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An effective action technique for the time evolution of a closed system consisting of one or more mean

fields interacting with their quantum Auctuations is presented. By marrying large-X expansion methods
to the Schwinger-Keldysh closed time path formulation of the quantum effective action, causality of the
resulting equations of motion is ensured and a systematic, energy-conserving and gauge-invariant expan-
sion about the quasiclassical mean field(s) in powers of 1/X developed. The general method is exposed
in two specific examples, O(N) symmetric scalar A.4 theory and quantum electrodynamics (QED) with

X fermion fields. The A.4 case is well suited to the numerical study of the real time dynamics of phase
transitions characterized by a scalar order parameter. In QED the technique may be used to study the

quantum nonequilibrium effects of pair creation in strong electric fields and the scattering and transport
processes in a relativistic e+e plasma. A simple renormalization scheme that makes practical the nu-

merical solution of the equations of motion of these and other field theories is described.

PACS number(s): 11.15.Pg, 05.70.Ln, 11.10.Gh

I. INTRODUCTION

The derivation of macroscopic dissipative behavior
from fundamental time reversal invariant dynamics is a
subject at least as old as Boltzmann. In the classical ap-
proach to this issue two ingredients are necessary. First,
nonequilibrium initial conditions for the system are con-
sidered and second, some kind of coarse-graining or
averaging procedure over unobserved degrees of freedom
is introduced [I]. The classical prototype for this analysis
is of course, Boltzmann's equation for the evolution of
the molecular distribution function in a gas due to col-
lisions between the molecules. Another classic example is
the Brownian motion of a heavy particle in a fluctuating
medium, where a clean separation between the "system"
and "environmental" degrees of freedom to be averaged
is assumed in the first step. In both of these examples
from classical statistical mechanics the phenomenological
point of view is the dominant one, and there is no ques-
tion about how entropy growth or loss of information
arises. It arises either by explicitly replacing the underly-
ing time reversal invariant dynamics by stochastic as-
sumptions, or by the separation into "system" and "envi-
ronment" with all detailed information about the latter
lost in the averaging procedure (save for a few parame-
ters, such as temperature).

In recent years there has been considerable growth in
interest in the study of dissipative effects in specifically
quantum mechanical systems. Driven largely by the im-
pressive progress in the fabrication and control of sensi-
tive microdevices, such as tunnel junctions, issues of
quantum dissipation have been studied extensively by a
variety of methods [2]. At the other end of the distance
scale, the subject of 1oss of coherence in closed quantum
systems has become of interest in quantum cosmology,

where one would like to understand precisely how the
quasiclassical Universe we observe emerged from
(presumably) purely quantal initial conditions [3]. Be-
cause of their technical simplicity and applicability to
these widely different situations, model theories of quan-
tum Brownian motion have often served as prototypes in
studies of dissipation and decoherence. In fact, almost a11

existing treatments of nonequilibrium dissipative phe-
nomena in quantum systems focus on some particular
model or class of models, such as the coupled oscillators
of Caldeira and Leggett [4], chosen primarily for the pur-
pose of illustrating some definite feature of the analysis in
the simplest way, or for describing a particular existing
phenomenology. Since relativistic effects are unimpor-
tant in condensed matter applications, they have been
generally neglected in these phenomenological models.

There is no essential problem in extending the analyses
of nonequilibrium and irreversible processes to systems
with both quantum and relativistic features, i.e., to rela-
tivistic quantum field theories. Such an analysis is not
necessary for the primary application of field theories to
experimental situations, namely, scattering experiments
involving a few particles, and this explains why it has not
been much discussed in the literature. However, implicit-
ly assumed in the calculation of a scattering matrix or
cross section is that the particles in both the distant past
(the in state) and in the remote future (the out state) of
the scattering event are to be treated as essentially free
particles. It is only this quite restrictive assumption that
justifies the usual Feynman boundary conditions on
Green's functions, and the corresponding path integral
representation of the scattering matrix between in and
out states.

As successfu1 as this scattering theory has been, it is
clear that it is capable of addressing only a very limited
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subclass of questions one might hope to address in quan-
tum field theory. The coupling may not be weak enough
to justify a perturbative expansion, there may be no ap-
proximately free asymptotic scattering states, or we may
be interested in more than just scattering probabilities,
and of course, such a treatment based on asymptotic
states cannot teach us anything directly about dissipation
or loss of quantum coherence. Only relatively recently
has it become apparent that there are many situations of
physical interest requiring a detailed description of the
time-dependent dynamical evolution, where the perturba-
tive scattering formalism of quantum field theory is whol-

ly inadequate. For example, this is the case for strong
field electrodynamics in astrophysical plasmas, in nuclear
collisions of heavy ions where it is possible that a phase
transition to the quark-gluon plasma may be produced, in

