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Existing calculations of heavy quark production in charged current and neutral-current lepton-
hadron scattering are formulated differently because of the arti6cial distinction of "light" and
"heavy" quarks made in the traditional approach. A proper /CD formalism valid for a wide
kinematic range from near threshold to energies much higher than the quark mass should treat
these processes in a uniform way. We formulate a uni6ed approach to both types of leptoproduction
processes based on the conventional factorization theorem. In this paper, we present the general
kamework with complete kinematics appropriate for arbitrary masses, emphasizing the simpli6ca-
tions provided by the helicity formalism. We illustrate this approach with an explicit calculation of
the leading-order contribution to the quark structure functions with general masses. This provides
the basis for a complete /CD analysis of charged-current and neutral-current leptoproduction of
charm and bottom quarks to be presented in subsequent papers.

PACS number(s): 13.60.Hb, 11.10.Gh, 12.38.Bx

I. INTRODUCTION

Total inclusive lepton-hadron deep-inelastic scattering
has been the keystone of the quark-parton picture and
the /CD-based parton model. As the global /CD anal-
ysis of high energy interactions becomes more precise,
other processes begin to play an increasingly important
role in determining the parton distributions inside the
nucleon [1—4]. For instance, semi-inclusive charm produc-
tion in charged current and neutral current interactions
in lepton-hadron scattering serves as a unique probe of
the strange quark and charmed quark content of the nu-
cleon [5—7]. In general, the production of heavy iavors in
lepton-hadron and hadron-hadron colliders is a very im-
portant tool for quantitative /CD study and for searches
for new physics [8—16].

Traditional analysis of massive quark production in
deep-inelastic scattering (DIS) uses the simple light Ba-
vor parton model formulas (based on tree-level forward
Compton scattering off the quark) with a "charm thresh-
old" or "slow-rescaling" correction [17—19]. This pre-
scription is still widely used in current literature, particu-
larly for dimuon production in neutrino charged current
scattering [5—7]; however, the applicable range of this
approach is very limited —for the neutral current case by
the mass of the initial state quark, and for both cases
by the numerically important next-order gluon contri-
bution [20]. In most neutral current charm production
calculations and recent DESY HERA studies of heavy
Savor production, a contrasting view has been prevalent:
one forsakes the leading-order quark scattering mecha-
nism and concentrates on the O(a, ) "gluon-fusion" pro-
cesses [22,23]. Whereas this latter approach is appro-
priate when the hard scattering scale of the process,

say Q, is of the same order of magnitude as the quark
rtutss m [24], it is a poor approximation at high energies.
In fact, when m/Q is small, these "gluon-fusion" dia-
grams contain large logarithms, i.e., factors of the form
a", ln" (m/Q), which vitiates the perturbation series as a
good approximation. These large logarithms need to be
resummed, which then yield quark-scattering contribu-
tions with properly evolved parton distribution for the
not-so-heavy massive quark.

A consistent /CD analysis of this problem requires
a renormalization scheme which contains the two con-
ventional approaches as limiting cases—in their respec-
tive region of validity —and provides a sxnooth transi-
tion in the intermediate region where neither approxi-
mation is accurate. Such a scheme, motivated by the
Collins-Wilczek-Zee [25] renormalization procedure, was
proposed some time ago in the context of Higgs produc-
tion, resulting in a satisfactory theory valid &om thresh-
old to asymptotic energies [26]. This approach also pro-
vides a natural framework for heavy quark production.
It is particularly simple to implement in leptoproduction
production processes, and has been applied to charm pro-
duction in DIS in a previous short report [20].

The current paper is the first of a series which will give
a detailed formulation of this problexn. In systematically
developing a consistent formulation of heavy-Bavor pro-
duction in DIS, one finds that conventional calculations,
even at the leading order level, make ixnplicit approxima-
tions inherited &oxn the zero-mass parton model such
as the Callan-Gross relation and the choice of the scaling
variabl- which are not always valid in the presence of
xnasses. In order to xnake a &esh start on a consistent
theory including nonzero-mass partons, this first paper
is devoted to a self-contained development of the general
formalism of deeply inelastic scattering in the presence of
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masses which is valid for both charged and aeutral cur-
rent interactions. Much of this is kinematical in nature.
In considering charm production in existing fixed target
neutrino experiments, an important practical considera-
tion is that the target nucleon mass is coxnparable to the
charxn quark mass, and both are non-negligible compared
to the average energy scale Q of the process. Thus, for
consistency, target mass effects should also be incorpo-
rated precisely [21]. To this end, we present a helicity
formalism (along with the conventional tensor approach)
to develop the general framework. It will become clear
that whereas the conventional tensor method becomes
quite complicated when both target mass and quark mass
effects are properly incorporated, the helicity formalism
retains the same sixaplicity throughout —due to its group-
theory origin and to a key feature of the /CD parton
model. To make the general formalism concrete, we shall
apply this helicity approach to a complete leading order
calculation of heavy Savor production in charged current
DIS, and then compare with the conventional tensor cal-
culations. Numerical studies will show that the complete
calculation (with a,ll masses retained) leads to significant
differences in the calculated cross sections in certain re-
gions of phase space. In the text of this paper, we shall
emphasize the key elements of these developments. Most
technical details are relegated to the appendices.

The second paper of this series [27] shall be focused on
the consistent /CD formulation of heavy quark produc-
tion in the context of order a, calculation of this pro-
cess, using the general kinematical formalism developed
here. The emphasis will be on the formulation of a con-
sistent renormalizatioa and factorization schexne to rec-
oncile the quark-scattering and the gluon-fusion mecha-
nisms. The /CD framework developed there applies to
all heavy quark processes, including hadroproduction. In
subsequeat paper, we shall study the phenomenological
consequences of these calculations on the analysis of ex-
isting dimuoa data &om fixed target experiments, and on
predictions of charm and bottom production at HERA.

II. SCATTERING AMPLITUDES

We consider a general lepton-hadron scattering
process~

ti(li) + N(P) m l2(l2) + X(P»)

as depicted in Fig. 1 where the exchanged vector boson
(p, W, or Z) will be labeled by B and its momentum by

The lepton-boson and quark-boson couplings are spec-
ified by the following generic expression for the effective
ferxaion-boson term in the electroweak Lagrangian:

(2)

In the production of a heavy quark q, the Bnal state is given
by X = Q + X' where X' is unobserved. For the purposes of
the present discussion, we shall not single out q from X.

N{PP

FIG. 1. The general lepton-hadron scat tering process:
N(P) + l, -+ X(P») + l2 via the exchange of a vector bo-
son, B(q) Th. e lepton momenta are I; while the initial and
final hadronic momenta are P and P~, respectively.

where a summation over B is implied. The gauge cou-
pling constant g~ for the vector boson field Vjy depeads
on B and their values as prescribed by the standard
xnodel are given in Table I.

Both the hadronic and fermionic current operators are
defined by

JJ''(~)= A(*)~~(~v ~»')&f(&)
~f(*)&~(&&(1+& ) + &L(I & )]~f(~) ~

where @f denotes a generic fermion field, and the vector
and axial vector coupliags gv ~ are related to their chiral
counterparts by gL R by gv, A = gL + gR. The values of
those fermion coupling constants, according to the stan-
dard model, are given in Table II; however, we will keep
them general in our coasiderations.

