
PHYSICAL REVIE% D VOLUME 50, NUMBER 4

SO(10) unification in noncommutative geometry

15 AUGUST 1994

A. H. Chamseddine'
Theoretische Physik, Uniuersitat Zurich, CH 8001 Zurich, Switzerland

J. Frohlich
Theoretische Physik, ETH, CH 8093 Zurich, Switzerland

(Received 24 August 1993)

%'e construct an SO(10) grand unified theory in the formulation of noncommutative geometry. The
geometry of space-time is that of a product of a continuous four-dimensional manifold times a discrete
set of points. The properties of the fermionic sector fix almost uniquely the Higgs structure. The sim-

plest model corresponds to the case where the discrete set consists of three points and the Higgs fields

are 16, X 16, and 16, X 16,. The requirement that the scalar potential for all the Higgs fields not vanish

imposes strong restrictions on the vacuum expectation values of the Higgs fields. %e show that it is pos-
sible to remove these constraints by extending the number of discrete points to six and adding a singlet
fermion and a 16, Higgs field. Both models are studied in detail.

PACS number(s): 12.10.Dm, 02.40.—k, 11.30.Ly

I. INTRODUCTION

Grand unified theories provide rather attractive mech-
anisms to unify the weak, electromagnetic, and strong in-

teractions of particle physics and bring order to the
choices of quark and lepton representations. At present,
the simplest grand unified theories are formulated as
spontaneously broken SU(5) and SO(10) gauge theories

[1,2]. The SO(10) theories have the attractive feature that
all known fermions, plus one right-handed neutrino, in

every generation are included in one representation of
SO(10). Unfortunately, this feature does not make the
theories more predictive than, for example, the SU(5)
theories, because there are many choices of patterns for
spontaneously breaking SO(10) down to SU(3)XU(1),
related to different, complicated choices of Higgs fields in
various representations of the gauge group [3]. What is
called for, in the construction of grand unified theories, is
a principle dictating the choice of the Higgs sector. Dur-
ing the past few years, considerable efFort has been direct-
ed toward understanding this problem by deriving grand
unified theories as low-energy limits of the heterotic
string. Although this might fundamentally be the right
strategy, it has proven to be a rather difficult one, due to
the circumstance that it forces one to search for phenom-
enologically viable candidates among a very large number
of string vacua.

It is the purpose of this paper to describe an alterna-
tive, probably less profound, but more direct strategy,
based on the discovery due to Connes [4,5] and Connes
and Lott [6,7] that methods from noncommutative
geometry can be applied to (among many other things)
model building in particle physics. These authors

have shown that the Dirac operators on the one-
particle Hilbert space of quarks and leptons are the
germ for a geometrical construction of the standard
SU(3), X SU(2)~ XU(1), model. In their construction,
the Higgs field appears as the component of a generalized
gauge field on a generalized Euclidean space-time. Actu-
ally, the space-time underlying the Connes-Lott construc-
tion is the product of a four-dimensional Riemannian
manifold by a discrete two-point set. The philosophy is
that, just as electrodynamics gave rise to a new model of
space-time, Minkowski space, the standard model of par-
ticle physics, or extensions thereof, may give rise to a
modification of Minkowski space. Connes and Lott pro-
pose a minimal such modification.

One might hope that the geometrical underpinning of
the Connes-Lott construction of the standard model
could lead to some predictions going beyond those of the
original formulation. At first, it seemed that the
Connes-Lott construction gives rise to some additional
constraints on coupling constants and mass matrices at
the tree level (see, e.g., [8]). However, it was subsequently
shown by Connes and Lott [7] that the most general con-
struction of the standard model from noncommutative
geometry has exactly the same number of free parameters
at the tree level as the original construction. ' Only for
some special choices of the gauge field action (which, at
first, appeared to be geometrically natural) do additional
relations between masses and coupling constants emerge
at the tree level. However, it has been shown in [10] that
these relations are not stable under the renormalization
flow and hence do not survive at the quantum level.
Thus, unless new special symmetries are discovered that
protect certain relations, one should start from the most
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general Lagrangian provided by the Connes-Lott con-
struction which is equivalent to the original Lagrangian
of the standard model. Perhaps, this may be taken as bad
news. However, it turns out that the Connes-Lott theory
couples to gravity in a way that is somewhat different
from that of the standard formulation. Since, in the
Connes-Lott picture, "space-time'* consists of two copies
of a Riemannian four-manifold, gravitational interactions
involve an additional scalar field that determines the dis-
tance between the two copies of conventional space-time
[11]. This distance is related to the weak scale. The new
scalar field, which must be considered a dynamical field,
appears in the Coleman-steinberg effective potential of
the standard model [12]. This leads to certain inequali-
ties between top-quark and Higgs boson masses, which,
however, are not very interesting quantitatively, in the
absence of an understanding of the problem of the cosmo-
logical constant.

Thus, to date, the main accomplishment of the con-
structions of the Lagrangian of the standard model by
methods of noncommutative geometry described in [5—9]
is that it provides a geometrical interpretation of the
Higgs Geld which is unified with the electroweak gauge
field. One of the central observations made in this paper
is that when methods similar to those used in Refs. [5,6]
are applied to construct Lagrangians of grand unified
theories, certain fairly powerful constraints on the
choices of the Higgs field representations emerge. Since
the Higgs fields are unified geometrically with the gauge
fields, this fact may not sound too surprising. However,
it should be contrasted with the situation in the conven-
tional approach, where the choice of the Higgs fields is
highly ambiguous.

In a recent paper [13], it has been shown that, by a

simple modification of the construction of Connes and
Lott, it is possible to obtain unified models such as the
SU(5) and the left-right SU(2)i X SU(2)„XU(1)p ~
theories. Other models such as the fiipped SU(5) XU(1)
model are also within reach of these constructions. The
interesting case of SO(10) theories was not treated, be-
cause it was not clear how to arrive at a satisfactory
theory, in view of the fact that a realistic SO(10) model
requires complicated Higgs representations. Meanwhile,
it has turned out that the solution is fairly simple, and the
construction of a realistic SO(10) model will be the main
concern of this paper. All the tools that will be used here
are explained in Ref. [13],and a self-contained summary
can be found in Sec. 2 of the second item in Ref. [13].
(The results contained there will be freely used in this pa-
per. )

The plan of this paper is as follows. In Sec. II we con-
struct the Dirac operator underlying an SO(10) gauge
theory and show that the simplest model involves three
copies of conventional space-time. In Sec. III the
symmetry-breaking chain is described in detail, and the
vacuum expectation values (VEV's) of the Higgs fields are
given. In Sec. IV the Higgs potential is analyzed, and it
is shown that a potential survives after eliminating cer-
tain auxiliary fields only if the VEV's of the Higgs fields
satisfy certain unphysical constraints. In Sec. V we show
that it is possible to relax these constraints, provided that

one starts from six copies of conventional space-time and
certain symmetries are imposed.

