1 —2z)',( q'
Ijy

~o = 4(1 —z)z .
(33)

e~ l l f +l4P& s Pf s
m m p f

In the m ~ 0 limit, the nonvanishing helicity amplitudes
are (keeping m only in the otherwise divergent logarithm)

V. RESULTS ON STRUCTURE FUNCTIONS

We shall now study the numerical significance of the
quark scattering (QS) mechanism compared to gluon fu-

sion (GF) in this ramified &amework. For the case of
charged current production of a heavy quark &om a light
quark, we have demonstrated in a previous publication
that the two basic processes are of the same size nu-

merically; hence, a quantitative /CD analysis must in-

corporate both in a consistent manner such as formu-
lated above [32]. In the following, we shall concentrate
on heavy quark production by a neutral current interac-
tion which is of great interest both at fixed target and ep
collider energies. For the purpose of this paper, we shall
present results on the heavy quark production structure
»ctions F2(x, Q) (which can be applied at all relevant
energies). Phenomenological results on cross sections for
various interesting processes at speci6c energies of axed
target and HERA experiments will be pursued in a sub-

sequent study. For practical reason, we show mostly re-
sults on charm production. At the end, we also show
some corresponding results on b production.

Two sets of parton distributions are used in the follow-

ing study: the "next-to-leading order (NLO) set" consists
of the CTEQ2M distributions [5], and the "leading order

(LO) set" which is generated from initial distributions
at Qo ——1.6 GeV taken from CTEQ2M but evolved us-

ing LO evolution kernel only. The differences between
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have E2t t E2GF (the difference has reduced p depen-
dence); but for p much larger than the mass tbreshold,
QS (after subtraction) makes a substantial contribution
o F2tot~ and F2 ceases to be a good approximation.

These features provide supporting evidence to the theo-
retical discussion of Sec. IIA—IIE, as will be reinforced
by results to follow.

Figure 7(b) shows the corresponding results obtained
with the NLO parton distribution set. All the qualitative
features are the same as above. However, the cancellation
between the QS and subtraction terms above the heavy
quark threshold is not as complete as in Fig. 7(a). [The
reason is that Eq. (10) is not as good an approximation
as in the previous case, because the parton densities are
evolved at the NLO, but Eq. (10) is only used at order ca~

in our calculation. ) Hence the contribution of the QS pro-
duction mechanism (after subtraction) to the structure
function is even more signi6cant for all values of p, above
the threshold. The NLO parton distribution functions
contain resumed sub-leading logarithms of p/mq, thus
the difference between the (P and subtraction terms con-
tains additional pieces of higher order terms not present
in the order o,, GF calculation included in this study.
Note the complete stability of the total curve against the
choice of p, in this case.

These results imply that, in subsequent discussions of
the z and Q dependencies of E2(z, Q), the choice of the
scale p, can shift the QS, GF, and subtraction terms indi-
vidually by a considerable amount, but it will not aHect
the total answer by nearly as much. This fact under-
scores the intrinsic inter-dependency of the two heavy
quark production mechanisms (as a basic quanturo me-
chanical mixing effect). It also ensures that we actually
have a fair range of freedom of choice of the seal- which
we can take advantage of whenever there is good physics
reason to do so.

using LO and NLO are quite substantial, as regards the
charm-quark distribution, and this is a symptom that
higher order terms are important.

A. Scale-dependence of the structure function

As with all applications of the perturbative /CD par-
ton formalism, a theoretical uncertainty about these cal-
culations concerns the choice of factorization scale (which
we identify with the renormalization scale, cf. Sec. I).
Whereas some scale dependence of the theoretical pre-
diction is unavoidable to any given order in o.„an ex-
cessive sensitivity to the scale parameter usually signals
a large theoretical uncertainty. This has been a worry
for existing NLO calculations of charm and bottom pro-
duction, especially for hadronic scattering [26,43]. In
order to make clear how the physical results presented
later might depend on the (implicit) choice of scale, we
6rst investigate the scale dependence of the various con-
tributions which enter our calculations. In particular,
we demonstrate that whereas both the quark-scattering
(QS) and the gluon-fusion (GF) terms show substan-
tial scale dependence, these dependences are opposite
in direction and they compensate each other when com-
bined according to the variable Savor number scheme,
cf. Eq. (9).