The scattering amplitude for the process of Eq. (1)—
with particle momenta as shown in Fig. 1—is given by

where q = /i —t2, t = li + l2, Q = —q ) 0, and {""„=
g"„—q"q„/M&~. The lepton current matrix element is
given by

The hadron current matrix elemeat is kept in the general
form: J„'(P,q) = (P» l

Jt lP). For simplicity, we have sup-
pressed the polarization indices for all external particles
in Eq. (4). Furthermore, the term {""„canbe replaced
by g„"in actual applications since the term proportional
to q"q„(when contracted with the lepton current matrix
element) yields terms proportional to mi2/Q2 which are
negligible at high energies.

An alternative expression to the above familiar forxnu-
lation of the scattering amplitude which emphasizes the
helicity of the exchanged vector boson is given by [28,29]:

(Q2 P )
98 (~) '

(Q2)

where n aad m are helicity indices for the vector boson,

TABLE I. The gauge couplings of the vector bosons ac-
cording to the standard model.
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TABLE II. The gauge couplings of the vector bosons
according to the standard model. V;~ represents the
Cabibbo-Kobayashi-Maskawa (CKM) flavor ~ixing, if rele-
vant, and Q; is the fermion charge in units of lel.

The explicit expression for L"„with general coupling
constants is given in Appendix B. As is well known, the
hadron tensor W"„canbe expanded in terms of a set of
six independent basis tensors4

gv
gw

gR
gI

0
Qa.

Tsl, —2Q;sin 8~
T3L

—Q; sin 8iv
Tsz, —Q;sin 8w.

1 V;~
i V,,

0
1 ~ V2

P~P„

Pv
W

2 5
+

W4+

P"qv —q"Pv
2M2 (10)

p"(q ) and J' (Q, P q) are the scalar helicity ampli-
tudes for the two vertices shown in Fig. 1, and d~(g) is
a spin-1 "rotation" matrix specifying the relative orien-
tation of the two vertices. The derivation of this formula
can be found in [28,29]; the precise definition of the rota-
tion angles g is given in Appendix A. (See also Appendix
B for details. ) We note that the structure of Eq. (6) is
quite similar to Eq. (4) above. The advantages of using
the helicity formulation in the /CD analysis of heavy
quark production will be discussed in Section IV.

III. CROSS-SECTION FORMULAS AND
HADRON STRUCTURE FUNCTIONS

The cross-section formula for this process is (cf. Ap-
pendix A)

2A s, mt~, M (7)

,) .(~~ I&'1&2) (&21&"l~~)

spin

where G; = g& /(Q + M&2, ) is a shorthand for the bo-
son coupling and propagator. The two indices Bj and
B2 denoting the species of the exchanged vector bosons
are implicitly summed over and kept distinct to accom-
modate the possibility of p-Z interference, and dF is the
phase space of the final state lepton. The factor 4nQ2
is &om the normalization of L and R'. In the above
expression we have introduced the dimensionless lepton
and hadron tensors given bys

where M is the target mass and &ps"" = e»"P qp The.
scalar coefficient functions (W;) are the invariant hadron
structure functions for this process.

By substituting the lepton and hadron tensors in Eq.
(7) and partially integrating over the phase space of the
6nal state lepton, one obtains, in the limit of negligi-
ble lepton masses, the well-known cross-section formula,
generalized to arbitrary couplings,

do 2E2 GgG2 2 . 28 28
g+& 2' sin —+ Wq cos

dE2 cos 7l' Ai

(»)

where the 6 sign for the W3 term refers to the case of
lepton and antilepton scattering, respectively. Here, Eq
and E2 are the energies of the initial and final state lep-
tons respectively in the laboratory frame, 8 is the scat-
tering angle of the lepton in the same kame, and n~ is the
number of polarization states of the incoming lepton. To
simplify the expression, we define g+& ——gL& 6 gR» where

gL, i and gRi refer to the chiral couplings of the vector
boson to the leptons. 5

It is worth noting that the hadron structure functions
(W4, Ws, Ws} do not appear on the right-hand side be-
cause they are multiplied by factors of lepton mass from
the lepton vertex, not because they are intrinsically small
compared to the familiar (Wq, Wq, Ws). This will be-
come relevant when we discuss the calculation of hard
scattering cross sections involving heavy quarks.

It is by now customary to introduce the scaling struc-
ture functions F~ given by

Fg ——Wg,

F2 ———W2,

W"„=—) (2n) b (P+q —Px)
4m

spm

P
F3 ———W3M (12)

x(PIJ"IPx)(P»l~.'IP) . (9) in terms of which the expression for the difFerential cross
section may be rewritten as

For spacelike q, Q is actually a hyperbolic angle specifying
a Lorentz boost.

Historically, the de6nition of W"„—and thus the de6nitions
of W~ in Eq. (10}—contains an extra factor of M, the target
mass. In view of scaling considerations, it is more natural
to use the dimensionless deSnition. Also note that sums and
integrals over all the unobserved hadronic Snal states X are
implied in Eq. (9).

In some papers, the tensor associated with Wq is chosen
to be the gauge invariant form (—g~ + q~q„/q }, aud that
associated with Wq is obtained with the substitution P" —+
P"(g» —q"q„/q ); these changes (convenient for conserved
currents) will modify the deSnitions of W4, Ws, and Ws only.

The lepton chiral couplings appear explicitly because L"„
has been evaluated. The corresponding hadron chiral cou-
plings reside implicitly in the (W~) invariant structure
functions.
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2ME, G,t-"», (
a+I ++&u*+ ~l (' —q) —

I I I
+g'-i(*+su(& —ul2)I).&2E, ~&

In the alternative helicity formalism, the expression for the cross section is given by

d(r

Bzdg

gQ' &iGz 2 (F++ F-)
g+& (1+cosh Q) + Fo sinh g + g, [(F+ —F ) cosh ql))]

2 2

7l A$
(14)

where Q is the hyperbolic rotation angle of Eq. (6),
and we have introduced the helicity structure functions
(F~, A = +, 0, —) which correspond to the physical for-
ward Compton scattering helicity amplitudes

Fp = e"„'(P,q) W"„(P,q)e&(P, q) (no sum over A) (15)

with right-handed (+), longitudinal (0), and left hande-d

(—) vector bosons respectively. s We note that the first
term on the right hand side involves the trunaver8e struc-
ture function FT ——(F+ + F )/2 whereas the third term
is the parity-violating term with F+ Fpr-oportional to
Fs in Eq. (13). Eq. (14) should be familiar, as it is
analogous to the corresponding well-known formulas for
timelike vector boson production processes —Drell-Yan
pairs and R', Z production —where the hyperbolic angle

g is replaced by the center-of-mass angle e for the final
state lepton pair.

The helicity structure functions as defined above are
naturally scaling functions. In addition, their direct
physical interpretation leads to simple properties in the
/CD parton model framework, as we shall see in the next
section. Note that Eq. (14) does not show any explicit
target mass dependence; all complications arising from
the nonvanishing mass are contained in the definition of
the rotation angle qI() through kinematics. This simplicity
is a consequence of the underlying group-theoretical ap-
proach to the factorized structure of Fig. 1. The precise
relations between the helicity structure functions and the
invariant structure functions are found (cf. Appendix B)
to be

1 QF+ ——Fq —— 1 + F3,
2 p

1 Q2F = Fg+ — 1+ 2 F3,
2 v
Q'& ( 1 l

Fo = Fi+
I
1+- (16)') &2*)

We see in the limit M -+ 0 that Q /v m 0 and we

obtain the approximation: F~ Fi + Fs/2 and Fo-
—Fi + F2/».