II. SO(10) FRAMEWORK

The starting point in Connes' construction [4—8] is the
specification of a fermionic sector and of a Dirac opera-
tor on the space of spinors, i.e., a model of supersym-
metric quantum mechanics. In the SO(10) model [2], the
fermions neatly fit in the 16, spinor representation, re-
peated three times. A single fermionic family is described
by a field f -, where a is an SO(1,3) Lorentz spinor index
with 4 components and a is an SO(10) spinor index with
32 components. It satisfies both space-time and SO(10)
chirality conditions:

(2.1)

where ys=iyoy &y2y3, I
&&

= —iI OI &
I 9, and, for

later convenience, we have denoted I,o by I o. This
reduces the independent spinor components to 2 for the
spacetime indices and to 16 for the SO(10) indices. The
general fermionic action is given by

(2.2)

where C is the charge conjugation matrix, p, q =1,2, 3 are
family indices, and H is some appropriate combination of
Higgs fields breaking the subgroup SU(2) XU(1) of SO(10)
at low energies. An exception of a Higgs field that breaks
the symmetry at high energies and yet couples to fer-
mions is the one that gives a Majorana mass to the right-
handed neutrinos [11]. The other Higgs fields needed to
break the SO(10) symmetry at high energies should not
couple to the fermions so as not to give the quarks and
leptons super heavy masses.

From the form of Eq. (2.2), we deduce that the gauge
and Higgs fields are valued in a subalgebra of the Clifford
algebra of SO(10), obtained by projection with the chirali-
ty operators acting on the right and left. The number of
copies of conventional space-time needed to construct a
model in noncommutative geometry is free and is only
determined by the requirement of obtaining a realistic
model. Since we know that, in a noncommutative con-
struction, the Higgs fields are obtained by introducing
more than one copy of Minkowski space, we need to
choose a discrete space containing at least three points.
On two of the copies, the associated spinors are taken to
be identical, and the Higgs fields will not couple to the
fermions, as these have the same chirality. On the third
copy, the ferrnions are taken to be the conjugate spinors,
as can be deduced from the second term of Eq. (2.2).
Thus, between copies 1 and 2, we must impose a permu-
tation symmetry, while between copies 1 and 3 we must
require some form of conjugation symmetry. If we insist
that the ferrnionic sector exhibit a Z2 symmetry, then
four copies of Minkowski space are necessary, with the
third and fourth copies identified, too. This option will
be pursued in the last section. Since both SO(1,3) and
SO(10) have conjugation matrices, we take the conjugate
spinor to be given by
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g'=BC/ (2.3}

where B is the SO(10} conjugation matrix satisfying
B 'I IB = —I I. Thus the spinor used in a Connes-Lott
type construction of an SO(10) model can be chosen as

Q*(A)= e Q"(A)
n=0

as the "universal, differential algebra" over A as follows:
One sets Q (A ) =A and defines Q"(A ) to be the linear
space given by

The chirality conditions on the spinor 4 are given by

y,diag(1, 1, —1)%=%,

y5 I »diag(1, 1,—1)%=% .

(2.4)

(2.5)

Q"(A)= g a'odaI - da„':o'FA, 'tfi,j
I

ll 1&2p ~ ~ ~ ~

Here da denotes an equivalence class of a CA, modulo
the relations

Before proceeding in our construction, it is useful to ad-
dress the problem of neutrino masses. The right-handed
neutrino must acquire a large mass. This is usually done
by coupling the fermions to a 126 or to a 16, Higgs field
with appropriate vacuum expectation values (VEV's) giv-
ing a mass to the right-handed neutrino but not to the
remaining fermions. The 126 appears already with the
Higgs fields that give masses to the fermions. The 16,
can only be obtained by extending the fermionic space by
a singlet spinor. This implies that the number of copies
of Minkowski space must be increased by 1 or 2, depend-
ing on whether the Z2 symmetry is required or not. In
this case, two of the neutral fermions will become su-
perheavy, while the third would remain massless. The
fundamental spinor in our construction is then chosen to
be

d(o b)=(do) b+a db, d1=0, d2=0. (2.7)

one immediately deduces from the definition of Q"(A )

and from (2.7) that, for aC Q"(A), a* is defined and is
again an element of Q"(A ).

One-forms play a special role as components of connec-
tions on a "line bundle" whose space of sections is given
by the algebra A. A one-form p 6Q'(A ) can be ex-
pressed as

An element of Q"(A) is called a form of degree n Let.

a EQ"(A ) and PEQ (A ). Because of the relations
(2.7), one can define the product a P of a with P, and one
verifies that a PE Q"+ (A ); i.e., a P is a form of degree
n +m. With this definition of a product of forms, Q'(A )

becomes an algebra. Defining

(da)'= —d(a'),

(2.6}

p=g a'db',

a', b' in A, and, since d1=0, we may impose the condi-
tion that

where the number of copies associated with the conjugate
spinors is doubled. We shall first consider a spinor space
corresponding to Eq. (2.4) and treat the more complicat-
ed case corresponding to Eq. (2.6}in the last section.

Next, we recall a few basic notions from noncommuta-
tive geometry that will be used in our construction of
SO(10) models. A smooth manifold M can be studied by
analyzing the commutative algebra C "(M} of smooth
functions on M. In fact, M can be reconstructed from the
structure of C "(M). The basic idea in noncommutative
geometry is to define a notion of noncommutative space
in terms of a noncommutative (non-Abelian) algebra A.
The mathematical structure becomes manageable if A is
assumed to be an involutiue algebra. This means that
there is an antilinear involution e taking a HA. to
a FA [o* is the adjoint of a with (o b)'=b'. o']. l.t
simplifies the theory if one assumes that A contains an
identity element 1. In this case one says that A is a uni-
tal, involutive algebra. It defines a notion of a compact,
noncommutative space.

