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Growth of density inhomogeneities in Newtonian cosmological models with variable A
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%e analyze the growth of density perturbations in Newtonian cosmological models with continuous
matter creation and obtain the time evolution equation for the mass density contrast. The special case
where matter is created by the decay of a cosmological term (A) varying as A=3PH is examined. Con-
straints on the value of P from the observed high isotropy of the cosmic microwave background radia-
tion are also obtained.

PACS number(s}: 98.80.Hw

I. INTRODUCTION

Recently, much effort has been made to investigate the
possibility that the Universe has a nonvanishing cosmo-
logical term (A). In the past, the cosmological term was
quite often introduced when there was some apparent
conflict between theory and observation. Later on, when
a better understanding of the observational data was
achieved, the hypothesis of a AAO universe was discard-
ed for the sake of simplicity.

The interest in a cosmological term now reappears
motivated by two main reasons. First, with a A term
cosmologists can reconcile the theoretical appeal of the
inflationary models with observations. A cosmological
term helps to solve the "low-energy density problem, "
i.e., it could be responsible for the missing mass necessary
to "close" the Universe [1]. Second, with this term we
can get a theoretical age for a flat universe in the ob-
served range, even for a present high value of the Hubble
parameter (H ) [2,3].

There is also an additional reason that makes physi-
cists believe that the contribution of the cosmological
term could be appreciable. According to quantum field
theory, the vacuum state has zero-point fluctuations to
whose energy the gravitational field is sensitive. Lorentz
invariance implies that the vacuum contribution to the
energy-momentum tensor has the same form as that of a
cosmological term (p„g„). This vacuum contribution to
A added to the bare cosmological term gives rise to an
efFective cosmological term. However, the estimated
value given by quantum field theory is 50—120 orders of
magnitude above the maximum value that observations
indicate for the effective cosmological term. The miracu-
lous cancellation between the bare and the vacuum con-
tributions to the effective cosmological term, or more
specifically, the smallness of this term, constitutes the so-
called "cosmological constant problem" [3,4].

One way to solve the A problem is to assume that as
the Universe evolves the effective cosmological term de-
creases to its present value. From this point of view, A is
small today because the Universe is old. Several cosmo-
logical models having this common property have recent-
ly been proposed in the literature [5—9]. Some of them
also present the characteristic that matter is continuously

created as a consequence of A decay.
Cosmological models with matter creation have mainly

been associated with the steady-state universe [10]. Of
special interest for us is the McCrea interpretation of the
steady-state universe. Differently from the usual theory,
where in general a C field is introduced, McCrea has
shown that matter creation can be treated by the stan-
dard methods of general relativity provided that the pos-
sibility of a "zero-point" stress is allowed [11]. In fact,
we can say that, more than 40 years ago, McCrea intro-
duced what we call today "variable A cosmologies with
matter creation. " The only difference is that in the
present models the perfect cosmological principle is not
assumed, and so the energy density is not necessarily con-
stant during the universe expansion.

The problem of galaxies formation in a steady-state
universe was examined by several authors [12—14]. The
calculations (usually made in the Newtonian context) as-
sume, however, that the Universe mass density is con-
stant, as required by the perfect cosmological principle.
In the present paper, we shall relax this hypothesis and
will reconsider, still in the Newtonian framework, the
problem of the growth of small perturbations in a
universe with continuous matter creation. Since we are
mainly interested in variable-A cosmologies, we shall also
introduce a time-dependent cosmological term and relate
its time derivative to the rate of mass creation.

The evolution of density perturbations in variable-A
cosmologies in a scenario in which only radiation is creat-
ed has been examined by Abdalla and Abdel-Rahman
[15]. This scenario could appear, for instance, when the
vacuum decay is a consequence of the oscillations of
some scalar field. In this case, since the Hubble parame-
ter is relatively low at the matter-dominated phase, it can
be argued that the mass of the created particles would
also be very low. However, the precise mechanism of
vacuum decay is not yet known and in general we would
expect that if vacuum decays it will decay to radiation
and/or matter. Usually, it is assumed that the vacuum
couples only to the dominant component. So, differently
from Ref. [15], we shall here explore the case in which
only nonrelativistic matter is created.

This paper is organized as follows. We obtain in Sec.
II, in the linear approximation, the time evolution equa-
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tion for the mass density contrast for a Newtonian
universe with matter creation. In Sec. III we relate the
rate of matter creation to the time derivative of the
cosmological term and obtain the time dependence of the
density contrast in the special case in which the cosmo-
logical term decays as A =3' . Finally, the isotropy of
the cosmic background radiation is used to estimate an
upper limit to the parameter P.

