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Fractal behaviors in proton-nucleus interactions at 800 GeV
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The multifractal moments with suppressed statistical contributions have been investigated in interac-
tions of 800 GeV protons with emulsion nuclei in one- (q/P) and two-dimensional (rt-P) spaces in

diferent multiplicity intervals. The scaled factorial moments have also been determined and the rela-

tionship between the fractal indices and the intermittency indices discussed. The dependence of general-

ized dimensions on order gives clear evidence of a self-similar cascade mechanism in the interactions.

PACS number(s): 13.85.Hd

I. I¹RODUimrON

The study of nonstatistical fluctuations in distributions
of secondary particles produced in high-energy interac-
tions has become an important tool in understanding the
mechanism of multiparticle production [1-4]. Prompted
by sharp spikes in single cosmic ray events, Bialas and
Peschanski [5] proposed to study event-to-event particle
density fluctuations in rapidity bins of decreasing width.
They suggested a power-law dependence of the scaled
factorial moments on the rapidity bin size, called inter-
mittency in hydrodynamic turbulence [6]. Evidence for
intermittency has been reported in a variety of processes
(e+e, pp, hadron-hadron, hadron-nucleus, and
nucleus-nucleus collisions) [1—4].

The power-law behavior of factorial moments indicates
self-similarity and the existence of fractal properties [7] in
the multiparticle production process. A fractal or self-
similar object satisfies a power-law scaling which reflects
the underlying dynamics. Various methods have been
suggested for investigating fractal structures in multipar-
ticle production [8—12]. Hwa [10] suggested a set of mul-
tifractal moments G to investigate the large density fluc-
tuations in terms of the multifractal formalism. If the
particle production process exhibits self-similar behavior,
power-law dependence of the G moments on the phase
space bin size is expected [10,11]. However, because of
finite multiplicities in events at finite energy, the self-
similarity cannot be expected at finer scales of resolution.
Hence, the 6 moments are not free of statistical fluctua-
tions. In order to suppress the statistical contribution,

Hwa and Pan [12] have suggested a modified form of the
G», i.e., G» and applied it to hadronic collisions [12,13].
They have used the Monte Carlo code ECCO [14) based on
the geometrical branching model [15] in one- [12], two-,
and three-dimensional (3D) [13] phase spaces. This for-
malism has also been applied to high-energy nuclear col-
lisions [16] in the geometrical branching model using
ECCO and the European Muon Collaboration (EMC) data
on multiparticle production in )up and pd collisions [17].
Hwa and Pan [12] have also discussed the fractal inter-
pretation of intermittency and derived a relation between
the fractal indices and the intermittency indices, thus re-
vealing a correspondence between the decreasing power
of Gq moments and increasing power of the scaled fac-
torial moments.

We have already observed [18] intermittent behavior in
multiparticle production in proton interactions with
emulsion nuclei at 800 GeV, which is presently the
highest available energy for fixed targets. Multiplicity
dependence of intermittency has been observed [18] in
one-dimensional pseudorapidity (ri) and azimuthal angle
(P) and two-dimensional (2D) (ri-P) spaces, wherein in-
termittency strength is found to decrease with increasing
multiplicity. In the present work, we investigate the frac-
tal structure of multiplicity fluctuations in proton-
nucleus interactions in one and two dimensions using the
modified G» moments introduced by Hwa and Pan [12].
We have also studied the relation between the fractal in-
dices and intermittency indices, as well as their depen-
dences on order, multiplicity, and phase space dimension
in order to obtain insight into the dynamical mechanism

TABLE I. Characteristics of the three multiplicity intervals. The errors are statistical.

Multiplicity interval

11(N, (20
21~%, (30
N, )31

Number of
events

996
491
250

&N, )

15.23+0.48
24.88+1.12
41.02+2.59

(N, ) in kg=0. 5-5.5

14.26+0.45
23.36+1.05
38.42+2.43
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21+%,+30 0.751
(0.004)
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(0.031)

3.044
(0.058)
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(2)

M
Gq= g (K /N)~8(K q)—

m=1
(3)

is expected. This power-law behavior does not occur in
the limit 5g~O, since in that limit K for a nonempty
bin is 1 and G approaches N' . Thus at finite energy,
where N is not very large, the self-similarity or fractal
structure cannot be expected at infinitesimal 5g. The
slope r~ in Eq. (2) is determined only for the large 5' re-
gion.