phase transitions in the hot, dense early Universe, and in
the dynamics of phase transitions generally. All of these
problems require a detailed knowledge of the dynamical
time evolution of the field configurations, as well as their
nonequilibrium transport and energy-momentum flow
characteristics. It is at that point also that the funda-
mental issue of dissipation in the time reversal invariant

physics described by the underlying quantum fields first

appears.
Despite the apparent need for a time-dependent (and

therefore not explicitly covariant) formulation of quan-
tum field theory, to address both the fundamental issues
and the many interesting applications, the technical corn-
plications of the renormalization procedure in a nonco-
variant treatment have usually been sufticient to dissuade
all but the most persistent from the task. When renor-
malization issues are faced squarely, it is usually by rath-
er formal methods, such as dimensional continuation.
Although elegant theoretically this formal regularization
technique is not adaptable to a computer, to which it
should be clear from the outset one will have to resort to
in order to solve the coupled nonlinear partial differential
equations of any realistic theory. In fact, it is only the
advent of modern supercomputers that makes it even
conceivable to carry out the program outlined in this pa-
per and obtain useful results in realistic physical systems.

Motivated by these various considerations we wish in
this paper to provide a fully quantum field theoretic
framework for the systematic inclusion of the effects of
fluctuations on the time evolution of a closed system in a
formulation practical for numerical methods. In terms of
our original discussion of "system" and "environment, "
the mean field (or fields) will play the role of the macro-
scopic subsystem, while the fluctuating degrees of free-
dom become the environment or bath in which the sys-
tem moves. The important difference in our approach
will be that the latter will not be introduced externally,
but rather determined from the correlation functions of
the theory self-consistently in terms of the time evolving
mean field(s). In other words we wish to discuss the
quantum evolution of a closed system, where no averag-
ing over environmental degrees of freedom is ever per-
formed. It is clear that the exact solution of this problem
could never allow for any dissipation or decoherence,
since well-defined Hamiltonian and unitary time evolu-

tion operators exist in the underlying field theory. How-
ever, we cannot hope to solve the Schwinger-Dyson equa-
tions of a nontrivial interacting quantum field theory ex-
actly, so that some systematic approximation scheme is
certainly required. In statistical mechanics the natural
approximation scheme is to truncate the infinite hierar-
chy of correlation functions at some finite order. It is at
this point when higher order correlations are neglected
that information about the exact unitary evolution may
be lost, and egectiue time irreversibility may enter. This
interesting point has been emphasized by Calzetta and
Hu [5].

The problem of the time evolution of a closed system
together with its self-generated quantum fluctuations is
clearly very general, and arises in a number of contexts in

very different areas of physics. Original motivations in
microscopic and mesoscopic quantum devices have been
mentioned [2], but there are many other possible applica-
tions. To consider but a few examples, in electromagnet-
ic plasmas the classical phenomenon of radiation reaction
has its quantum counterpart when particle creation and
virtual processes are considered. These lead to the damp-
ing of plasmon modes in strong fields, such as those in the
vicinity of rapidly rotating neutron stars [6]. In heavy
ion collisions of ultrarelativistic nuclei a strongly in-
teracting quark-gluon plasma phase may be produced [7].
The theoretical understanding of nonequilibrium effects
in such a plasma is very rudimentary at present, but is
clearly required to interpret the data soon to be generated
at accelerators such as the Brookhaven Relativistic
Heavy Ion Collider (RHIC) or the CERN Large Hadron
Collider (LHC). Similar effects are expected in the real
time dynamics of any phase transition, whether occurring
in terrestrial condensed matter systems or in the early
Universe. In black hole evaporation, the effect of fluc-
tuating degrees of freedom on the mean field (the metric
of spacetime) is called back reaction, and has given rise to
much speculation on the status of entropy and informa-
tion loss in quantum gravity. A fully consistent causal
formulation of the time evolution problem for quantum
field theory from given initial conditions is absolutely
necessary to discuss this wide variety of quantum back
reaction problems.

Apart from their back reaction on the evolution of the
mean value, the fluctuating degrees of freedom are re-
sponsible for another important effect. In standard treat-
ments the environment also induces a process of negative
selection in the Hilbert space of the system: most of the
quantum states become very unstable and rapidly decay
into mixtures of relatively stable states. In other words,
the environment induces classical behavior in the quan-
tum system by dynamically suppressing the interference
effects between macroscopically distinguishable states of
the system. This is the decoherence process [8], which
plays an essentia1 role in the transition from quantum to
classical behavior. As one example of this phenomenon,
in a theory with spontaneous symmetry breaking, the
coherence between the components of the wave function
corresponding to different ground states decohere due to
the coupling between the system and the environment, so
that after some characteristic decoherence time the state
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is a classical mixture (and not a quantum superposition)
of macroscopically distinguishable states corresponding
to different vacua. As soon as the dynamics is forced to
choose between macroscopically different values (as in
spontaneous symmetry breaking potentials} then we have
the essential ingredient for macroscopic quantum
decoherence. The decoherence time scale arising from
interactions with the fiuctuating field(s) may be studied in
such a situation. The importance of decoherence in the
context of quantum field theory, the physics of the early
Universe and quantum cosmology has been recognized
and studied in recent years [3]. Most of these studies
focus on very simple quantum mechanical toy models and
very little has been done in realistic quantum field
theories or in closed systems generally. The techniques
we develop in this paper are directly applicable to the
study of such processes, since the Universe as a whole is
certainly a closed system.