To leading order in the electroweak coupling, Eq. (11),
Eq. (13), and Eq. (14) are completely general, assum-
ing only I orentz kinematics and small lepton masses. In
particular, all results up to this point are independent
of strong interaction dynamics. Aside from Eq. (14),

The choice of these labels —over the more obvious R, I,
etc.—is constrained by the con8ict between the left-handed
and longitudinal designations. For m~ ——0, we can ignore
Fx = (Fqq, Fqo, Foq), cf. Appendix B.

they are well-established formulas explicitly generalized
to include arbitrary couplings.

IV. THE +CD FACTORIZATION FORMULAS

Perturbative /CD allows one to relate the measurable
hadron structure functions (F;) to the corresponding
quantities involving elementary particles —the partons-
which can be calculated in perturbation theory. This sec-
tion states the basic /CD "factorization theorem" as it
applies to deeply inelastic scattering processes and points
out some important unfamiliar features in the presence of
nonzero masses, especially when the initial state parton
is a heavy quark.

A. Factoriration of tensor amplitudes

The factorization theorem [30] states that, in the
Bjorken limit, the dominant contributions to the
hadronic tensor structure function has the factorized
form of Fig. 2 with on-shell, collinear partons:

W„„(q,P, . . .)= ) fN 8 (u„„

= ) j f% (E, I )~„':(q, 4, "—, ~, (1 ))
a

(17)

» Eq. (17), the label a is summed over all parton
species. The convolution integral variable ( is the mo-
mentum fraction carried by the parton with respect to
the hadron defined in terms of the ratio of light-cone
momentum components ( = hi+/P+. The universal par-
ton distribution functions f~ are scalars; scattering of

FIG. 2. Pictorial representation of the factorization the-
orem for the hadronic structure functions for inclusive
deeply inelastic scattering. The process on the left is
N(P) + B(q) -+ X(Px), and the factorized process on the
right is N(P) -+ a(kq) (represented by the parton distribution
function, f/') with the successive hard scattering interaction
a(kq) +B(q) (represented by (d„„).The vertical lines indicate
an inclusive sum over the final states, X(Px)
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the vector boson takes place with the partons via the
hard-scattering factor sr+„which can be aptly called the
parton structure function tensor since it is entirely anal-
ogous to the hadron structure function tensor W+~ by
substituting the hadron target N with the parton target
a. Note that the tensor structure of W+~ is completely
determined by that of u„„Thesefeatures should be
obvious by inspection of Fig. 2. Strictly speaking, the
factorization theorem is established in this simple form
only for certain specifically defined asymptotic regimes.
We shall treat Eq. (17) as an ansatz and apply it in such
a way that our results reduce to the known correct ex-
pressions in the limits A (( m2 Q on the one hand, and
A ( m2 (( Q on the other. (Here m2 denotes a heavy
quark mass. )

The presence of heavy quarks among the initial and
final state partons in a„„hassome important conse-
quences. The most i~mediate one is that the range of
integration in Eq. (1?) will depend on the masses of the
heavy quark as a simple consequence of the kinematics
of the hard scattering. In leading order QCD, where the
integration range reduces to a single point, this natu-
rally gives rise to a generalized "slow-rescaling" variable
which was originally proposed in the context of the sim-

ple parton model [17] (cf., Appendix A). In addition, the
tensor structure of the perturbatively calculable ur"" is
clearly diferent from that of the naive parton model,
even in leading order QCD. For example the well-known
Callan-Gross relation simply does not hold in the pres-
ence of heavy quark mass. A proper treatment of heavy
quark production must use the correct hard-scattering
amplitude u+„(clac lutaed to the appropriate order, in-
cluding quark masses) in conjunction with choosing the
proper variable. A "slow-rescaling prescription" of a sim-
ple variable substitution is not sufficient, cf. Sec. VI.

In order to apply the factorization theorem to mea-
surable quantities properly, we must re-express Eq. (17)
in terxns of the independent invariant structure functions
(W;) or the helicity structure functions (F~) in a precise
way. Theoretical calculations of the parton-level hard
amplitudes on the right-hand side of the equation usu-
ally yield the (parton) invariant or helicity amplitudes,
not the tensor u"" itself. In the presence of target and
heavy quark masses, we will find that the relations be-
tween the invariant structure functions at the hadron and
the parton levels are far from being simple, as usually as-
sumed in existing literature. In contrast, the connection
between the corresponding helicity structure functions
are coxnpletely transparent.

B. Invariant structure functions

The parton-level invariant amplitudes u; are defined in
analogy to Eq. (10), as follows:7

+q k& kyq —q kz

Q' 2q' 2Q'
(18)

where kq is the momentum of the incident parton. Sub-
stituting Eq. (18) in Eq. (17) and comparing ru „with
W"„[Eq.(10)],we see that the relations between invari-
ant structure functions at the hadron and the parton lev-

els depend on the relation between k~ and P". Whereas
the two momenta are proportional in the zero mass limit,
this relation becomes nontrivial in the presence of either
target mass or parton mass (cf. Appendix A). Since the
vectors P, kq, and q are collinear, we can parametrize k~

k,"= (pP" + (sq". (19)

In the zero mass limit, (p -+ f and (~ ~ 0. In gen-
eral, the coefficients ((p, (q) are rather complicated func-
tions of the masses and the convolution trariable ( [cf.
Eqs. (B19), (B20)]. Thus, the relations between the W~
and the u; are also rather complicated. Relevant formu-
las which relate W~ to u; are given in Appendix B.

C. Helicity structure functions

In sharp contrast to the above, the factorization the-
orem assumes a simple forxn when expressed in terms of
the helicity basis. To see this, let us define the parton
helicity structure functions up, in analogy to Eq. (15),
by

(q P . . .) =).fear~

~z = s '(kq, q)~"„s~(kq,q) (no sum over A) . (20)

In order to relate these to the hadron helicity structure
functions Fg, Eq. (15), it appears that one needs to re-
express the vector-boson polarization vectors (s&(kq, q))
(defined using kq as the reference momentum) in terms of
(ez(P, q)) (defined using P as the reference momentum).
The enormous simplification of the helicity approach fol-
lows from the fact that the two sets of polarization vec
tora are in fact identical eeet in the presence of mosses,
hence no transformation is neededt The reason for this
is that for a given vector-boson momentum q the ref-
erence momentum is used only to specify the direction
of the polarization axis; the two seexningly diferent ref-
erence momenta kq and P actually specify the same set
of polarization vectors because they are collinear in the
QCD parton framework. Thus, we arrive at the straight-
forward formula:

In order to render the cu; dimensionless, we use the natural
variable q rather than any parton mass in scaling the ten-
sors so that the invariant structure functions have well-de6ned
limits as m/Q -+ 0. (Note that if the hadronic structure func-
tions were originally de6ned this way, rather than using the
target mass M as the scale factor, (W;) would be naturally
"scaling. ")

This suggests that to explore the consequences of per-
turbative QCD on heavy quark production (as well as
on all other processes), it is advantageous to perform the
calculation in the helicity basis. The simple formula Eq.
(21), together with Eq. (14), relate the calculation of
hard scattering amplitudes directly to measurable cross



3090 M. A. G. AIVAZIS, PR&~RICK I.OLDS, AND %'U-KI TUNG 50

sections without any approximations or complications.
Besides, since the parton-level helicity amplitudes have
simple symmetry and structure, due to the basic chiral
couplings of the theory, the results of this approach are
often the most physical and compact to begin with.