Given a unital, involutive algebra A, one can define an
algebra

a'b'= 1

without loss of generality.
So far, the theory is too general to be useful. In order

to analyze a noncommutative space corresponding to a
unital, involutive algebra A more concretely, we intro-
duce the notion of a (Dirac) K cycle for A. Let h be a se-
parable Hilbert space, and let D be a self-adjoint operator
on h. We say that (h, D) is a (Dirac) K-cycle for A if
there exists an involutive representation m' of A on h, i.e.,
a representation (or antirepresentation} of A satisfying
n(a')=n(a)', with the properties that (i) m(a) and
[D,n.(o)] are bounded operators on h, for all o FA, and
(ii} (D +1) ' is a compact operator on h. A K-cycle
(h, D) for A, is said to be (d, oo) summable iff the trace of
(D +1) ~ exists and is finite, for all p)d. A K-cycle
(h, D) for A is said to be even iff there exists a unitary in-
volution I on h, i.e., a bounded operator on h with
I *=I '=I, such that [I,m(o)]=0 for all a&A, and
[I,D] =I D+DI =0. Otherwise, (h, D) is called odd.

Given a K-cycle (h, D) for A, we define a representa-
tion n of Q*(A ) on h by setting
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g aoda', , . . . , da„'

=g n(a11)[D,n(a', )] . [D,n(a„')],

for any element g, aoda', da„'EQ"(A), n =0, 1,
2, . . . . We also define the spaces of auxiliary fields

Aux= Kerm+d Ker~,

where

Kern = {)3 g aodaI da„': ir g aodaI da„'
n=0

l

algebra of matrices acting on the complex vector space
I'+ C

Our construction of SO(10) models is based on the non-
commutative space described by the noncommutative,
unital, involutive algebra

A =A, gA2

consisting of A2-valued, smooth functions on the "Eu-
clidean space-time manifold*' X.

Let mo denote the representation of A on the Hilbert
space h, h 2 of square-integrable spinors for
SO(1,3)XSO(10), where h2=C is the 32-dimensional
vector space on which A2 acts. Let no denote the an-
tirepresentation de6ned by

=0 '

no(a) =Bno(a)8

We define n(a) by setting

(2.9)

and n(a) =no(a)eno(a)eno(a) . (2.10)

d Kern=& ~
.g daoda', da„': n. g aoda', da„'

l l
L

=0 '.
It follows from relations (2.7) that Aux is a two-sided
ideal in Q'(A ), and hence QD(A ) =Q'(A ) modulo Aux
is a universal differential algebra. If g, aoda', da„'

6Q"(A ), then

Then n(a) is a bounded operator on the Hilbert space

h =h, 13(h'"eh' 'eh' ')

where h2" —-h2 are copies of C, for i =1,2, 3. Let E
denote the subpsace of h, which is the image of the or-
thogonal projection onto elements of h of the form

P+0

. g n(ao)[D, n(a', )] [D,n(a„')]+n(p): pEAux

represents an n-form

a=+ aoda'1 da„' mod Aux,

A 2
=P+ Cliff[SO( 10)]P+, (2.8)

where P+ =
—,'(1+I »). Clearly, A2 is a unital, involutive

in QD(A ) as an equivalence class of bounded operators
on the Hilbert space h. For more details on these some-
what abstract mathematical notions, the reader is re-
ferred to [4,7,8, 11].

Next, we consider special examples of noncommutative
spaces and Dirac E-cycles on which the construction of
SO(10) models is based. Let X be a compact, four-
dimensional, smooth, Riemannian spin manifold, A, the
Abelian algebra of smooth functions on X. Since X is
compact, A, is a unital, involutive algebra. Let h, be the
Hilbert space of square-integrable Dirac spinors on X,
where the volume element used in the definition of in-
tegration is given by Vg d x and g„„ is a Riemannian
reference metric on X. Let D1 be the covariant Dirac
operator corresponding to g„and to a fixed choice of a
spin structure on X. Then D, is a self-adjoint operator on
h 1 and (h 1,D1) is a K-cycle for A i. In fact, it is an even
E-cycle for A1, with the involution I given by y .

Next, we define an algebra A2 by setting

D =D1{3)11+@5D2,

where D2 is a matrix on (h~2"eh~2 'eh& ')I31C with the
property that y5 D2 leaves h invariant. Then one
verifies without difficulties that (h, D) is a Dirac IC-cycle
for A. Concretely, we choose the Dirac operator D to be
given by

8e le 1

D = ysg 3f21g E21

75M12I 12 75 ™13+13
Be 1(8 l xsM23

X5~31&31 Xs~32&32 8@1@1

(2. 1 1)

where the E „are 3 X 3 family-mixing matrices commut-
ing with n.(A ). We impose the symmetries
~12 ~21 ~0& ~13 ~23 ~0& ~31™32~0&
Jko =JRQ Similar conditions are imposed on the ma-
trices X „. For D to leave the subspace h invariant, Jkt, Q

and JVQ must have the form

where /Eh, h2. Clearly, Tf is invariant under n.(A)
[as defined in (2.10)]. Finally, we set

h =f3C3,
where the factor C accounts for the fact that there are
three families of quarks and leptons. On h we define a
"Dirac operator" D by setting
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Af, p=P+(mp+Em p I IJ+mp I IJ~I )P+IJ IJKL

A =P (n pEI+np Plzx+n p Plex.rl )PI IJK IJKLM

where

(2.12}

are antisymmetrized products of the y matrices.
Next, we define an involutive "representation"

m: Q*(A )~B(h) of 0 (A ) by bounded operators on h

[B(h ) is the algebra of bounded operators on b ]: We set

The self-adjointness condition on m.(p) implies, after using
the hermiticity of the rI matrices, that all the fields ap-
pearing in the expansion of A, JK are real because both
are self-adjoint, while those in JV are complex. The trace-
lessness condition is on tr[l, m(p)] where I, is the grad-
ing operator given in the first equation of (2.5). This re-
stricts a =0, and then this corresponds to the gauge
theory of SU(16). In this case one must also add mirror
fermions to cancel the anomaly, which will not be con-
sidered here. We shall require instead that the gauge
fields acting on the first and third copies have identical
components in the Clifford algebra basis. Since

Kp(Qpd|2 idun ' ' ' dQ„)

=m(ap)[D, n.(a, )][D,m.(a2)] [D,~(a„}].

The image of a one-form p is

n(p) =g a'[D, b'], g a'b'= 1 .
I

(2.13)

(2.14)

BAB '=P ( ia—+a I'IJ ia — I ILL, )P

this implies that

a„=0,
a IJKL pP

(2.20)

(2.21)

From now on, we shall write a' and b' instead of m{a')
and m(b'), respectively. Every one-form p determines a
covariant differentiation V on b: We set.

V=D+n(p) . (2.15)

Remark One c. an think of h as a Hilbert space of sec-
tions of a vector bundle for the algebra A. Then V'

defines a notion of covariant derivative of a section and
n(p} corresponds to the components of the connection V.

