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We extend an earlier work of Tosa to include the e8'ects of inhomogeneity in the cosmological evolu-

tion in Kaluza-Klein spacetime with a cosmological constant. It is observed that the presence of inho-

mogeneity drastically changes the evolutionary scenario such that our 6ve-dimensional spacetime admits

inflation in three-space and dimensional reduction of the extra space. This result is at variance with an

earlier conclusion of Tosa for homogeneous models that only a negative cosmological constant with

more than one extra spatial dimension can provide inflation of three-space and a small size of the extra

one. The model also seems to suggest an alternative mechanism pointing to a smooth transition from a

primordial, multidimensional inhomogeneous phase to a four-dimensional homogeneous one.

PACS number{s): 98.80.Hw, 04.50.+h

Kaluza-Klein (KK) theories have shown how gravity
and electromagnetism can be unified from Einstein's field
equations generalized to five dimensions. The idea has
been later extended to include other types of interaction
in (4+d)-dimensional models where the isometrics of the
spontaneously compactified d spacelike dimensions ac-
count for the gauge symmetries of the effective four-
dimensional (4D) theory [1,2]. It is generally known that
in KK theories with spontaneous dimensional reduction a
very large cosmological constant in four dimensions al-
most always arises, whereas from observational data
A —10 cm . However, for noncompact internal
space one can envision dynamical mechanisms leading to
a vanishing 4D cosmological constant [3]. However, it is
interesting to point out that geometrically such solutions
do not correspond to the topology of direct product of
4D and extra dimensional spaces.

While studying the implications of the different
compactification processes it may be pointed out that
higher dimensional homogeneous models have been ade-

quately addressed in the literature [4]. But only scant at-
tention has been paid so far to inhomogeneous models
and also to the issues concerning it in KK spacetime.
But following the Cosmic Background Explorer (COBE)
Differential Microwave Radiometer (DMR) experimental
findings [S] which point to the unambiguous evidence for
the existence of inhomogeneities in the early Universe,
there has been a resurgence of interest in models other
than homogeneous. On the other hand if higher dimen-
sional spacetime is to be seriously considered as an alter-
native approach to some real physics, it is only in the
realm of the early phase of cosmological evolution that

inclusion of an extra space assumes a particular
significance. However, our visible Universe is manifestly
Hat, isotropic and homogeneous, although any plausible
explanation of these observed properties continues to be
elusive. Explicit computations [6] showed that the so-
called "chaotic" models [7] cannot satisfactorily explain
these observed phenomena. Invoking a higher dimen-
sional phase one may circumvent the diSculty by arguing
that the primordial inhomogeneity may be accounted for
through the introduction of extra spatial dimensions
which depend both on space and time. %ith the above
considerations in mind the appropriate metric is taken in
the form

ds =B dt R(dr +r —d6 +r sin ed/ ) Ady, (1)—

where B=B(r,t), R =R(t), A = A (r, t), and y is a KK
parameter taken in the form of a circle.

Two more comments regarding the choice of the
metric may be in order. Since 3 depends both on r and t
we are not dealing with any simple product space. The
size of the internal space is different at different points of
the 4D world in this case.

Second, interest in a 5D spacetime stems from the re-
markable fact that both d = 10 and d = 11 supergravities
yield a solution where a 5D spacetime results following
spontaneous dimensional reduction [8].

For the matter field we take an inhomogeneous, purely
classical dust distribution T; =p; U, where p=p(r, t) and
a comoving system is used. Since in the case of dust the
particles follow geodesic world lines one can always set
8 = l without any loss of generality.

The Einstein field equations for the metric (1) with
B = 1 are given by [9]
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Where an overdot and prime denote differentiation with
respect to time and the radial coordinate.