V. LEADING ORDER +CD CALCULATION OF
HEAVY FLAVOR PRODUCTION

k

FIG. 3. Leading-order hard-scattering amplitude for heavy
quark productions.

mq m 0, one obtains

To illustrate the use of the general formalism devel-
oped above, we apply it to the calculation of heavy quark
production in leading order /CD. Existing applications
of heavy quark production in DIS mostly concern charm
production in charged current interactions at fixed-target
energies. Since the charm mass is comparable to the tar-
get mass for existing neutrino experiments, and neither
is negligible compared to the energy scale Q, it is rea-
sonable to retain the target mass efFects in order to be
self consistent. Numerical comparisons of the complete
calculation (with full target mass dependence) to the con-
ventional one show that the difFerence can be signi6cant
in certain regions of the phase space.

The leading order diagram that contributes to ~p is
shown in Fig. 3 and its contribution, including all masses
and arbitrary couplings, is calculated explicitly in Ap-
pendix C. We consider charm production in charged cur-
rent neutrino scattering. Since, the R'-exchange pro-
cess involves only left-handed chiral couplings (cf. Ta-
ble II). The parton helicity structure functions for scat-
tering from a strange quark are given by

(25)

(u = gL, 2b((/X —1), (26)

m2
~o = 9L,.2, 2b((/X —1) (27)

and X = g(1+ m22/Q2). Thus, the helicity structure
functions assume the following simple forro. :

F+ ——0, (28)

+- = n.2'(X) (29)

m2
+o = n. 2Q', 2'(X) (30)

where an implicit sum over contributing parton species
a is implied. By applying the general expression of Eq.
(7), one obtains

wq'
wgugz, ~ Qpr(X)

(Q2 —m2 + m2) + b,
X=f1

2 2 ) (23)

where g&~ is the left-handed coupling of the W to the a-
type parton, ( is the convolution variable of Eq. (17), mi
is the initial parton mass, m2 is the heavy quark mass,
and X and 6 are given by

t'I+cosh/) m2 sinh @+
2Q2 (31)

where Q is defined by Eq. (A23), gL, r = 1 and gL,

cosgc(singe) for a = s(d), respectively. Note, Gw =
ga„/(Q'+ Mw) = (G» /~2)/(1+ Q'/Mw).

The corresponding formula for antiquark production
via lepton scattering, obtained from the interchange of
gl.~ and g~~ in the expressions for ~~, yields:

4 = b[—Q, mi, m2], (24) ++ = gr', o-25 (X) (32)

where g [Eq. (A17)] is the target-mass corrected Bjorken
x, and 6, is the triangle function [Eq. (A5)], both defined
in Appendix A.

Substituting in Eq. (21), we obtain simple but nontriv-
ial formulas for the hadron helicity structure functions.
The b function in Eq. (22) fixes the momentnm fraction
variable ( = X. Since uo g 0, we see explicitly that the
longitudinal structure function cannot be neglected even
to leading order. It is proportional to the quark masses
when they are nonvanishing; thus, the Callan-Gross re-
lation does not apply in its original form.

For charm-production, the initial parton is either a d
or s quark; both can be treated as massless. In the limit

=0,

+o = gl, n 2Q', 2giv(X)

= &wgl, &9L,a28r (X)dxdy 7r

(1—cosh/I m2 sinh Q
'

~ +2q'

(33)

(34)

(35)
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m'& ) m'i
~,~o g Q2) M~o

g Q2~
)Vl 1+

l
: z 1+

which is the "slow-rescaling" variable.

(36)

These results still retain the full kinematic target-mass
dependence (cf. Appendix A). If one sets M = 0, the
expressions for the cross section in Eqs. (31) and (35)
stay unchanged; only the definitions of g and g simplify.
I11 particular

c+-a
15-

N

10-
C~ 110

$200
2se

R

0.2 0.4 0.6 0.8 1AI

Y

VI. COMPARISON %KITH EXISTING
CALCULATIONS

There are a variety of "slow-rescaling" prescriptions
in the literature with varying degrees of accuracy [17].
Some analyses of charm production in DIS use a slow-

rescaling corrected parton model prescription which con-
sists of using the familiar zero-mass parton model cross-
section with the substitution:
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This prescription incorporates only the heavy quark mass
efFect for the on-mass shell kinematics —the delta func-
tion of Eq. (22)—but ignores corrections to the "body"
of the partonic (hard) structure functions (d~ in the same
equation. It is therefore inherently inconsistent.

An improved treatment is obtained by using the ex-
act expression for the Born diagram with m1 ——0 and
M = 0. The results are simple enough so that the final
m2 dependence can be rewritten to appear as a "slow-
rescaling" corrected formula, as follows:

= &wuuur, . y+ -(1 —y) e(()
do 2 2 2 2Q (

dÃtfy m'y x

+ u(u —i)+ —(i —u) s(6)I .

By definition, this modified prescription ignores target
mass efFects in the parton kinematics that are not nec-
essarily small compared with heavy quark effects. Equa-
tion (38) should be compared with Eq. (31) which has
implicit M dependence in cosh@, sinhf, and y.

Some papers include the target mass dependence of
the cross section Eq. (13), i.e., the term Mzy/(2Ei), —
so that the cross section for neutrino production reads

FIG. 4. Percent deviation of leading-order cross section be-
tween the "slow-rescaling, " Eq. (39), and complete, Eq. (31),
for E„=80 GeV, m, = 1.5 GeV: (a) do'/dy(v + s ~ c) inte-
grated in z over the range z = [0.1,0.6]; (b) do/dz(v+s -+ c)
integrated in y over the range y = [0.1,0.8].

for v + N ~ p, + c + X for neutrino energies ranging
&om 50 GeV to 300 GeV—a reasonable range for fixed
target experiments. For simplicity, we only consider the
dominant sub process: W + s ~ c. As anticipated, for
both the z and y distributions, the deviations decrease
with increasing neutrino energy (hence, increasing Q )
since the M /Q and m2/Q2 terms are decreasing The.
y distribution agrees well at large y, but deviates from the
complete leading order result by more than 25% for small

y where the effects of the charm mass threshold are sig-
nificant. The deviation of the z distribution ranges from
a few percent at small z to & 25% at large z. Thus the
difference between the conventional slow-rescaling pre-
scription and our approach, which is based on the fac-
torization theorem, are not negligible. The main source
of discrepancy arises &om the charmed quark mass m2
which is only slightly larger than the target mass M; the
latter should not be neglected if efFects due to the former
are significant. In particular, the momentum &action
variable f = g which enters the precise formula Eq. (31)
is approximately

2 2Q'
W'~Ll ~La

( m2) ( z2M2)(=X=zl1+
)

(40)

( (Mzy')
x y+ —1 —y —— qx z (2Ei) (39)

N»TTI erically, this term has negligible effect; the
—Mzy/(2Ei) term does not approximate the true tar-
get mass dependence, and for all practical purposes, Eq.
(38) and Eq. (39) are identical at the & 2% level.

We now present numerical results comparing cross sec-
tions calculated using the complete leading order formula
Eq. (31) with that using the slow-rescaling prescription,
Eq. (39). In Fig. 4 we compare the y and z dependence

when m22/Q2 and M2/Q2 are small, and mi ——0.
other words, the conventional "slow-rescaling" variable
itself needs a target-mass correction.

VII. CONCLUSIONS

The proper treatment of the effects of heavy quarks in
the theoretical predictions of the differential cross section



3092 M. A. G. AIVAZIS, FREDRICK I. QLNESS, AND WU-KI TUNG

for deeply inelastic. c scattering processes is not coxnpletely
solved in perturbative QCD. Strictly speaking, the famil-
iar factorization theorem applies only to one scale prob-
lems, i.e., when either all quark masses are negligible
compared to Q2, or when the heavy quark mass m is of
the same order of magnitude as Q .