Hwa and Pan have suggested [12] a modified form of
the Gq moments defined by

from re by the relation [12]

D'=r'/(q —1) .

7. 0—
(cl) 11~Ns~2

!n q space

Hwa and Pan have also developed a new approach for a
close comparison between the multifractal moments and
the scaled factorial moments [12]. The scaled factorial
moments that have been extensively studied are [5]

for positive integral orders q, where 8(K —q) is the step
function that is 1 for K &q and 0 for E (q. The
definitions (1) and (3) differ only by the 8 function. In sta-
tistical and geometrical problems where N is very large
and N/M ))q, the 8 function is inessential, and the two
definitions give the same result. But in particle physics,
N is limited and so the need of the 8 function arises in or-
der to suppress the statistical contribution.

For an ensemble of events, the averaging is done as
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TABLE III. Values of the slopes r'q(P) in azimuthal space for different multiplicity intervals. The
numbers in parentheses are standard errors.

Multiplicity interval

11 N, 20 0.718
(0.005)

1.336
(0.011)

1.854
(0.019)

2.455
(0.042)

2.690
(0.055)

21 N, 30 0.742
(0.003)

1.404
(0.008)

2.001
(0.014)

2.535
(0.020)

2.986
(0.032)

N, +31 0.773
(0.004)

1.453
(0.009)

2.066
(0.015)

2.638
(0.029)

3.170
(0.057)

IV. RESULTS AND DISCUSSION

A. Analysis in one-dimensional pseudorapidity space

The values of (G') are calculated using Eqs. (3) and
(4) for the three multiplicity intervals: 11 &N, &20,
21 ~ N, ~ 30, and N, ~ 31 for q ranging from 2 to 6. Fig-
ures 1(a)—1(c) show 1n(G') as a function of —ln5g for
the three multiplicity intervals considered. A linear
dependence of ln(G' ) on —ln5rl is observed indicating
self-similarity in the interactions. The absolute value of
ln(G~ ) for a Qxed q and 5' is highest for the N, ~31
sample and lowest for the 11 ~ 1V, & 20 sample. Hence, a
multiplicity dependence of the Gq moments is clearly ob-
served. The slope values ~' (ri } in rl space are calculated
by the least-squares fitting of the data points in the range
—ln5r)=( —0.511)—(2.219) and are listed in Table II.
The values of ~' (rj) for each q are seen to increase with
increasing multiplicity, being minimum for 11&N, &20
and maximum for the N, ~ 31 sample.

The values of generalized dimensions D'(ri) in q space
are calculated from ~' (ri) using Eq. (6). Figure 2 shows
the variation of Dq(rj} with order q for the three multipli-
city intervals. The errors shown are standard errors.
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-10 l I I I I I I I

—2.0 -1.5 -1.0 -0.5 0. 0 0.5 1.0 1.5 2.0 2. 5
-tn

FIG. 7. In(F~ ) as a function of —ln5$ for different multipli-
city intervals. The errors shown are statistical. Lines represent
the linear fits to the data.



R. K. SHIVPURI AND VANDANA ANAND

Since D»(rI) (D» (»)) for q)q', the structure is clearly
multifractal [9,22]. Dependence of D'(rl) on q also indi-
cates a self-similar cascade mechanism in proton-nucleus
interactions [23]. The values of D»(rl) for each q are also
seen to increase with increasing multiplicity. The depen-
dence of slope values r'(»1) and generalized dimensions
D'(rl) on multiplicity indicates that the multifractal
structure is more pronounced for higher multiplicity
events as compared to the lower multiplicity events.