II. DIFFERENTIAL EQUATION FOR 5

The fundamental hydrodynamical equations that de-
scribe the motion of the cosmic fluid here considered are

U +(u V )u= —V4

and

p=pu(t)[1+5(x, t )],
where v and 5 are first-order perturbations to the mean
velocity Rx and density po, respectively. We shall as-
sume that these quantities are small, i.e., 5&(1 and
v ((u.

By changing variables from (r, t ) to (x, t ) and using

V„=V=RV„
and

a a a +—x V„,
at „ at at „ R

Eqs. (1)—(3) are rewritten as

and

+V„.(pu) =4,
T

av R VCRx+ +—v=-
ar R R

as es
at po

(10)

V„+=4~6p—A . (3)

or

U +(u V„}u=—V„4+—(c—u) .Bt, " '
p

(4)

So, as can be seen from the above equation, we have im-
plicitly assumed in Eq. (1}that the created particles have
the same velocity as the already existing ones.

We now introduce [17,18] the comoving coordinate x
related to the proper coordinate r by

rX=
R

where R =R(t) is the expansion factor. In terms of this
coordinate, we rewrite the true Quid velocity and density
as

Equations (1}—(3) are, respectively, the momentum con-
servation equation (the Euler equation}, the continuity
equation, and Poisson s equation. Here u is the velocity
of a fluid element of volume, p is the fluid mass density, 4
is the gravitational potential, and A is the cosmological
term to be regarded as a function of the absolute
Newtonian time t. We have assumed that the Quid is cold
such that its pressure is negligible. Since we are interest-
ed in cosmological models with matter creation, we have
modified the continuity equation and have included a
source term %.

Particle creation also modifies the Euler equation [13].
To show this, let us denote by 5u an element of volume of
the fluid. In an interval of time dt, momentum equal to

psudt V„4 is—added to this element by the gravitational
force and +sudtc due to the creation of particles with ve-
locity c., The mass of the element of volume will change
by sm =5p 5u =%dt 5u. It is now straightforward to see
that momentum conservation implies

(p+ 5p )(u+ u dt )
—pu = —( V„@)pdt +4 dt c,

1
V 4=4mGpo(1+5) —A .

To obtain Eqs. (10) and (11), we have neglected second-
order terms and have used that, in zero order,

R
p'o+3 —po=+ (13)

By writing

4=/(x, t)+ ,'mGpuR x———,'AR x~

and using the zero-order equation

R
3—= —4mGp +A

R o

we rewrite Eqs. (10) and (12) as

av R V$+—v=-
at R R

V $=4nGR pos .

(14)

(16)

(17)

Equations (11), (16), and (17) are the perturbed equations
to be considered.

Taking the divergence of (16) and substituting (11) and
(17), we finally obtain

a's R q as
a

R% 3
4~Gpo —2

Rpo at pu
5=0 . (18)

III. APPLICATION: THE CASE A=3'

Note that if 4=0 we recover the we11-known time evolu-
tion equation for the mass density contrast in the linear
approximation.

u=Rx+Rx=Rx+v(x, t) (6)
In order to integrate Eq. (18), it is first necessary to ex-

press 4 in terms of the other quantities involved. In gen-
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eral, a physical principle must be used to direct this
choice. For instance, if we were dealing with the steady-
state cosmology, we should have to choose
4=3(R /R )po since, as can be seen from (13), only with
this choice the mass density would always be constant as
required by the perfect cosmological principle. We also
remark that with this choice Eq. (18) reduces to Eq. (7) of
Roxburgh and Saffman [13].

Here we are mainly interested in variable-A cosmologi-
cal models with matter creation and we shall assume

1 A

8mG dt
(19)

Therefore, the balance equation (13}will assume the same
form as the one we would obtain for the energy density,
from the Bianchi identities, in the relativistic case [8].

By using Eqs. (13}and (19), we multiply Eq. (15) by RR
(assuming RAO) and integrate it to obtain the Fried-
mann equation: namely,

'2
R Smo A k

p +—— (20)
R 3 3

where k is an integration constant. It is worth mention-
ing that (20) is obtained independently of the time depen-
dence of A. Furthermore, only with the (19) choice could
we have obtained (20}from (13) and (15). In what follows
we shall consider Newtonian analogues of the Friedman
spatially Hat models and take k =0.