The recent higher order calculations of heavy quark
production which exclude massive partons and focus on
the gluon-fusion diagrams apply only to the region in
which m2 Q and require a totally different treatment
of charged and neutral current processes.

We formulate a unified approach to both types of pro-
cesses that is based on the factorization theorem as an
ansatz. We assume that the factorization theorem holds
throughout the energy range of interest in the simple
form W = f 8 ~. This ansatz produces the correct re-
sults in the regimes Q2 mz and Q2 )) m2, and provides
a smooth interpolation in the intermediate regions. We
are able to treat both charged and neutral current pro-
cesses by endowing the parton quarks with a mass and by
not making a priori any assumptions about the relative
importance of quark and gluon-initiated contributions.
Instead, we take advantage of precisely the techniques
that yield the proof of the factorization theorem to en-
sure that the final expressions conform to expectations
in the Q m and Q » m regions.

Working towards this goal, we have presented here the
general framework. In order to illustrate the basics of
our approach, we have presented an explicit calculation
of the lowest order contribution to the quark structure
functions. However, this contribution by itself is not suf-
ficient for proper phenomenological analysis of DIS cross
sections because of the importance of quark-gluon mixing
in sea-quark initiated processes.

We have compared existing phenomenological analyses
based on the lowest order process W+ q ~ Q, with the
unified approach which retains all masses. For charged
current charm production experiments (W+ s ~ c), the
final state heavy quark mass m is comparable to the tar-
get mass M; hence, if the m dependence is retained, then
the M dependence must also be retained for consistency.
The m dependence results in the well-known "slow rescal-
ing" adjustment of the scaling variable and the cross sec-
tion. The target mass also adjusts the effective scaling
variable, and can shift the cross section by up to 25% for
fixed-target experimeats.

For collider experiments such as the HERA ep facility,
we would like to study charged and neutral current pro-
duction of charm and bottom quarks. Such processes fall
in the intermediate region where the heavy quarks are
neither Q2 m nor Q » m; hence, we must carefully
take the mass dependence into account.

In the second paper of this series we shall make use of
the framework developed here to present a fuo next-to-
leading order analysis of both charged and neutral cur-
rent cross sections for deeply inelastic scattering.
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APPZNDm A: KnmMATICS

1. Overall process

For the physical process

l1(lt) + N(P) W l2(l2) + X(PX) (A1)

the following invariant variables are standard:

P =M
2 — 2

Q = —e,
P qP = = E~ —E2

—q2 Q2

2P q 2Mv '

P. q v

P lg Eg
) (A2)

where q = lq —l2, aad Eq and E2 are the laboratory en-
ergies of the incoming and outgoing leptons respectively.

The components of the relevant four-vectors in the lab
frame are

P" =(M, 0, 0, 0),
l", =(E„o,0, —E,),
l2 = (Eg, E2 sin 8, 0, ——E2cos8),
g = (V) +E2 S1118, 0, E1 + E2cos8)— (A3)

where, as throughout this paper, lepton masses are ne-

glected.
The cross section for the deep inelastic scatteriag pro-

cess is given by the standard form:

do. =
2 ) (M (dl'

2A s, m1', , M

We sumxnarize the details about the kinematics includ-
ing target and heavy quark mass effects in this appendix.
We begin with the lab frame kinematics for the overall
process, and then examine the class of collinear frames
including the brick wall (BW) frame. Finally, we consider
the colHnear frame for the partons, and relate the par-
tonic quantities (including dot products) to the hadronic
variables. s

The authors would like to thank Andrew Bazarko,
Raymond Brock, John Collins, Sanjib Mishra, Michael

We use the metric g = (+ ———) when necessary, but
attempt to present the results in a metric independent fashion.
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with M being the mass of the incident hadron, m~, the
mass of the incident lepton, and the triangular function

A(a, b, c) = ga + b + c2 —2(ab+ bc+ ca) . (A5)

The s»r» and average over spins is given by FIG. 5. Basic process for inclusive boson B(q) nucleon

N(P) scattering: N(P) + B(q) ~ X(P&), summed over the
final state, X(Px).

1 for v, v
with ni = No. of initial spin states =

2 or/

(A6)

dF represents the final state phase space, with all unob-
served degrees of freedom to be integrated over,

2. The collinear frames

Since the underlying physical process is actually the
scattering of a spacelike vector boson on a nucleon (cf.
Fig. 5)

dI' = dl (2n)4b (P+ l —P —l )dF (A7)
B(q) + N(P) ~ X(Px), (A12)

d4k dsk
(2 )b+( (AS)

with the notation (for invariant single-particle phase
space)

it is more natural to use &ames in which the four-vectors

(q, P) define the t zplan-e. For parton-model considera-
tions, it is convenient to specify these vectors in a general
kame of this class by their light-cone coordinate compo-
nents (z+)z) z ), with z+ = (zo 6zs)/~2, as:

and dt's representing the phase space factor for the
hadronic final state. With the scattering amplitude given

by Eq. (4), one can put the various pieces together to
get:

M2P"=
i

P+, 0,' 2P+

q" =
i

rIP+, 0, —' 2rlP+ )
(A13)

26(s, mi2, M2 (A9)

where G; = gz/(Q + M& ), the subscripts on g&
and M&~ indicate the type of exchanged vector boson,
dF' represents»~integrated hadron degrees of freedom
(such as those associated with the production of a heavy
quark), and the lepton (hadron) tensor L"„(W"„)is de-
fined in Eq. (8) [Eq. (9)j. For convenience, W and L
are defined to be dimensionless; these depart from some
historical definitions by simple factors such as M. The
factor of 4mQ2 comes from the normalization of W and
L.

Suppressing dF', one obtains

where P+ is arbitrary, and g is defined through the im-

plicit equation:

2q P= —gM 2 (A14)

1 1 M2

n Q' (A15)

Clearly, g reduces to x in the zero target mass limit,

g represents the generalization of the familiar Bjorken z
in the presence of target mass, and it is related to the
latter by

2="Q G,G.I, .W.
dxdy 8m.

(A10) M'/Q -+0 (A16)

Note that the gauge couplings of the bosons g~, ap-
pear explicitly whereas the chiral couplings of the lep-
tons (g~i, gl, i) and hadrons (g~a, gL,a) are kept with the
currents, and hence reside in the respective tensors.

For completeness, we record the relations between var-
ious commonly used cross sections:

whereas, the general solution to Eq. (A15) is

1 1 1 M2
+ +

ri 2z 4z2 Q2
(A17)

MEgy do

E2 dE2dcos8 ' (A11)

which can be easily derived using the kinematic defini-
tions in Eq. (A2).

We shall refer to this class of frames as the collinear
frames. The laboratory frame (with the negative z axis
aligned along q) belongs to this class; it is obtained by
setting P+ = M/~2. The "infinite momentum frame, "
often used to derive the /CD asymptotic theorems, is
obtained in the limit P+ —+ oo. Another useful kame in
this class, used in the helicity formulation, is discussed
in the following.
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jk

X

FIG. 6. (a) The standard hadron configuration in (x, z}
space. Note that the hadron momenta are collinear with the
z axis, and the lepton momenta define the x-z plane. (b) This
frame is related to the standard lepton configuration (Fig. 7
below) by a space-time rotation (i.e., boost) in the (x, t}plane
by the angle @.