The scaled factorial moments (F') in pseudorapidity
space are calculated using Eq. (8). Figures 3(a)—3(c) show
the variation of ln(F' ) as a function of —1n5»). A linear
rise of 1n(F» ) with —1n5») is observed. The values of
ln(F' ) are highest for the 11 ~ N, ~ 20 sample and lowest
for the N, ~ 31 sample for a fixed q and 5g. Thus the F'
moments also exhibit multiplicity dependence. The slope
values a»(»)) are determined by the least-squares fitting of
the data points in the same 5g range as for the G' mo-
ments to enable a comparison between G' and F' mo-
ments. Figure 4(a) shows the variation of a (»)) with or-
der q. For a fixed q the slope values a (ri) are highest for
11 &N, ~20 and lowest for the N, ~ 31 sample implying
that intermittency effects are stronger in events with low
multiplicity. The multiplicity dependence of intermitten-
cy has been thoroughly investigated both experimentally
[4] and theoretically [9,24]. Because of several sources
contributing to particle production in high multiplicity
events, the intermittency effects are masked as compared
to the lower multiplicity events [9].

The multiplicity dependence of the F' moments is
complementary to the multiplicity dependence of the G'
moments as the intermittency indices a»(rl) decrease with
increasing multiplicity and the fractal indices r»(»)) in-

crease with increasing multiplicity. In order to compare
the deviation of a»(rl) from zero with the deviation of
r»(rl) from q

—1, q
—1 —»' (ri) is plotted as a function of

q in Fig. 4(b). Comparison of Figs. 4(a) and 4(b) shows
that the dependences of a (rl ) and q

—1 r'»(ri) on q ha—ve

similar trends for the three multiplicity intervals, al-
though their values are significantly different. Similar
behavior has been observed in EMC data on pp and pd

collisions [17]. Hence the approximate relation (10) be-
tween a»(rl) and r»(g) is valid for our data and reveals
that the increasing power of ( G» ) corresponds to the de-
creasing power of (F» ).

B. Analysis in one-dimensional azimuthal space

The analysis described in Sec. IVA for studying fluc-
tuations in pseudorapidity distributions can be applied to
study fluctuations in azimuthal angle distributions as
well. %e consider only the shower tracks with pseudora-
pidity lying in the range by=0. 5—5.5. The entire range
of P =0—2»r is divided into M& bins of size 5/ =2m/M&.

The values of ln( G' ) are calculated using Eqs. (3) and
(4) for q =2—6 and shown in Figs. 5(a)—5(c) as a function
of —ln5$ for the three multiplicity intervals. A linear
dependence of 1n(G,') on —1n5$ is observed indicating
the presence of fractal structure in azimuthal angle distri-
butions also. For a certain value of q and 5$, the abso-
lute value of ln( G' ) is highest for the N, & 31 sample and
lowest for the 11~%,~20 sample, showing that the G~
moments in (t space are also multiplicity dependent.

The slope values r' (P) in (t) space are calculated by the
least-squares fitting of the data points in the range
—ln5$=( —0.739)—(1.563). Table III shows the values
of »»(P) for the three multiplicity intervals. The slope
values are found to increase with order q for each multi-
plicity interval and for a fixed q increase with increasing
multiplicity. Hence, the fractal structure is more pro-
nounced at higher multiplicities. The values of general-
ized dimensions D'(P) in (t space are calculated from

»»((t ) using Eq. (6) and shown in Fig. 6 as a function of
the order q for the three multiplicity intervals. The er-
rors shown are standard errors. The variation of D» (P )

with q indicates that the structure is multifracta1. The
values of D'(P) are also seen to increase with increasing
multiplicity for each q.

The scaled factorial moments (F' ) in P space are cal-
culated using Eq. (8). Figures 7(a)—7(c) show the varia-
tion of ln(F» ) as a function of —1n5$ for different multi-

plicity intervals. A linear rise of ln(F') with —1n5$ is

2.5—
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I

I

FIG. 8. Comparison of the exponents of I'q

and 6» moments in azimuthal space: (a) a, (t)))
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The errors shown are standard.
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observed. The slope values as(P) are computed by the
least-squares fitting of the data points. Figure 8(a) shows
the variation of ae(P) with order q. The slope values

ae(P) are seen to decrease with increasing multiplicity.
Thus in P space also, intermittency effects are stronger in
low multiplicity events.