Figure 7(a) shows E2(z, Q; p) as a function of p, for
z = 0.05 and Q = 10 GeV, calculated using the LO
parton distribution set. We display the p dependence of
the QS (long-dashed line), the GF (dotted line), and the
subtraction (short-dashed line) terms individually along
with the combined (solid line) total result. We see that
the rapid rise of the QS and the subtraction terms to-
gether with the somewhat gentle fall of the GF contribu-
tion combine to mate the total result substantially more
stable then either of the two individual production mech-
anisms. We also note the following important features of
Fig. 7(a): for p, below the heavy quark mass, the QS
and subtraction terms vanish by de6nition cf. Sec. II C
and Eq. (10)], and we have E2t ' = E2G; for p, just
above the mass threshold, the QS and subtraction con-
tributions nearly cancel according to Eq. (10), and we

B. Choice of scale

When Q» mq, the natural hard scale of the produc-
tion process is of the order Q. For Q O(mq), p, can
in principle be any combination of Q and mq which is

0.12
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FIG. 7. Scale dependence of the contributing terms to Ps(z, q). The factorization scale p is shown in units of the physical
scale 2M'.
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of the same order of magnitude. To make an intelligent
choice however, it is important to be guided by relevant
physical considerations. Since we know that gluon fu-
sion represents the correct physics near the threshold for
heavy quark production, it is appropriate to choose a p
such that the quark scattering contribution (along with
the subtraction term) becomes small in this region. It
also makes sense to let the latter vanish when Q ( mq.
As a concrete example, the following ansatz for the scale
p satis6es all these requirements.

p' = m~ + cQ'(1 —m&/Q')" for Q & m&,
= mq for Q ( mq .

(34)

Figure 8(a) shows F2(x, Q) for charm production as a
function of Q for fixed x = 0.01 using LO parton dis-
tributions. The lines are labeled the same way as in
Fig. 7. For our particular choice of scale, the QS con-
tribution (long-dashed line) emerges from threshold and
becomes comparable in size to the GF contribution (dot-
ted line) beyond around 5 GeV. Because the subtraction

The results presented below are obtained using this
ansatz with c = 0.5 and n = 2. Of course, as is the
case with all perturbative QCD (PQCD) calculations,
an infinite number of other choices are also acceptable.
However, the results of the last subsection ensure that,
in our formalism, qualitative features of the answer will
be comxnon to most reasonable choices, as we have veri-
fied by actual calculation with a variety of prescriptions
for p. [This is obviously not the case if the QS or GF
production mechanisms are taken individually (as in all
existing literature), particularly if an extended range of
Q is involved. ]

C. Behavior ef structure functions and the int .rplay
between the QS and GF production mechanisms

term tracks the QS term rather closely throughout the
kinematic range except at the very large Q end, the net
contribution of these two is quite negligible, hence the
total curve (solid line) stays very close to the GF one
except for very large Q.

Figure 8(b) is analogous to Fig. 8(a) except that we
now look at the behavior of the various contributions to
F2(x, Q) at a larger x value, x = 0.1. The picture is
somewhat diferent, and, for the purpose of illustrating
the physics underlying our approach, more ilb~minating.
For the same choice of scale as above, the QS contribution
rises rather steeply, and overtakes the GF contribution
almost immediately above threshold. Of special inter-
est is the behavior of the subtraction term (short-dashed
line): it tracks the QS contribution above threshold, as
noted before, then turns to follow the GF curve at large
Q. The latter behavior follows from the definition of the
subtraction as the leading collinear log term of the (or-
der o.,) GF contribution, cf. Sec. IIE and Sec. IV A.
As a result, the complete QCD insult (the "total" curve)
foHoms the ClF term at lois Q, but it approaches the QS
contribution at high Q. We note, this same behavior is
also present in Fig. 8(a), for x = 0.01. However, there it
is obscured by the closeness of the QS and GF terms due
to our particular choice of scale and parton distributions.

In Figs. 9(a) and 9(b), we show the same curves as
in Figs. 8(a) and 8(b) respectively, now calculated using
NI 0 parton distributions. The same physics eH'ects are
clearly displayed in both cases, only in more dramatic
proportions.

The general feature of close interp/oy betureen QS and
GF production mechanisms follows directly from our ba-
sic premises discussed in the introductory sections, Sec.
I and Sec. II: when the relevant physical energy scale

(Q) is comparable to the mass of the heavy quark (mq),
this quark behaves more like a heavy particle rather
than a parton, hence GF is the dominant production

0.4

0.3
0.04

0.1

X
bl

LL

0.02

0
&0'

Q (GeV)

I I ~ I I I I I

~0'

Q (GeV)

FIG. 8. Q dependence of Eg(z, Q) at z = 0.01 and z = 0.1 calculated using LO parton densities.

This is the basic tenet of the analysis of Collins, Soper, and Sterman, Ref. [6]. The underlying physics eras quantitatively
demonstrated previously in a different process by Olness and Tung in Ref. [30].



LEPTOPRODUCTION OF HEAVY QUARKS. II. A UNIFIED. . . 3115

I ~ ~ ~ I ~ ~ ~ ~

0.5
0.06

0.4

0.2

0.1

X
OI

LL

0.02

s ~ ~ a ~ I

10'
Q (GeV)

0 I ~ ~ s ~ I

10'

Q (Gev)

FIG. 9. q dependence of Eq(z, q) at z = 0.01 and z = 0.1 calculated using NLO parton densities.

mechanism~2; but when Q && mq, it behaves charac-
teristically like a light quark parton almost by defini-
tion, and QS becomes the dominant process. This in-

tuitively reasonable behavior naturally emerges from the
variable (scale-dependent) flavor number -scheme of cal-
culating massive quark production, Eq. (9).