We now assume that A varies as

A=3PH (21)

where H=R /R is the Hubble parameter and P is a con-
stant. The above variation for A was originally con-
sidered by Freese et al. [6] with P equal to the ratio of
vacuum to the sum of vacuum and matter energy density.
Some other properties of these models were also dis-
cussed in [9], [15], and [16]. Since the mass density is
positive and we are interested in a non-negative cosmo-
logical term, it follows from (20) (with k=0) and (19)
that P is restricted to the interval 0 ~ P ( 1.

In order to integrate Eq. (18), it will be convenient to
change variables from t to R. So, with ~p given by (19)
and A by (21), after some simple algebra Eq. (18) is
transformed into the equation

R +—R(1+3P) ——(I+P}(1—3P)5=0 . (22)
8'5 3 B5 3

BR BR 2

R (t) =Rp [ 3'(1 P)t]— (24)

where R and H are the present values of the scale fac-

By integrating the above equation we obtain

S= WR- "'+P)"+aR "-'P',
where A(x) and B(x) have to be determined by initial
data. Note that we have a growing mode only if P( —,'.
This means that structures cannot be formed by gravita-
tional instability in cosmological models with P

The time dependence of the expansion factor is given
by [69]

tor and the Hubble parameter, respectively. Then, by
substituting R (t) in Eq. (23), we can express the mass
density contrast as a function of time: namely,

—( &+p/& —p) 2(1 —3p)/3(1 —p)

5=5 (t )—

where tz is the present time, td„ is the decoupling time,
and zd„ is the decoupling redshift. By assuming that
during the matter-dominated era A decays only into non-
relativistic particles, it can be shown that zd„ in the mod-
el of Freese et aI. is approximately equal to its corre-
sponding value in the standard model (P=O). So, by as-
suming fixed amplitude at decoupling {COBEroughly fix
this amplitude), 5+(td„,P) =5+(td„,P=O), we have

5+(tp),p
&s(P)

=(1+zd„)
5+(tp, l3=0) " o s(P=0)

where os is the root-mean-square mass fluctuation in
spheres of radius Sh ' Mpc. The recent COBE measure-
ments indicate that os(P=O)=1 for the standard cold
dark matter model [19] with Qh =0.5, and by requiring
that structures form not too late, it is safe to assume

os(P) ~
—,'. So, with zd„-—10, Eq. (27) gives us 1350.053.

Although small, the above upper limit for P is consid-
erably higher than P53X10 obtained by Freese et al.
by using (18) with ip =0 and some assumptions on the ob-
served isotropic y-ray Aux. Our result is closer to the one
obtained by the same authors from primordial nucleosyn-
thesis constraints and is two orders of magnitude higher
than the result (P~0.001) obtained recently by Over-
duin, Wesson, and Bowyer [16] by using a different
method. In all eases, however, the conclusion is the
same: The low-energy density and the age problems wi11

not be solved for this kind of A variation with the above
upper limits for the parameter P.

(27)

(25)

where 5+(t; ) and 5 (t;) denote the amplitude of the
growing mode and the decreasing one at some initial time
t, , respectively. Note that by taking P=O we recover the
Bat standard pressureless cosmological model results.

In order to roughly estimate an upper limit to the pa-
rameter P, we assume that the usual Sachs-Wolfe relation
5T/T-Q/3 is applicable for the considered models.
Here pcc5+(td„) is the potential at decoupling and
5T/T is the temperature fluctuation at large angular
scales. The recent results from the Cosmic Background
Explorer (COBE) strongly support the gravitational in-

stability theory of structure formation and can be inter-
preted as providing evidence for the existence of small in-
homogeneities generated in an early era. In the model of
Freese et al. , this means that, if primordial inhomo-
geneities had grown and formed structures, the parame-
ter P, according to (25), must be very small. So, although
the above Sachs-Wolfe expression is only strictly valid if
P=O, we expect no appreciable deviation from it for the
range of small P we should consider.

From Eq. (23) we obtain

5+(t, ) =(1+ {26)
5+(td„,p)
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In summary, in this paper we analyzed the growth of
density perturbations in Newtonian cosmological models
with a matter creation term %. We obtained a new time
evolution equation for the mass density contrast that gen-
eralizes the usual one. The special case where matter is
created by the decay of a cosmological term varying as
A=313H was investigated. We showed that the recent
results of COBE strongly constrain the possible values of
the parameter P.
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