To compare the Fq and the 6' moments, values of
q

—1 —r~(P) are plotted as a function of order q in Fig.
8(b). Within errors, the dependence of as(P) and

q
—1 —re(P) on order q are similar for the three multipli-

city intervals.
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(a) 11 ~ N &20
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C. Analysis in two-dimensional (g-P) space

Ochs and Wosiek [25] proposed that intermittency
effects should be stronger if the fluctuations are analyzed
simultaneously in two or three variables. This has been
observed in several experimental investigations where
stronger intermittency is seen in higher dimensional
phase spaces as compared to a lower dimensional phase
space [1—4]. In our data of proton-nucleus interactions
at 800 GeV we have observed stronger intermittency in
two-dimensional (g-P } space as compared to one-
dimensional (ri or P) space [18]. Here, we investigate the
fractal structure of fluctuations in two-dimensional (g-P)
space using the 6' moments and relate them to the scaled
factorial moments Fq.

For analysis in two-dimensional (g-P) space, the ranges
of g and tt} are hri=0. 5 —5.5 and b,/=0 —2u.. The
hqXhP space is divided into M„4, =M„XM& cells of
area 5ri5$=(hei/M„)X(hP/M&) with M„=M&. The
G' moments are calculated using Eq. (3} with E the
number of particles in the mth cell and the summation
over M„&=M„XM& cells. The values of in(G') are
calculated using Eq. (4) for q =2 to 5. Figures 9(a)—9(c)
show a linear dependence of ln(Ge ) on —in(5r)5$) for
the three multiplicity intervals, indicating the presence of
self-similar fractal structure in two-dimensional (ri-((})
space as well. The absolute values of ln(G') for a cer-
tain q and (5r15$) value are highest for the N, )31 sam-

ple and least for the 11(N, ~ 20 sample, making explicit
the multiplicity dependence of the 6' moments in two-
dimensional (ri-P } space.

The slopes r' (ri-P) in (ri-P) space are obtained by the
least-squares fitting of the data points with
—ln(5q5$)=( —1.250)—(2.098). Table IV shows that
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FIG. 9. 1n(G~) as a function of —ln(5g5$) for different
multiplicity intervals. The errors shown are statistical. Lines
represent the linear Sts to the data.

TABLE IV. Values of the slopes ~~(q-$1 in two-dimensional (g-P) space for different multiplicity in-
tervals. The numbers in parentheses are standard errors.

Multiplicity interval

11~N, +20 0.621
(0.007)

r3(q $1-
1.096

(0.010)

&4(n4)-
1.500

(0.032)

r)(g-p)

2.020
(0.082)

21(N, &30 0.680
(0.007)

1.247
(0.018)

1.709
(0.051)

2.125
(0.087)

N, ~31 0.690
(0.005)

1.307
(0.020)

1.793
(0.053)

2.174
(0.129)
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the slope values r~(t)-(!)) increase with increasing multi-
plicity. Comparison of Table IV with Tables II and III
shows that the slope values rq(rI-P) in two-dimensional
(q-(!)) space are smaller than the corresponding values of
r~(rl) or r~(P) in one-dimensional (r) or P) space

The values of generalized dimensions D'(g-P) in (rI-P)
space are calculated using Eq. (6). Figure 10 shows
Dq(rl-P) as a function of order q for the three multiplicity
intervals. The errors shown are standard errors. The
values of D~(rl-P) are seen to decrease with increasing q
in each multiplicity interval, suggesting that the structure
is multifractal [22]. The D&(rl-P) values are highest for
the 1V, ~ 31 sample and lowest for the 11~%,&20 sam-
ple. This makes evident that even in two-dimensional
(rt-(!)) space the fractal structure is more pronounced in
high multiplicity events. The values of generalized di-
mensions in two-dimensional (rl-i)) ) space are smaller than
the corresponding values in one-dimensional (rl or (t )