The curvature of V is then given by

8=m(dp)+n(p ),
where

(2.16)

A =P+ pa'Bb' P+,
E

n(dp)=g [D,m(a')][D, m(b')] .
I

It is straightforward to compute n(p },and on.e gets [10]

A y,JttE„y,JVE„
n (p) = y5J1 1,E i2 A y 5JVEi3, (2.17)

ysJV E3i ysJV'E32 BAB

where the fields A, Jtt, and JV are given in terms of the a'
and b'by

The above requirement can be understood as the physical
condition that the fermions in the first and third copies
will have identical coupling to the gauge fields. Then the
fermionic action will be given by

(+,P(d +p)PP) = Jd x ql'(x)P[D+a(p)]Pill(x),

(2.22)

where

P=diag(P+, P+,P ) .

To transform this expression from Euclidean space to
Minkowski space in order to impose the space-time
chirality condition, we have to perform the following sub-
stitutions: y ~iy, y,~ iy„—g'~P, g'*~ —P'. Be-
cause of space-time chirality, the field JK decouples from
the fermions. Then this is the field that must acquire a
vacuum expectation value breaking SO(10} at very large
energies. The field JV does couple to fermions and must
acquire expectation values that give the small fermionic
masses, except for possible large values of the com-
ponents that give a mass to the right-handed neutrino.

Now we are ready to write the fermionic action in
terms of the component fields

If= x 2 +i +3 ++y5 + 0 +E(3

+i//+[i(a+ A)y'++y5(JV'+JVp)tp+K', 3]],
JR+JRp=P+ g 0 Jgpb P+ (2.18) (2.23)

JV+JVp=P+ g a'JVpBb'B ' P

We can expand these fields in terms of the SO(10}Clifford
algebra as fo11ows:

where g+=P+P and by SO(10) chirality is equal to g.
From here on and when convenient, we shall denote A
by P+ JKP+ and JV by P+ JVP . Equation (2.23) can be
simplified by using the properties of the charge conjuga-
tion matrices B and C:

A =P+(ia +a I lz+ia I IJ+I )P+

W=P (m+imlJr„+m "x'r„,}P, ,

JV=P+(n I I+n I IJrc+n I lixlM)P

(2.19)

(2.24}
C 'y„C = —y„.

After rescaling g~(1/&3)g, the action (2.23) simplifies
to
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If =fd x /+i(rI+ A)2)'2+ (3.5)

—[f+B 'C '(JP+JP()')/+K*, 3+H. c. ]
3

(2.25)

Thus we have achieved our goal of constructing a Dirac
operator that gives the appropriate interactions of an
SO(10) unified gauge theory.

The advantage of this system of matrices is that both spi-
nors g+ and bCy+ have the same form, except that the
first one is left handed and the second one is right hand-
ed. To correctly associate the components of y+ with
quarks and leptons, we consider the action of the charge
operator [3] on y+ ..

III. SO(10}SYMMETRY BREAKING
—(~3+ r3+P3230 3}+ (3.6)

The symmetry-breaking pattern that breaks the gauge
group SO(10) must be coded into the Dirac operator D.
The Higgs fields at our disposal are JNand , JV. In terms
of SO(10) representations these are I, 45, and 210 in Jkl,

and complex 10, 120, and 126 in JK To be explicit we
shall work in a specific I matrix representation first in-
troduced by Georgi and Nanopolous [2]. The 32 X 32 I
matrices are represented in terms of tensor products of
five sets of Pauli matrices o;,~;,g;,p;, K; where i = 1,2, 3.
To these matrices we assign the following matrices on the
tensor product space:

which gives

2 2 2 0)y (3.7)

Thus the components of the left-handed spinor y+ are
written as

0'; 12(3}12 12 12(3

1,(3 1,g 1,g ~, 1, ,

ti 12 12 Ii 12 2

pi~12pi1212 2 ~

Ki ~K) 12 12 12 12 ~

The I matrices are then given by

I, =Klp39;,

I +3 K&pi«

I,. +6 =K&p2g, .

I O=K2,

I
&&

=K3,

(3.1)

(3.2)

3
QL

eL

L

L

(d3 )c

(d )'

(d2I )'

—(e„)'
(u3 )c

—(u„)'
—(u~ )'

(3.8)

where i =1,2, 3, and when it is obvious, we shall omit the
tensor product symbols. In this basis an SO(10) chiral
spinor will take the form

X+
0 (3.3)

where g is a 16, in the space V V„(3}V, (3) V, with
V~=—:V—:C . The SO(10) conjugation matrix is
defined by B—:—I,I 3I 4I 6I 8, which, in the basis of Eq.
(3.2) becomes

B —K)p2Y)21 2CT2 =K)37 (3.4)

where the matrix b =p2g2~2o. 2 is the conjugation matrix
in the space of the 16 component spinors. The action of
B on a chiral spinor is then

where the c in this equation stands for the usual charge
conjugation, e.g. , d'=Cd . The upper and lower com-
ponents in y are mirrors, with the signs chosen so that
the spinor bCy+ has exactly the same form as g+, but
with the left- and right handed signs I. and R inter-
changed.

We now specify the vacuum expectation values (VEV's)
Aio and JVO. The group SO(10) is broken at high energies
by JR, which contains the representations 45 and 210. By
taking the VEV of the 210 to be JKO'23=0(MG), the
SO(10}symmetry is broken to SO(4) X SO(6), which is iso-
morphic to SU(4), XSU(2)L X SU(2)22. The SU(4), is fur-
ther broken to SU(3},XU(1), by the VEV of the 45.
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Therefore we write [2,3]

P AtoP =P ([M I, i—M, (I' +I +I )]P
=—,'(1+a3)[ M—op3+M] (o 3+q3+p3q3o 3) ] .