For economy of space, we skip the details of the inter-
mediate steps and write down the final results as (A & 0)

R =a e~'+ae ~' p = 2A

3

(b Cr —)(a,et"+a2e t")+p(a, et" a2e—t")+4C/p~

(a e '+a e ~')'

(7a)

(7b)

One cannot directly get the solutions corresponding to
A=O by simply setting A=O in Eqs. (7a) and (7b). How-

ever, in the limiting case of A —+0 the above equations
reduce to the ones found earlier by Chatterjee et al. [9]
for A=O. It may be of interest to see how Eqs. (7a) and

(7b) look when p=O. While Eq. (7a) remains unchanged,
we find from Eq. (6) that in this case b =C =0. More-

over, if we assume that three-space starts off at t =0,

( b —Cr )sinhpt +a, coshpt +4C /p
2

for A&0,
(sinhpt )'~2

(9a)

A = ' (b Cr )t +a(t 2Ct for A=O (9b)

Correspondingly we get the expressions for the extra
space scale as

a& =—ap=RO (say),

pRO(e~'+ e ~')
A=

(
Pt e Pt)1/2—

(7c)

(b Cr )sin—qt+a, cosqt+4C/g
for A(0 . (9c)

(sinqt )'

The corresponding mass densities for the above cases are

T

Rp sinhpt for A) 0,
R = Rpt for A=O,

Rp sinqt for A (0

(8a)

(8b)

(8c)

which in the limit A~O yields A —t '~ and R t'~—
This is, however, the well known solution obtained earlier
by Chodos and Detweiler [10] for a SD vacuum space-
time with zero cosmological constant. However, when
A &0, we get expressions for R and A with "p" replaced
by "iq" in Eqs. (7a) and (7b).

When C =0, our spacetime becomes homogeneous and
so "C" is a measure of inhomogeneity of our cosmology.
If we set F2=0 we get a de Sitter like inflation of three-
space. In the present work, however, we are primarily
concerned with an earlier observation of Tosa [11]in the
context of homogeneous spacetime that the expansion of
three-space and contraction of the extra ones are possible
only when A &0 and the extra space contains more than
one spatial dimension. We shall presently see that the
presence of inhomogeneity characterized by the nonvan-
ishing value of the constant "C" radically changes the
above scenario. Even a 5D inhomogeneous spacetime
with any negative, positive, or zero cosmological constant
can provide expansion of three-space along with a dimen-
sional reduction of the extra scale.

Following Tosa we demand that the scale factor starts
off from t =0 in all three cases such that

p(b —Cr )

a& 4C .
(b —Cr )sinh pt+ sinh2pt+ sinhpt

2 p
2

for A &0,
p=, (b Cr )—

for A=O,' (b Cr')t'+a—, t 2Ct'—
q(b —Cr )

a 1 4C
(b Cr )sin qt+ —sin2qt+ sinqt

2 2

(10a)

(10b)

for A &0.

(10c)

Our cosmology has evidently a point of symmetry r =0,
which is at variance with the cosmological principle that
envisages a continuous group of symmetry imposed on
the points of the Riemannian manifold. So the cosmolog-
ical principle is clearly given up in our case. Further for
C &0, the mass density vanishes at the radial coordinate
r = rl, =&b /C and this may be set as a natural choice for
our coordinate boundary. As the inhomogeneity parame-
ter "C" tends to zero the coordinate boundary recedes
more and more from the point of symmetry and the
cosmology mimics increasingly a 5D homogeneous mod-
el. It may be tempting to suggest that the solution
represents a bounded distribution of matter and look for
relevant boundary conditions by matching it with a vacu-
um exterior. As mentioned earlier [see Eqs. (7a) and (7b)]
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both b and C should vanish separately to ensure that
p=0 for all values of time. In this case one finds that
even though R(t) remains unaltered g44 (the metric ten-
sor corresponding to the extra dimension) in empty space
is obtained only by putting b =C =0. So by simple argu-
ments it is possible to conclude that the interior and exte-
rior metric component g44 cannot match at r = rb for all
values of time t. So our solutions do not represent a
sphere with a definite boundary obeying the conditions of
fit with the exterior vacuum. However, when C(0, the
model expands indefinitely and nowhere in the interior
does the matter density p vanish. It is encouraging to
note that our model is spatially regular as is evident from
the behavior of the Kretschmann scalar R,- kIR' "' with

variations of r including the origin.
In what follows we shall discuss, very briefly, the dy-

namics of the inhomogeneous models presented above in
the three distinct cases for a positive, zero, and negative
cosmological constant A and compare it with the analo-
gous 5D homogeneous models of Tosa referred to earlier.