space.
The scaled factorial moments F' in (tI-(('i) space are cal-

culated using Eq. (8). Figures 11(a)—11(c) show a linear
rise of 1n(F' ) with —ln(5r15$) in each multiplicity inter-
val. The multiplicity dependence of the F' moments is
also explicit froin the figures. The values of in(F' ) for a
fixed q and (5rI5$) are seen to decrease with increasing
multiplicity. The slopes a (rl-(() are determined by the
least-squares 6tting of the data points and are shown in
Fig. 12(a) as a function of the order q. The slope values
a (rl-P) decrease with the increasing multiplicity for each

q, thus indicating stronger intermittency in low multipli-
city events. The slope values a~(rl-(()) are larger than the
corresponding values of a~ (rl ) or a ((!)) implying stronger
intermittency in two-dimensional (rl-(!)) distributions.

To compare the fractal indices r~(g-P) with the inter-
mittency indices a~(rl-g), q

—1 r~(g P) i—s plott-ed as a
function of q in Fig. 12(b). Figure 12 shows that the
dependences of a (rl-P) and q

—1 —r'(g-(t) on q show
similar trends. Comparing Fig. 12 with Figs. 4 and 8 of
one-dimensional rl and P spaces, it is observed that the
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FIG. 10. The generalized dimensions D~(rl P) in two--
dimensional (g —P) space as a function of q for different multi-

plicity intervals.

FIG. 11. In(F~) as a function of —In(5g5$) for different

multiplicity intervals. The errors shown are statistical. Lines
represent the linear fits to the data.
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2. 5- «) (b) ~ 11 ~ Ng ~20
k 21&N~~30
~ NS~ 31
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0.0
3 4

Order q

3 4
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FIG. 12. Comparison of the exponents of Fq and G~ in two-
dimensional (qi P} spa-ce: (a) aq(rt-P} and (b) q

—1 qq(q—i P} as-

functions of order q. The errors shown are standard.

V. CONCLUSIONS

The multifractal moments G' and the scaled factorial
moments Fq exhibit clear power-law behavior which is
characteristic of a self-similar system in one-dimensional
qi, p, and two-dimensional (qi-p) spaces. The fractal in-
dices ~' and the intermittency indices u show different
dependences on multiplicity and phase space dimension
as follows.

In one-dimensional qi, ((), and two-dimensional (qi-P)
spaces, the fractal indices 7q increase with increasing
multiplicity as q' ( l l & N, & 20) & q

' (21 & N, & 30)

approximate relation (10) between the intermittency in-
dices and fractal indices is satisfied to a better extent in
two-dimensional (qi-P) space than in one-dimensional (qi
or P) spaces.

&qq(N, &31) whereas the intermittency indices a de-
crease with increasing multiplicity as
a (11&N &20) &a (21&N &30)&aq(N &31).

In each of the three multiplicity intervals it is seen that
v'(qi) and q'(P)&q'(rig), a (q)) and aq((t)) &aq(rl P)
Thus the fractal indices v' decrease with increasing phase
space dimension, and the intermittency indices a in-
crease with increasing phase space dimension.

The intermittency strength increases with decreasing
multiplicity and increasing phase space dimension
whereas the strength of the multifractal moments G' de-
creases with decrease in multiplicity and increase in
phase space dimension.

A correspondence between the increasing strength of
the Gq moments and decreasing strength of the F' mo-
ments has been obtained through the relation a
-q —1 —v' . The intermittency index aq and deviation of
the fractal index ~' from q

—1 show similar dependence
on order q for the different multiplicity intervals in ql, p,
and (qi-p) spaces, thus providing a connection between
intermittency and multifractality. A remarkable
equivalence between a and q

—1 —
wq is observed in

two-dimensional (ri-p }space.
The dependence of generalized dimensions D' on q in

qi, P, and (ri-P} spaces indicates multifractal structure
and the presence of self-similar cascading mechanism in
the interactions.
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