XSU(2)L XU(1)z. The generators of SU(2)I XSU(2)]]
are [2]

T' = — (
'—P"—I +I' )LR 2 2 jk—

(3.9)

Therefore Ato breaks SO(10) to SU(3), XU(1),
X SU(2)L XSU(2)z, which is also of rank 5. The rank is
reduced by giving a VEV to the components of
126 that couple to the right-handed neutrino. Therefore
the VEV of JVO must contain the term

=
—,
'

( I+a3p3)q}',

while SU(4), is generated by

k
, l Pi +3j +3 ~ij k+

k
1 J. i +6 j+6 6&j'k

~ ~
i+3,j+6 P3 j i

(3.12)

(3.13)

1—
5 (~]+«2)(p]+]pp)(q}]+]ri2)

25

—,'([[I, +i(1 2)]+i(4 5)] i(8 —7)} . (3.11)

X (r]+i q.2)(o ]+io 2) . (3.10)

In terms of the I' matrices, Eq. (3.8) has a rather compli-
cated form

It is straightforward to check that the only generators
that leave JKO and the part of JVO given by (3.10) invariant
are those of the standard model. We shall explicitly iden-
tify these generators in order to proceed to the next stage
of breaking SU(2)z XU(1)„without any ambiguity. The
eight SU(3) generators are given by (1—

p31 3)cr;,
(1—p3]r3)q;, p 3( r]o ]+qz o2), and p3(q.2o ]

—r]o 2). Final-
ly, the U(1)r generator is

The VEV of JVO breaks U(1), XSU(2)z to U(1)„, and the
surviving group would be the familiar SU(3),

Y — ,' (o 3+—q—3+p3q3cr 3 ) + ,' (1 a3—p3)r—i3,

and its action on the spinor y+ is given by

(3.14)

This is related to the charge operator Q by

Q =
—,
' Y+Tl,

(3.15)

(3.16)

where the action of the SU(2)z isospin TI on y+ is given by TL =
—,'( I+p3)q}3.

For the last stage of symmetry breaking of SU(2)L XU(1)r, we can use the field JV, which contains the complex repre-
sentations 10, 120, and 126. The most general VEV that preserves the group SU(3), XU(1)& is

P JV]P =
—,'(I+z3)[(isI']]+pI'3)+[a'I']2]]—ial']23+b'(I'4)3+I'7]]3+1 6q3)

—ib(I'4so+I 6qo+I 7]]]])]

—[ie(r»24, + r»26, + ro]27s }+f(I'3]245+ I 3]269+13]27s)]]+term in (3.11) .

Use of the explicit matrix representation for the I' matrices simplifies Eq. (3.17) to

(3.17)

P+ JVOP a]= ,'( I+a )3s+pp3—q}3+ap3+a'ri3+(b'+bp3q}3+eq}3+fp3)(o 3+r3+p373cT3)

+M, —, (p]+]p, )(q}]+]ri,}(r]+«,}(o]+]o,)
25

(3.18)

where all terms containing ri3 break SU(2)I XU(1)„. Having specified all the VEV's that break SO(10) down to the
low-energy symmetry, it is straightforward, though tedious, to write down the fermionic masses generated through the
symmetry breaking. These are

I& = — d x( [[s +p +3(e +f}]E] ]+[a +a'+3(b +b'}]I].'(z }]Nq~zNgv'3

+ [ [s +p (e +f) ]E]~q]+ [a +—a ' (b +b '
) ]If~~q} ] u ~+ u—]q

+ [[s—p —3(e —f)]E']z ]+[a —a' —3(b b' )]E( }
J—e~zeg

+ [(s p +e f)K]&q]+(a a'+b b')IC(zq} ]d~zdg+
—[MzE] q](Nf ) C Nf ]+H.c ), .
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where we have denoted the family mixing matrix E&3 by
E. For the neutral fields XL and X„,we have a seesaw
mechanism, giving the right-handed neutrino a large Ma-
jorana mass [14,15], and the neutrino mass matrix takes
the simple form (ignoring generation mixing)

0 m

m M2

(3.20)

where m is of the order of the weak scale. This matrix
has two eigenstates of masses M2 and m2/M2. The free
parameters at this stage are Ma, M, , M2, a, a', b, b', e, f,
s, and p and the matrix E . However, when we examine
the scalar potential in the next section, it will become
clear that in order for the potential, or some terms in it,
not to vanish, the above parameters must be related.
Also we note that, since both the symmetric and antisym-
metric parts of K enter the fermionic mass matrix, it
cannot be completely removed. By performing a unitary
transformation on yp+~Upyq+ such that O'U=1, the
matrix IC is transformed to ( U KU) . Since E is an
arbitrary complex matrix, the matrix U can be used to
eliminate 9 out of the 18 real parameters. We shall come
back to the fermionic mass terms after having examined
the bosonic sector.

IV. BOSONIC ACTION

In the noncommutative formulation of the Yang-Mills
action, an essential ingredient is the Dirac operator. The
curvature of the one-form p is defined by

O=dp+p (4.1)

The Yang-Mills action in the noncommutative setting is
given by

(4.2)

To compute m(8), the expression ~(dp) must be evalu-
ated from the definition of p:

m(dp)=g [D,a'][D,b'], (4.5)

and this must be expressed in terms of the fields appear-
ing in n.(p). Since n(dp) is not necessarily zero when
m(p) is, one must quotient out the space
Ker(~)+d Ker(n). The space of auxiliary fields can be
determined by computing n (dp )

I o. Since the Yang-
Mills action is qudratic in the curvature 0, the process of
working on the quotient space is equivalent to keeping
nondynamical auxiliary fields and eliminating them
through their equations of motion. The remaining poten-
tial of the Higgs fields would be orthogonal to the space
of auxiliary fields. Depending on the VEV's of the Higgs
fields, it can happen that the potential for some terms
vanishes. This means that the potential becomes Bat in
certain directions and that some VEV's are not deter-
mined at the classical level. This could be cured at the
quantum level when radiative corrections to the potential
are taken into account.

The Yang-Mills action in Eq. (4.4) has been derived for
an N point space in [13]. Here we simply quote the result

where Tr is the Dixmier trace. It was shown in [11]that
one can equivalently use the heat-kernel expression

2 —e~X)~'tr(9 e ' )
(4.3)

e —+0 tr(e El+I
)

For both definitions it can be shown that the Yang-Mi11s
action is equal to [4,5]

I=—,
' dxTr trm 8 (4.4)

+ X I&, I' d(y +M )+A„(P +M ) (P +M )A—„„'
pram

&,&,.[(P„,+M, )(P,„+M,„) M, M,„] X—„—
num pA~, g

(4.6)

where the A are the gauge fields in the m —m entry of
m(p) and P „are the scalar fields in the m nentry of-
m(p). The X „, X' „, and I' are fields whose uncon-
strained elements are auxiliary fields that can be eliminat-
ed from the action. Their expressions in terms of the a'
and b' are

Xmn g am X +mp+pn (Mmp~pn n bm MmpMpn )
i pram, n

m W n, (4.7)

X' =pa' 8 b' +(XA„+A" A„), (4.&)

(4.9)