We now look at Fs(x, Q) as a function of x at fixed
Q. Figures 10(a) and 10(b) show the various terms for

Q = 10 GeV calculated using LO and NLO parton dis-
tributions respectively. We see the characteristic rise of
the structure function toward small x. For fixed Q, the
large x limit correspond to the total final-state energy
W -+ Wqh, „h ~s (for heavy quark production); all con-
tributions become small. As x ~ 0, one moves away
&om the threshold region, the relative size of the various
terms are sensitive to the choice of scale and the choice
of parton distribution functions.

These results clearly illustrate the importance of the
QS ("fiavor excitation" in old literature) mechanism for
heavy fiavor production. The GF ("fiavor creation")
mechanism. provides a natural explanation of the pro-
duction of the heavy quarks not far above the threshold;
but it is not adequate to account for this process when
the energy scale becomes large. Part of the QS contri-
bution (with proper subtraction) will be included when

the next order (i.e., o.2) GF hard-scattering terms are
included [27]. However, the latter only contain terms to
order a, ln (p/Mq), whereas the QS contribution repre-
sents the resumxned results of all such terms to arbitrary
orders.

D. 5-quark production

Results on b-quark production are similar to those
shown for charm. We show only one plot, Fig. 11, which
shows Fq(z, Q) as a function of Q for fixed x = 0.01. We
see that the features are entirely similar to those seen in
Figs. 8 and 9 for charm production.

VI. DISCUSSIONS

We have shown in this paper that the currently avail-
able fixed-order /CD calculations of heavy quark pro-
duction using the Savor creation mechanism alone have
to be generalized to include Savor excitation with scale-
dependent n»r»ber of quark-Savors in order to account
for the appropriate underlying physics at all energies. A
consistent scheme to implement this generalization is for-
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mulated in detail to order e, for leptoproduction here.
The method can be extended to higher orders: in ad-
dition to the n, favor-creation diagrams which are al-
ready calculated in the literature, one needs to add order
a, flavor-excitation (vector-boson scattering off "heavy
quark" partons) contributions and perform the appropri-
ate subtraction. As remarked earlier, these two contribu-
tions are numerically comparable in spite of the formal
difFerence in the power of o,, by one. Exactly the same
principles apply to hadroproduction. As the results of the
previous section show, the inclusion of the right physics
in these calculations can be expected to improve the the-
oretical accuracy of /CD predictions —as illustrated by
the reduced dependence on the choice of (spurious) scale.

The existing fixed order calculations have a natural
region of validity: when Ij,ppy is of the same order of
magnitude as mg and z is not too small. Our proposed
scheme for heavy quark production calculation contains
the right physics when y~g„becomes much larger than
mg. An important question to ask is then: where exactly
lies the transition region and what formalism should be
used in the transition region? In order to discuss this
question in specific terms, let us choose the case of charm
production, ignoring b and t production completely.

Just above the threshold for producing charm, we all
agree that fixed-order calculations using flavor creation
(gluon-fusion plus light-quark scattering) alone should be
reliable provided that—the parton distribution functions
used in the master formula are genemted in using evo
lution kernels with effective flavor number n,~ ——3. We
call this method of calculation the three flavor scheme-
(Note, this is not usually done in the published liter-
ature. Rather, authors of the existing calculations in-
variably use canned parton distributions containing four
or five quark-partons, depending on the energy scale.
This procedure is, in principle, inconsistent. ) Far above
threshold, say p2h„) 20m&, our proposed scheme (in-

cluding charm as one of the partons) should become the
more reliable method. Here, we must use parton distri-
butions generated with n,~ = 4 /CD evolution equa-
tion. We call this the four flavor scheme -The questi. on
is what scheme should be used in the transition region,

say lomb & pp2hy & 20mQ2? Although this ls one of
those elusive questions in PQCD which defies definitive
answer, our best answer is that the region of transition
should be considered as the region of coexistence of the
two scheme —both schemes should be close to the real an-
swer and either one can provide a reasonable result. For
this view point to be viable, the answers obtained from
the two approaches must be close to each other in the
transition region, with the difFerence being of the order
of the next order of perturbation theory, without large
logarithms. The example given in the previous section
indicates that indeed this is the case of some range of
value of diphy. In fact, in the absence of reliable predic-
tion of where the transition region lies (as with "when
should Bjorken scaling set in?"), the requirement of ap-
proximate equality of the prediction of the three-flavor
and four-flavor scheme gives the most reasonable crite-
rion for identifying where the transition takes place. (In
the above discussion, we used 10m & p,phy & 20m
only as an illustration. The appropriate numbers should
be found in this phenomenological way. )

The present paper focuses on the motivation and the
physics ideas. A detailed coxnparison of results &om the
two schemes and a study of how the transition takes
place, as well as phenomenological results pertaining to
heavy quark production at fixed-target and collider ex-
periments, will be presented in subsequent publications.
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