When A & 0, R —+0 and A —+ ~ as t ~0. Thus the two
scales do not start at the same instant, which is apparent-
ly an undesirable feature of the model. During evolution
the extra space shrinks to zero during a finite time inter-
va1, with suitably chosen values of the arbitrary parame-
ter a and C, one of them being at least negative.

When A =0, R ~0 and A ~~ at the big bang for pos-
itive a, while for a =0 both the scales start off from zero.
On the other hand dimensional reduction takes place in a
finite value of times when the constant is positive. The
ordinary scale R continues to inflate.

For A & 0, the two scale factors once again do not start
growing at the same instant; rather, when R starts from
zero, the extra dimension begins from infinity. For C & 0,
the dimensional reduction takes place for the extra scale
at a finite time t~ when, however, R also tends to assume
a finite value.

It is now possible to discuss the general behavior of the
mass density p for various cases from the expressions
(10a)-(10c). One finds that for all values of A ( ) = & 0)
the matter density approaches an infinitely large magni-
tude as t~0, which shows that a singularity exists at an
initial instant. On the other hand in the course of expan-
sion the density p decreases but finally assumes an ex-
tremely large value when dimensional reduction takes
place ( A ~0); that is, the extra volume tends to zero.
This happens with the appropriate choices of constants at
a finite time in each case. If these constants are chosen
such that there is no reduction of the extra dimension,
the density p straight away vanishes at t ~~ in the first
two cases, i.e., A ~ 0.

One must also note that in all the cases where the extra
volume shrinks to zero the 5D volume R 3 as well van-
ishes at the same instant.

The most important conclusion of our present work is

that the inhomogeneous 5D spacetime may account for
inflation of three-space and a simultaneous contraction of
the extra scale irrespective of the signature of the cosmo-
logical constant. It contrasts sharply with the observa-
tions of Tosa. Two desirable features of a multidimen-
sional model are that the two scales should start expand-
ing from the same instant and second as the three-space
grows the extra space should shrink. The scenario
presented by Tosa, however, does not exhibit both these
features at the same instant. It happens, in general, only
when the extra space is a compact hypersphere but not in
the noncompact torus, In the latter it is observed that
only a negative cosmological constant with more than
one extra dimension can provide inflation of three-space
and the reduction of the extra ones. Even then the big
bang is nonsynchronous for the two scales. It is further
observed by Tosa that for a 5D spacetime with a nonvan-
ishing matter density, under no circumstances can we ob-
serve either a simultaneous bang for the two scales or
compactification of the fifth dimension. However, the
presence of inhomogeneity drastically alters the above
scenario. In our inhomogeneous model (CAO), when we
get contraction of the fifth dimension and particularly in
the special case of a =0, the two scales start off' simul-
taneously as mentioned earlier.

Before ending up we would like to stress one very in-
teresting characteristic of the dynamical behavior of our
model. As noted earlier the COBE studies point to an
unambiguous relic of the primordial inhomogeneity.
Various mechanisms have been suggested for a smooth
passover from the primordial inhomogeneous phase to
the current homogeneous one; the scenario presented in
our work seems to provide an alternative resolution to
this problem in the following line. It is generally believed
that during the compactification transition some dynami-
cal mechanisms would stabilize the extra space at the
Planckian length. Although a fully realistic model is sti11
to be explored quantum gravity effects may be a possible
candidate for such a mechanism. After the extra space
stabilizes the cosmology enters the four-dimensional era
without having any reference to the extra dimensions.
When the above ansatz is extended to our inhomogene-
ous model its implication is more profound. Not only do
we enter a four-dimensional era following dimensional
reduction, it also envisages a smooth transition from mu1-
tidimensional, inhomogeneous phase to a four-
dimensional homogeneous one. So one can avoid choos-
ing very special initial conditions for this purpose. A1-

though we have not been able so far to relate the above
mechanism to any speci6c model, the idea is challenging
enough to warrant further investigations in this direction.
As a future exercise one should consider the radiation-
dominated universe to see if the presence of stress terms
changes the above conclusions.
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