In the case at hand, the discrete space has three points.
Because of the permutation and complex conjugation
symmetry, the a' are related to each other. This in turn
relates some of the auxiliary fields to one another. To use
Eq. (4.5), we must compute the different terms as func-
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tionals of the component fields appearing in m.(p). We
first write

A "r
p IJ

where g is the SO(10) gauge coupling constant. Then the
kinetic term for the gauge field A„as given by the first

term in Eq. (4.6), after computing the sum and the trace
over Cli6' [SO(10)],is equal to

4 2pIJ p p,vIJ
PV

where the field strength is

y IJ g A IJ g A IJ+ ( A IKA KJ A IKA KJ
)P P V V

r I V V P

(4.10}

(4.11)

The Higgs kinetic terms have two parts, corresponding to
A(, and JV. Using the decomposition of Af and Ã in the
ClifF [SO(10}]basis, one gets the result

64TrlK, ~I I(B„m) +2[D„(In+mp)IJ]

+4[D„(m +mo}IJKI. ] ]

+641&,3 I'[ID„«+~p }II'+3ID„(~ +~ p }IJKI'

+5ID&(" + "o)IJKi.ml ] (4.12)

where the D appearing in this equation is the covariant
derivative with respect to the SO(10) gauge group and the
m's and n's are defined in Eq. (2.19). For example,
D„ni =d„ni+g A „nJ T.he masses of the components of
the gauge fields A „corresponding to the broken genera-
tors of SO(10) are provided by the VEV's Alo and JVo.

The most complicated part is the Higgs potential, since
this involves new fields, some of which are related, and
the nondynamical ones must be eliminated through their
equations of motion. It is given by

2

v(A(, ,w)=2 I& I'IA(+A( I'+I& 3I'I~+~pl' —(1'i+Xiii) + l&3il IJV'+~pl'+l&i21 IA1+A(ol' —(&3+X3i }

+2 I& I'l~+JV I' —IJV'ol' —Xi21'+21&ii&23[(A(+Ato)(~+~o) —At&'ol —Xi3I' (4.13)

X'„=ga'8 b'+(8"A„+A "A„),

X33 =BXj)B

Next, we have, for the Y's,

(4.14)

where we have used the symmetry that equates some of
the K's and X's. We now write the explicit expressions
for the X and Y field. First, we have

result. A close look at the potential in Eq. (4.13}shows
that if all of the X and Y fields are independent, the po-
tential disappears after eliminating them. In this case
one would have a flat potential and the true vacuum must
be determined from the radiative corrections. The pres-
ence of the auxiliary fields ensure that the potential is
gauge invariant. By comparing X&2 and Y&, one sees that
they can be related only if g a'IAtpl b' is not an indepen-
dent field. This can happen if

&i =g u'I J:i2I'IAtpl'b'+2 g u'l&g3I'I~pl'b',

Y3 =BYiB

Finally, we have for the X „,mAn, the expressions

(4.15}

MG =Mi,
so that IA1 pl =4M f, and we get the relation

&i = l&i2I'Idol'+ l&i3I'I~pl'+Xi2

(4.17)

(4.18)

Xig=l&i31' gu'IJV'pl'Bb'B ' —I~pl'

X,3 =E,~E23 g a'JK~pBb'B ' At()JVp—
(4.16)

Next, for the term in the potential depending on X&3 not
to vanish, X» must not be an independent field and must
be a function of JV. This is Possible if AtpJVo is ProPor-
tional to JVo. This condition is extremely restrictive, but
fortunately has one solution given by

and the other X's related to the above ones by permuta-
tion symmetry. It is easy to notice that X» and X33 are
auxiliary fields that do not depend on the K matrices.
Therefore eliminating these fields would result in expres-
sions orthogonal to the corresponding K space. Eliminat-
ing the remaining auxiliary fields Y„Y3,X&z, and X» is
much more complicated. If all of these were indepen-
dent, the potential would vanish, after eliminating them.
However, if the VEV's Ato and JVo are chosen in a special
way, then it is possible for the potential to survive. One
must arrange for a relation between the auxiliary fields,
so that, after eliminating the independent combinations,
the potential that corresponds to the given vacuum will

AtpJVp =2M, Ão,
a'=b'=0,

af= —s=—,
2

'

p =3e =—'b,

(4.19)

Xi3 =Xi3(2Mi JV) . (4.20)

Then the only independent fields to be eliminated are X,2

and X&&. The resulting potential is

and the free parameters in the theory are M &,8f2, a, b and
the matrices K&2,K». The equation for X» simplifies to
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V(~ ~)= [TrlEiz I' —(TrlEi2 I')'] Ilu+W, l' —4M', I'

+2TrlEi2Ei3I'l(Jlt+~, —2M, )(JV+JV, ) I' .

(4.21)

We note that the form of the potential (4.21), being the
sum of squares, is very restrictive. The most general po-
tential one constructs in the conventional approach using
the same Higgs representations would involve many more
terms. By insisting on the use of the Higgs in the com-
binations Afan, d JV, the number of possible terms would
decrease. Only when the further requirement of having a
potential which is a sum of squares is imposed will the
potentials in the noncommutative construction and in the

I

conventional approach agree. The total bosonic action is
the sum of the terms (4.10), (4.12},and (4.21), multiplied
by an overall constant. We choose this constant to be
1/16g to get the canonical kinetic energy for the gauge
fields. The kinetic energy for the scalar fields JR and JY is
normalized canonically after rescaling

2+2 TrlE'I
(4.22)

2+TrlEI

where we have denoted E» by E and K,2 by K'. After
rescaling, the bosonic action becomes

Ib, „; = dx ——I' " + Tr —D + o +D + 0

2 T E' 2

+ —1 TrllJR+JRol2 —4M, I + I(A+JÃ0 —2M, )(Jl/'+JVO)l2'x 32 (TrlE'I')' 2'x32 (4.23)

Finally, the fermionic action becomes

If = — f d x[E [(a+3b)N~+Ng+(a 3b)e—~zeg]

+E [( —a +b)uiaug —(a +b)diadem ]+M2E~ ~(Ng ) C 'Ng+H. c. ] . (4.24)

implying that sin 6I~ at the unification scale M, is —,.
From the JV-kinetic term, one sees that the mass of the W
gauge boson is

2
m2 g (a2+3b2)

4
(4.26)

From the fermionic mass terms, one deduces, using the
fact that the top quark mass is much heavier than the
other fermionic masses, that

By examining the gauge kinetic term, one finds the usual
SO(10) relations among the gauge coupling constants

(4.25)

This in turn implies that this model does not allow for a
Cabibbo angle, and this phenomenologically rules out
this model. At this point one option would be to relax
some of the constraints such as Eq. (4.19), which would
make the potential Rat in certain directions. This would
make the fermionic masses given by (3.19) not suffer from
the absence of a Cabibbo angle. Only a study of the radi-
ative corrections and minimizing the efFective action can
determine whether this possibility is realistic. Alterna-
tively, we can look for modifications in the building
structures so that this model becomes acceptable. This
result shows that model building in noncommutative
geometry is so constrained that most models could be
ruled out on phenomenological grounds.

m, =gib —al .