3. The brick wall frame

q" =Q(0, 0, 0, —1),
1P" = (AJ, 0, 0, +pg),

2

1
(s~, o, o, -p),X (A18)

and we refer to this frame as the standard hadron config
urution, Fig. 6, with

Ay = b, [
—Q, p, pg. ],

Pg
——Q —P +Px,

P Q2+ p2 P2 (A19)

The brick wall (BW) irame is the natural "rest frame"
of the exchanged vector boson when its momentum q is
spacelike, q = —Q ( 0 (cf. Fig. 1). It is also one of the
collinear frames, corresponding to setting P+ = Q/(r1~2)
in Eq. (A13), and hence obtaining qo = 0 and qs = —Q.
In the Cartesian coordinate system, (xo, x~, x2, xs), we

have

2P (lg + l2)

Q[ Q2 P2 P2] (A22)

Evaluating the scalar productions in the laboratory
frame, we relate cosh/ to the more familiar variables

E +E2
cosh

/Q2+ ~2

, (2 —g)
M-+0

&'M' —Q'+ 2~(s —M')
rI'M'+ Q'

(A23)

In developing the helicity formalism (Appendix B), we

encounter the "spin-1 rotation matrix" for the vector bo-
son polarization vectors under the above Lorentz boost
from the configuration Eq. (A21) (Fig. 7) to Eq. (A20)
(Fig. 6). The three-dimensional d matrix is

d'(&) =
1+cosh Q

2—sinh Q
~2

1—cosh Q
2

—sinh Q

cosh @
+ sinh@

1—coshQ-
2

+ sinh+

1+cosh Q
2

(A24)

It is the SO(2,1) analogue of the familiar SO(3) rotation
matrix.

4. Parton kinematics in the +CD parton model

by a "rotation" in the (t-x) plane (really a Lorentz boost)
by the hyperbolic angle vP. This is in analogy to the
familiar c.m. rotation [in the (z-x) plane] between initial
and final scattering states in a timelike situation. This is
illustrated in Fig. 6 and Fig. 7.

The hyperbolic cosine can be obtained &om the for-
mula

In this frame, the lepton momenta are given by

lz ———(cosh/, sinhg, 0, —1),1

Iz ———(cosh/, sinhg, o, +1),2 2
(A20)

m2
(A25)

In the /CD parton model (cf. Fig. 2), we have an ini-

tial state parton momentum k1, whose light-cone compo-
nents in a collinear kame are

which can be easily envisioned as being obtained &om the
standard lepton configuration [cf. the standard hadron
configuration, Eq. (A18)], Fig. 7,

where ( is the fractional momentum carried by the par-
ton. The momenta involved in the "hard scattering" con-
sist of

I", = —(1, 0, 0, —1), q+kg m k, (A26)

&,
" = —(1, o, o, +1),2 2

l(

X

(A21) where the final state, represented by the total momen-
tum k, consists of either an on-mass-shell single parton
[for the case of the leading-order (LO) calculation] or a
continuum of multiparton configurations [for the next-to-
leading-order (NLO) calculations and beyond].

For the I 0 calculation presented. in Sec. V, with
k = k2 ——k1 + q, we can evaluate the argument of the
b function which enforces the on-sheO condition for the
anal state heavy quark:

FIG. 7. (a) The standard lepton configuration in jx, z}
space. Note that the lepton momenta are collinear with the z
axis, and the hadron momenta define the x-z plane; (b) The
same frame seen in (x, t} space. where

(A27)
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(Q2 —m2~ + m22) + b, [
—Q2, m2~, m22]x+=a (A28)

and rI is defined in Eq. (A17). The limits on f (see below)
dictate that the only physical root is

Q (( - gm2)

m2
(A34)

(=x—= a+. (A29) Using the explicit components of the lepton momenta
given in Eq. (A20), it is then straightforward to show

This variable reduces to the "slow-rescaling" variable
2:(1+m22/Qs) in the limit mq ~ 0 and M ~ 0. Substi-
tuting Eq. (A29) in the second factor in Eq. (A27), we
obtain

~(&- i)
+( 2 2) ~[ Q2 2 2]

(A30)

When the final state consists of multipartons (for NLO
and beyond), the c.m. energy of the subprocess s must
be greater than a threshold sqh, which is equal to either
m2 or 4m2, depending on whether a single heavy quark
(charged current case) or a heavy quark-antiquark pair
(neutral current case) is produced. Since

1( 2 (cosh/+ 11 1 rl 2 (cosh/ —1)
kq lg + --m',

2' q 2 & 2( g 2

(A35)

1 ( 2 (cosh/ —1) 1 q 2 cosh/+ ll
kg l2

2g g 2 ) 2f g 2
+ ——m)

(A36)

To contrast the simplicity and symmetry of this group
theoretic approach with a more traditional "brute force"
calculation in the collinear frame, we compare:

s = (kg+ q) = m, —Q +2k' q

=
~

Q + —m,
~

——1
~

& s&~,
(, rl, ((

(A.31)

(kg lg)

Q2$2(s —Ms + M2rl) + m2, (srl2 —M2rl2 —Q rl)

2((Q2 + M2rl2)

it is easy to see that the threshold condition imposes
the constraint ( & (qh on the parton momentum fraction
variable where

(Q —m', + i,h) + b, [-Q,m'„igh]
th ='9

2 2

(Note that for ith = m2, gqh = y+ = y.) On the other
hand, the condition that Px+ = P+(1 —f) & 0 requires

( ( 1. Hence, (, which is also the integration variable for
the convolution in the fundamental factorization theorm
[Eq. (17)], has the following range:

(Q' —mf + igh) + 6[—Q, m„sth]
2 2

1» gg=ri

We recall that g is the generalization of Bjorken x incor-
porating the target mass effect. Thus the lower limit for

( is modified by both target mass and heavy quark mass.
This aspect of mass-dependence has been overlooked in
existing literature.

(A37)

(kg l2)

Q2(2(s —M2 —Qs/g) + m2~g2(s + M2g —M2)

2$(Q~ + M2rl2)

(A38)

Although it is not obvious, Eqs. (A35) and (A36) are
identical to Eqs. (A37) and (A38); however, the sym-
metries of the problem are more apparent in Eqs. (A35)
and (A36).

In the limit of zero masses, we have the usual relations
where (kq lq) + s/2 and (kq l2) ~ u/2 with no g depen-
dence. However, if we wish to obtain the correct mass
dependence, we must include the proper ( dependence in
our calculation.

Once we have (kq lq) and (kq l2), we can use kq+ lq ——

k2 + l2 to easily compute the other necessary combina-
tions via

5. Dot productions of lepton and parton momenta (A39)

In the explicit calculation of cross sections using the
contraction of lepton and hadron tensors (cf. Sec. V
and Appendix C), one needs the scalar products of the
lepton and hadron four-vectors. This calculation is subtle
because the variable ( = kz+/P+ is invariant for boosts
along the z axis, but not for other boosts or rotations.

In the BW kame, the light-cone components of the two
parton momenta are

APPENDIX B:STRUCTURE FUNCTIONS AND
CROSS-SECTIONS

Since the precise treatment of the mass efFects is em-
phasized in this paper, we include here some details on
the derivation of structure function and cross-section for-
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1. Tensor amplitudes and invariant structure
functions

We begin by recording the expression for the lepton
tensor, Eq. (8). In the limit of zero lepton mass, it is

L""= ) u(l )I'"u(l ) u(l )I'"tu(l )
1

spin

—Tr[l I'"l I'" ],
1 1 I f

Q2n,
(81)

where nl counts the n»rober of incoming helicity states.
Using a general V —A coupling of the form, Eq. (5),

I'" = V"[gJti(I + Vs) + g«(I —»)]
the result is

(82)

mulas used in the text, especially for the less familiar
helicity vertices and structure functions.

for the bosons. Lower indices are for incoming particles;
and upper indices are for outgoing particles. The scat-
tering amplitude for the basic process, Eq. (1), can be
written in the factorized form in the helicity basis [28,29]:

~Aa~z Jew (q2 p) gB (v') ~ .
Amn(Q2) (86)

B

where d1(g)
„

is a spin-1 SO (2,1) "rotation matrix" in
the brick wall kame of the process corresponding to q":
(0,0,0,—Q) [cf. Eq. (A24)]. The scalar lepton helicity
vertex function is

j„"'"(Q)= P„'(l2,A2lj" ll1, A1)

= u„,(l,)."'.ru„(i,)
and the corresponding hadron vertex function is

J' '(Q' q P) = (Px &2IJ~tl»lr1)&" .