Comparing with m ~, we get the relation

(4.27)

V. REALISTIC SO(10) MODEL

~1+3b /
(4.28)

and this gives upper and lower bounds on the top quark
mass,

—miv~m, ~ —mii, =186.13 GeV,2 4
(4.29}

which agrees with present experimental limits. However,
such relations could not be maintained at the quantum
level [10]. Unfortunately, the same matrix E appears
for the u~ and d~ quarks, implying that the same trans-
formation can be used for u~ and d~ to diagonalize K

The model presented in the previous sections is
minimal in the sense that the number of points in the
internal geometry and the Higgs fields cannot be reduced.
If one insists on a Z2 symmetry between the different
copies, then the number of points would have to be even,
and we have to take two copies where the conjugate spi-
nors are placed, instead of the one copy considered be-
fore. It will be seen that this extension cannot have a po-
tential after eliminating the auxiliary fields. Therefore
this model has to be further extended by one or two
points to get the 16, Higgs field, and this will ensure that
the potential can be arranged to survive. The fermionic
space is extended with a singlet spinor. Two of the neu-
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tral fermions will become superheavy, while the third one
would remain massless. The fermionic space will then be
given by

K=WP7TPFPFPm17T1 . (5.3)

To every element fEA, we associate a sixtet
(f„.. . ,f6 ), of matrix-valued functions on I, where

f„.. . , f4 are 32X32 matrices, and fs,f6 are 1X1 ma-

trices. The decomposition of m. corresponds to

(5.1) f diag(f, , . . . ,f6),
with the symmetry

(5.4)

and A2 is

A3=ClifF[SO(10) jeR . (5.2)

The Hilbert space is the direct sum of the Hilbert space
C and the Hilbert space C. The involutive map n is
now taken to be

fr=f2=a
f3=f4=BaB

fs=f6=f',
(5.5)

i.e., a permutation symmetry 1~2 and 3=:4. In this
decomposition, the operator D becomes

8e le 1

y5 ™21K21 je le 1 ys M26

ysM12K12 ' y5M16K16

(5.6)

ysM61K61 ysM62K62

where the K „are 3 X 3 matrices commuting with the a; and b;. Therefore we shall take

M, z=Mz& =At p ~

M34 =M43 =BM12B

M]3 M23 M, 4 =M34 JVP

M1s M 16 M25 M26 =Hp,

M35 M45 M36 M46 =BM15,

Ms6=O

and a similar symmetry for the K „.We further restrict the elements of the algebra to those of the form

(5.7)

where the projection operator is

P=diag(P+, P+,P,P, 1, 1) .

For n(p) one then gets

A ysAtK„

y,A,K„
ys K31 ys~K32

ysJVK„

y 5JVK23

BAB

ysWK, 4

ys~K, 4

ysHK15

rsHK2s

ysHK

ysHK26

ys& K34 y5H'K35 y5H K36

(5.8)

n.(p) =
ys~K4i ys~K43 y5~'K43 BAB rsH'K45 ysH'K46

(5.9)

ysH K51 ysH*K52 ysH' K53 y5H' K54

y 5H*E61 y5H*K62 y5H' E63 y 5H'*E64 0 0

where the new functions A, Af, JV, and H are given in terms of the a' and b' by

A =P+ g a'8b' P+, JK+JKp=P+ g a'JN, pb' P+,

JV+iVp=P+ g a'JVpBb'B ' P, H+Hp=P+ g a'Hpb"
(5.10)
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and JM, '=BARB ', H'=BH. We shall make the same physical requirement as in Eqs. (2.20) and (2.21) that reduces the
gauge group from U(16) to SO(10). The fermionic action, in terms of the component fields, is given by

If= 'X 2 i +A +275 + 0 '+E»+r5H+803E'E15
—2/~[i(B+ A)f'~+2yq(JP'+JV() )/~K, 3y~B(H+H())AK)5]

+A[i8A+2y~(H+H()) B '/~K)5] —
A. '[i)))A,'+2y, (H*+H() )/~K)~]j, (5.11)

where g+ =P+f and by SO(10) chirality is equal to g. This expression can be simplified by using the properties of the
charge conjugation matrices B and C, and after rescaling P~ —,g and )t,~(1/&2))(,, the fermionic action (5.11)
simplifies to

If — + +& + A ++

g~B 'C '(A" +JV(') )/~K;,

+ —A, C '(H*+H() )/~K)s+ —/AC '(H+Ho)AK3s+H. c.
2 2

(5.12)

The only change in the breaking mechanism is that U(1), X SU(2)a is broken also by the Ho whose VEV is given by

H0=M3 (5.13)

The fermionic action is modified slightly from Eq. (3.19) to become

II „,= —Jd x(I[s+p+3(e+f)]K „(+)[ +aa'+3(b+b')]K(
} jN~+Ng

+[[s+p (e+f)]K(—)+[a+a' (b+b')—]K(pq} ju~ug

+ [ [s —p —3(e —f) ]K( )
+ [a —a' —3(b —b') ]K( } j e~z eg

+ [(s —p +e —f)K( )
+(a —a'+ b —b')K(

}
]d~z d$

+ [v'2M3K„' N~ A'L+M2K(p ) (Nf ) C 'Nf]+H. c.), (5.14)

where we have denoted the family mixing matrices E», E», and E56 by E, E', and E", respectively. Since we have
three neutral fields 1VL, N~, and A.L and their mass eigenstates are mixed, the mass matrix must be diagonalized. Ignor-
ing the mixing due to the generation matrices, the mass matrix is of the form

NI. N~

EL 0 m 0

m M2 M3'
0 M3 0

(5.15)

and we shall assume a mass hierarchy m «M2, M3, and Mz -M3. Diagonalization of the matrix (5.13) produces two
massive fields whose masses are of order M2, and the third will be a massless left-handed neutrino. The kinetic term for
the gauge field A „ is equal to

4 2@ le )JvIJ (5.16)

and the Higgs kinetic terms have three parts corresponding to A, , A; and H. They are given by