8 1 Q2
LPv 2 Plv + lPlv gjl~qq2(g+l 1221

g', [t—e""' l1pl2~] (83)

Much of the simplicity of the helicity approach results
from the fact that the lepton vertex function is extremely
simple in the limit of zero lepton masses. For left
handed (right-handed) coupling, them is only one non-
vanishing vertex function for which all three particles are
left-handed (right-handed); it is simply given by

The independent components of the hadron tensor

W» are expressed in terms of invariant (i.e., Lorentz
scalar) structure functions defind as [Eq. (10)]

QPP z+'QP qI qS' „——g „Wg+ S'g —i W3+ S'4
2M2

j (q) =j:,",2 '(Q) = QSQ2 (89)

(Likewise, jgB(q) = —QSQ2 in the case of right-handed
coupling. ) Thus, upon squaring the scattering amplitude,
Eq. (86), one obtains

+ '"+' "W. + "'" '" "W (84)2M2 '+ 2M2
'pP lM'l oc d'(@) ' d'( —@)" 1W n,
8PIIl

(810)

Contracting the lepton and hadron tensors and eval-

uating the scalar productions of the four-vectors in the
laboratory frame [cf. Eq. (A3)], one obtains

where W
„

is the helicity forward Compton scattering
amplitude for initial state vector boson polarization n
and final state polarization m:

16E1@2 28
W L = g+l 2 sin —W1 + cos —W2

nl 2 2 W „=e„'(P,q) W" (P, q)e„"(P,q) . (811)

Eg+E2 . 28
+g &

scn —R'3

The structure functions jW4, Ws, Ws) do not appear on
the right-hand side of this equation because the dot prod-
uct of q" with the lepton tensor I""gives rise to a factor
proportional to some combinations of the lepton masses
which is neglected here. Equation (85), in conjunction
with Eqs. (A10)—(All), form the bases for the derivation
of the cross-section formula (ll) in Sec. III.

For totally inclusive process, this amplitude must
be diagonal in (m, n) due to angular momentum
conservation;9 hence, the right-hand side becomes
d (tP) d (g) 1F where the dia, gonal helicity am-

plitude W is identi6ed with the helicity structure
function F, cf. Eq. (15).

Using these results for the squared amplitude, lM l,

keeping all factors, and making use of the explicit form
of the d matrix, Eq. (A24), we obtain L . W, which

appears in the cross-section formula Eq. (A10):

2. Helicity vertices and structure functions

We now turn to the calculation of helicity amplitudes,
vertices, and structure functions. We use the helicity la-
bels A1 2 for the leptons; o1 2 for the hadrons, and (m, n)

In principle, there can be ~ixing among {W44,W40,
W 4). Since the coefficients of these terms are proportional to
m, , /q, we only concern ourselves with (W++, W 0, W }.
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8 I 2
t'I+ cosh/I (—sinh@l (I —cosh')

W L= —
qadi F+

l

2 i E 2 )
( I —cosh@) (+ sinh@l 51+cosh@I

(B12)

This leads to the general formula, Eq. (14), for the cross
section given in Sec. III.

3. Relations between invariant and helicity structure
functions

tors for the vector boson. As discussed in Sec. IV, this
is the key point which leads to the simple factorization
formula for the helicity structure functions in the /CD
parton &amework.

To project out the transverse helicity amplitudes, the
following representations are useful:

To derive the relations between the invariant and he-
licity structure functions, we first examine the polariza-
tion vectors for a vector boson with momentum q in the
helicity basis. With respect to an arbitrary reference mo-
mentum p, the "longitudinal" polarization vector is

( q')p" +—(p q)q"
C(p q) =

v'(-q') t(p q)' q'p'j- (B13)

with —q2 = Q2 ) 0 for the spacelike q". It is also useful
to define the "scalar" polarization:

qijt

eq (p q) = (B14)

In a collinear frame where the z component of q" is pos-
itive, the transverse polarization vectors are given by

1
e~~(p, q) = (0, p1, i, 0) . —(B15)

For the z component of q" negative, we rotate the above
about the y axis by x. These polarization vectors de-
pend on the reference vector + only to the extent that
it defines the t-z plane in conjunction with q". For the
transverse polarization vectors, this is obvious. For the
longitudinal vector, ez(p, q), this follows from the fact
that it is merely the unit vector in the t-z plane orthogo-
nal to q". The reference vector p" is used only to define
this plane and to provide the nonvanishing perpendicu-
lar component for projecting onto a~0. The two distinct
reference vectors in the plane, such as P" (the target
momentum) and kf (the initial state parton moment»m)
used in the text, define the same set of polarization vec-

e+(p q)&+'(p q) e"-(p—q)
"e'(p q)-=

t+(p q)e+ (p q) + e (p q)e (p q)

~""+eo(p q)eo'(p q) eq"(p q—)eq'(»q) (»6)

F+ —VVg 1 + R'3,

QzF =8'g+ 1+ 2W3)2M v2

( v'l
Fo ———Wg+

~

1+ ~W2.') (B18)

The complete transformation matrix to convert hadron
helicity amplitudes to invariant amplitudes (W~ = f
urq = t&W;) is given in Table III. The coefficients for the
inverse transformation (t ~)," are given in Table IV.

4. Relations Between Hadron and Parton Tensors

As discussed in Sec. IV, the kq four-vector is not sim-

ply proportional to P, but in general contains a mixture

The second relation is simply completeness.
Applying the above polarization vectors to the defini-

tion of the helicity structure functions, Eq. (15),

Fp = e"„'(P,q)W"„(P,q)e~(P, q) (no sum over A),

(B17)

and using the representation of W"„(P,q) in terms of the
invariant structure functions, Eq. (B4), we obtain:

TABLE III. Transformation matrix to convert hadron helicity amplitudes to invariant ampli-
tudes: Wqq = f uq = t&W». Note, we nse the short hand notation Fg = Wqq. We have defined

p = 1+Q /v (note p ~ 1 in the DIS limit).

~A

F+ = W++
F =W
Fp = Wpp

Wqq

Wpq + Wqp

Wpq —Wqp

Fg =Wg
1

Fg = (v/M)Wg
0
0

2a
1

2a
P

F~ = (v/M)W3

~+

0

W4
0
0
0

2Q
M~
0
0

0
0

M—PV
M

W6
0
0

—PV
M
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TABLE IV. Transformation matrix to convert hadron invariant amplitudes to helicity amplitudes: W, = (t ),"Wz. Note
that we use the shorthand notation Fq = Wpq. We have also used Fq ——Wq, F2 ——(v/M)Wq, and Fs = (v/M)Wq. We have
de6ned p = 1+Q /v (note p -+ 1 in the DIS limit). Note that ss M -+ 0, (W4, Ws, Ws) decouple from (F+,Fs, F }.

(t
—1 )A

Fg =Wg

F2 = (v/M)W2

Fs = (v/M)Ws
—1
p

—M 2

4v2 p2

M
vp2

+1
p

—M 2

4v2 p2

M
VP

Fo = ~oo

2K
p PF

M2
292 P2

2M
vp2

M
2@2

(Wsq + Wqo)

—M 2

2@2p
—M
VP

(Wov —W.o)

of P and q given by APPENDIX C: LEADING ORDER
CALCULATION WITH MASSES

(B19)

ri(m2 —M2Ic')

((Q'+ M'q') (B20)

W; = c'f 8~, ,

Note that this mixing depends on both M and mq. The
result is that the hadron tensors and the parton tensors
are mixed. Speci6cally,

We present the details of the leading order calculation
with the full mass dependence both as an illustration of
general points made in the text of the paper, and as a con-
crete example to check the self-consistency of the tensor
and helicity formalisms developed in the text. Although
the calculation is straightforward, the results with the full
mass dependence do not exist in the literature, and have
not been used in the analysis of experimental data —as
emphasized in this paper.

The parton structure function tensor uR„,representing
the vector boson (B) and parton (a) forward Compton
scattering amplitude, is entirely analogous to W'+~-
replacing the hadron target N by the parton target a.
The leading order diagram, Fig. 3, gives rise to

where the c, coef6cients are given in Table V. The coef-
ficients for the inverse transformation (c )' are given in
Table VI.

This is in contrast to the corresponding result for the
hadron helicity amplitudes where there is no mixing:

~„"= —(2')b+(k2 —m2)4x

x) (ky, 0]j~"~k2, 02)(k2, cr2[j„'~ky,oy) .
8 Pill

(CI)

(B22)
I

For quarks, the spin sum and average on the right-hand
side is

2Tr[(Itq + mq)I'"(It2+ m2)I'"'j = 4gR (—g""(kz k2) + k~ k2 + k2kf + is"" kq~k2 )
+4gL ( g""(kg k2) —+ k~vk2 + k2" k~ —ie""~kg~k2 )
+4(gR gL +gI gR )(+g""(mim2)) (C2)

TABLE V. Transformation matrix to convert parton invariant amplitudes to hadron invariant
amplitudes: W; = c,fu~ Note that a.s M. -+ 0, (W4, Ws, Ws) decouple &om (u;j.

C.
I'g = N'g

Fq = (v/M)Wg
Fs = (v/M)Ws

W4

4)2

0

0
Me

Q2
2(p(q M

Q2

0

Cal4

0

0
0

M

0

Ca)5

0

0
0

(qM
Q2

(pM
Q2

0

4J6

0

0
(pM

Q2
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TABLE VI. Transforxnation matrix to convert hadron invariant amplitudes to parton invariant

amplitudes: (u,. = (c ');f-@W;.

Fg =Wg
1
0

Fg = (sP/M)Ws
0
2a

0
2e('

—4a('~

0

Fs = (sp/M)WE
0
0

2R
(s

W4
0
0

0
QR
M~

Ws
0
0

0
—CqQ
(~M~

QQ

(j M~

0

W6
0
0

where (gR. , gL, ) are the couplings of the a-type parton
to the boson, and the on-mass-shell b function is given
by Eq. (A27).

This expression for u„"can be used in two ways: (i) it
can be substituted into the general factorization theorem
formula, Eq. (17), and then contracted with L"„to yield
leading order cross sections directly, cf. Eq. (A10); or (ii)
it can be used to calculate the helicity structure functions
through Eq. (20) and Eq. (21) before substituting into
the general cross-section formula Eq. (14). We shall do
both, and demonstrate the consistency of the two ap-
proaches. Although at leading order these two methods
are comparable in the ease of use, the helicity approach
provides a more scient way of calculating higher orders.
It also provides additional insight on the structure of the
physical amplitudes, as we will discuss.

We begin with the helicity approach using

erg = —2z6~(k2 —m2) ) Jq ' 'J", ,

= &&'(k, q)u„„(k,q)e&(kI q) no s»m on A, (C3)

and Eqs. (Cl) and (C2) above for tu„„(k,q); the helicity
structure functions at the parton level can be evaluated.

We obtain,

~, =61 ——1 l(aR flan +2gR ~L,oIIA +gL IIX )
RR RI,

i
(C4)

where the superscripts (8,L) refer to right-handed and
left-handed chiral couplings at the hadron vertices, and
the 0's are given in Table VII.

The partonic helicity structure functions (erg) exhibit
many physically interesting features which are obscured
in the conventional Dirac trace method. For ex~mple,
there are obvious symmetries under gR ~ gL,.when the
vector boson helicity is flipped. Additionally, there is
a clear order of magnitude separation of the amplitudes
when ms~ z/Qz become small (high energy limit): all the
longitudinal structure functions, as well as the mixed chi-
rality ones, become of O(m~~ z/q ).

Because of the direct relationship between the hadronic
helicity structure functions (Eg) to the partonic helicity
structure functions (w~), the (Fg) functions are essen-
tially given by the expressions above multiplied by the
relevant parton distribution functions evaluated at g = y
[due to the delta function in Eq. (C4)]. Substituting
these expressions in the general formula for L W, Eq.
(B12), we obtain

8 z (I+cosh/) f sinhQ) — fl —cosh@)—&»i +I 2 I

+
I

/

+
) E 2

(I —cosh@) (+sinhQ) (1+cosh@)
+91,i ~+

2 ~

+~P
~ I

+~-/
) E

' ) &
' )

with (to+ wp w ) given by Eq. (C4). The corresponding results for the antiquark process is obtained by the substi-
tution g/ ++ gl. .

TABLE VII. The helicity amPlitudes for the leading-order Process lq + kL(mL) + 4 + ks(ms),
with b = b, [

—q, mr, ms].

xx' = RR
2

gR
+ma+ma+

(vni+na~)+(vai —vni) /Q

Q +m.~+en~ —A

xx' = RL = LR
2gR~ gL~
—2~y tlLg

+2tng m, g

—2tTLg TAg

xx' = LL
2

gL
Q +m~+m~ —6

(nP+vn~)+(rn~ —nl. ) /Q

Q + g+ g+&

Note that we have used 0 = 0 to simplify Eq. (C4), and GP is syYIIYIIetric under 0 m 0
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Alternately, we can compute this in the tensor representation by contracting ur„"with L"„,Eq. (83), to obtain

ps b(i —1) (PB PRl+9L 9Li) ( 1' 1)( 2'4)
+ (g gL+g

gR gL (gRt + gLi) (mlm2)(ll l2)

Applying the convolution integral and inserting the scalar products between lepton and quark momenta derived in

A5 into Eq. (C6) leads to:

g(x)
nt q' a[—q' m' m'j

(gR gR't + gL gL, ) (q'X'd + min'd, + Xnq') (q'X'd+ + m', g'd )/(2'g'g') '

+ (gR 9L/ + gL gR!) (q'X'd+ + mi)7'd- Xri—q')(O'X'd +m-iri'd+)/(2'ri'~')
gRogLo (gRl + gLl) (mim2)q /2

(C7)

where dy = (cosh)jb k 1)/2 are elements of the di(g) ma-
trix. A special case of these results —charm production
in neutrino scattering —is discussed in Sec. V.

Although it is far from obvious, Eqs. (C5) and (C7)
are in fact identical (as some tedious algebra will prove).

The difFerence in appearance is simply that the helicity
approach exploits the symmetries of the problem; hence,
these symmetries are manifest in the final representation
of the cross section, Eq. (C5).
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