2IK) p I'Tr [ [D„(~+~o)]' j + g IK) 3 I'Tr[ ID„(~+~o)I']+12IK) s I'IL)„(H +Ho ) I', (5.17)

where the D appearing in this equation is the covariant derivative with respect to the SO(10) gauge group. The mass
terms of the gauge fields corresponding to the broken generators of SO(10) are provided by the VEV's At(„&o, and Ho.
The Higgs potential is very complicated in this case. It is given by
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2
2 IKi21'l~+Jltol'+21K, s I'l~+JVol'+21K| I'IH +Ho I' —(I' +X|A )

2 2

+2 2IK3g I'IJV+JVol'+ IKi2I'l~+~ol'+21K)3I'IH+Hol' —(~s+Xs3 & +2 41Ksil'IH+Hol' —(I's+Xss &

2
+2 2IKisl'(IJV+JVol' —IJVol')+2IKisl'(IH+Hol' —IHol'& —Xi2

+8 K„K~s[(JIt+Ato)(JV+ JVo) J—K~o]+K,qK4s[(JV+ JVo)(JTt+X, to) J—V~o]

+2K|sKss [(H +Ho)B (H+Ho )
—HoBHo] —Xis

+8 Ki2K2s(At+Bio)(H+Ho)+2KisKss(JV+JVo)B(K+Ho) X,s—

+2 2Ks, K,4(l~+JVo I' —I~ol')+2IKssl'[IB(H+Ho)l' —IBHol'] —Xs4

+8 2Ks Kgs[(JV'+JVo)(H+Ho) JVoHo )+2Ks4K4s[IB(H+Ho)l IBHol ] Xss

2

+2 4IKsl I'(IH*+Ho I' —IHo I') —Xs6 (5.18)

(5.20)

I;=2M', (IK„I'+ IK„I'}.
The expressions for X „,m Wn, are now given by

r

X,2=2IKisl' ga'IJVol'Bb'B ' —IJVol' +2IKisl' ga'IHol'b' —IHol'

where we have used the symmetry that equates some of the K's and the X's. The explicit expressions for the X and F
Selds are

X' =pa'8 b'+(8"2„+2 "3„), X' =BX'„B ', X' =pa"8 b" . (5.19)
1

Next, we have

I'1 =g a'IK)2I'l~ol'b'+2 g a'IKgs I'IJVol'b'+g a'IK|s I'IHol'b',
E l I

Y3 =8Yi8

X,s =K,2K2s g a'A()AloBb'B ' —AoJVo +K,4K4s g a'JVoBAfoB ' JVoBJK—oB
I

+2IK I' ya'HoHob'B-' —IH I'B-'

X|s= IK|2K2s I g a'~oHob" ~oHo +2K|sK» g a JVoBHob" JVoBHo—
X34 =BX128

X35 =8X15,

X56 =0,

(5.21)

MG =M1, (5.22)

and the other X's are related to the ones above by permu-
tation symmetry X,2 =X21 X34 X43 X13 X14 X23
=X24, X,6=X26, and X36=X46. We also have similar
identities for the E s, and in addition, we have assumed
the relations E12 =K34 and E15 K35 IA analogy with
the previous model, we must impose the
relation

For the term in the potential involving X,3 to survive, we
should be able to express this Beld in terms of the other
scalar fields. By examining the expression for X», we no-
tice that a simplification occurs if we require that

E12=E12, (5.24)

because the terms involving Af,~~" drop out, where Jl/o"
is the part of JVO independent of M2. In this case X» can
be made to be zero, provided that we take

in order to get a relation between X,2 and F1.-

I' = IK, I'l~ol'+2IKgs I'IJVol'+X|2 (5.23)
+15+15

M1M2 M3,
12 13

(5.25)
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where we have used the relation

HoHo bio
M3

(5.26)

where JVz ' is the part in JVo dependent on M2. If no rela-
tion is taken between E&2 and K &2, then the only way for
the potential to survive is to impose a relation on JkfoJ(.t'o

identical to the one for the simpler model as well as a re-

X)5 =uH, (5.27)

where

lation between M2 and M3. This case will not be interest-
ing for us, since the fermionic mass matrices, apart from
the neutral fields sector, are identical to those in the pre-
vious model and thus would suffer from the same prob-
lem of absence of the Cabibbo angle. The auxiliary field
X» is not independent and is equal to

u =2K»K»[s+p —3(b+b')+2(a +a')+M2] —2K&zK25M,

After eliminating the auxiliary fields Y& and X33 the potential becomes

&(Jlt,&H) = [Tr IK)~
I' —(Tr IK)2 I')']Tr( l~+~ol' —

I stol'}'

(5.28)

+4 K)sKt2 [(Jltf +Jltl o)(JV+J)J'o)+ ( JV+ JVo)B (Jkl +JRo)B ]+2K)sK)5 [(H +Ho }B(H +Ho )]

+8 K) K2) (5JJ1, +JN )o(H+H )o+2K) Ks) (sJV+JV }oB(H+H )o—u(H+Ho)
2

+16[TrlK)sl' —(TrlK)5I'}'] IH'+Ho I' —Ms I'+16TrlK)s I'IIH*+Ho I' —Ms (5.29)

This potential would only coincide with the one con-
structed in the conventional approach with the require-
ments of using the Higgs fields in the combinations JR
and JV and having the potential to be the sum of squares.
Otherwise, there will be many more terms possible in the
conventional approach.

Therefore the fermionic mass terms are still given by
Eq. (5.14}and do not suffer the problem encountered be-
fore. This completes our study of the model and shows
that it is possible to obtain a good SO(10) model. A com-
plete phenomenological analysis will be left for the fu-
ture.

VI. SUMMARY AND CONCLUSION

We have seen that a realistic SO(10}model can be con-
structed using the noncommutative geometry setting of
Connes. The attractiveness of this model stems from the
fact that all the fermions fit into one representation, mak-
ing the spinor space particularly simple. Depending on
the number of discrete points extending the continuous

geometry, the Higgs structure is predicted uniquely. We
found two models: The first one is quite simple and has a
very restrictive form for the fermion masses. This turns
out to be unrealistic if one insists on requiring the poten-
tial to determine all the VEV's at the classical level. In-
cluding radiative corrections to the potential may cure
this problem. The second example is more complicated,
but the Higgs structure is essentially the same as that of
the first model, with the difference of an additional 16,
Higgs field. The fermionic masses are not as restricted as
those in the first model. We hope to study the spectrum
in more detail in the future. A study of the quantum sys-
tem is not meaningful before having determined those
symmetries of the system that are characteristic of the
noncommutative geometry setting.
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