The first requirement for the study of nonequilibrium
time evolution is a general initial value formulation of
quantum field theory. In several earlier papers, two of
the authors have provided the necessary Heisenberg pic-
ture formulation of the initial value problem in the lead-
ing order of the large-N expansion [9]. It has been suc-
cessfully applied to the problem of pair creation in strong
electric fields [10]. This leading order approximation in
1/N is equivalent to the Hartree-Fock mean field approx-
imation which has been much studied in nuclear many-
body, atomic, and molecular chemistry applications [11].
It corresponds to a Gaussian Ansatz for the Schrodinger
wave functional. In general relativity the leading order
approximation consists of replacing the energy-
momentum source on the right side of Einstein's equa-
tions by its expectation value, thereby ignoring the effects
of fluctuations of T„„from its mean on the quasiclassical
metric of spacetime. It has been clear for some time that
this approximation is not adequate in the final stages of
black hole evaporation from the Hawking effect, or in
very early stages of the Universe's expansion. However,
technical difficulties have thwarted attempts to go beyond
the Gaussian Ansatz for wave functionals. Our main con-
tribution in this paper is a systematic technique for doing
just that, in a way suitable for practical numerical solu-
tion on a computer.

It is true that by suitably generalizing the Gaussian An-
satz one should be able to evade the limitations of the
mean field approximation in the Schrodinger picture as
well. Such an approach is possible in principle but unat-
tractive (in our view) principally because of the technical
complications of the renormalization program and the
loss of all connection to a covariant analysis of diver-
gences. For example, in @ theory, even in the lowest or-
der approximation the Ward identities are not preserved
by Gaussian trial wave functions without imposing the
large-N limit as well. In general, variationa1 Ansatze at
the level of wave functions do not necessarily preserve
the invariances of the underlying theory. It is the issue of
renormalization on which most previous forays into this
area founder in a web of intricate technicalities.

In this paper we remove the restrictions of the Gauss-
ian or mean field approximation by working in the

Heisenberg picture, and making use of the Schwinger-
Keldysh closed time path (CTP) formulation of quantum
field theory [12]. It is this method that provides the tech-
nical means to formulate the initial value problem in a
completely causal manner, removing the Feynman
boundary conditions on Green's functions, which are
only appropriate for ( out

~
in ) matrix elements and

asymptotic scattering states. Otherwise, the techniques

employed are completely familiar in field theory.
Specifically, we make use of a (suitably modified} path in-
tegral representation for the generating function of con-
nected Green's functions, and perform the Legendre
transform to the effective action functional, which makes
the covariance properties of the theory manifest. Hence,
all conservation laws of the classical theory (which are
not anomalous) are maintained explicitly. In particular, a
conserved energy-momentum tensor for the fields in the
plasma is obtained automatically by the effective action
technique, and the renormalization program is no more
difticult than in the ordinary covariant analysis. The
variation of the effective action provides the dynamical
evolution equation(s) for the quasiclassical mean field(s)
and their fluctuations, in a form suitable for direct nu-
merical integration from specified initial data at t=0.
Needless to say these equations of motion of the (in~in)
expectation values of fields are real (which they would
not be if the usual Feynman Green's functions were
used).

The large-N expansion provides a convenient way of
parametrizing the separation into quasiclassical mean
fields and their fluctuations, and at the same time, a sys-
tematic approximation scheme to the Schwinger-Dyson
equations of the full field theory. The method we espouse
is therefore a kind of quantum analogue of truncation of
the Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy of n-particle correlation functions of classical
statistical mechanics at a finite order to render the system
tractable to analysis [14]. Information loss and effective
time irreversibility may enter because of this truncation
[5], which is well motivated by the impracticality of hav-
ing unlimited information about very high order correla-
tions in the initial state of any realistic system with many
degrees of freedom. While the large-N method may not
be the only approximation scheme that makes this sepa-
ration possible, it is a gauge and renormalization group
invariant expansion which permits nonperturbative mean
fields [15]. In other words, the large-N method goes
beyond a simple perturbative expansion in the coupling
constant(s) since the latter is necessarily an expansion
around the vacuum field configuration, with zero mean
fields. This is entirely inappropriate when energy densi-
ties are large and the configuration of the system is very
far from the vacuum. It is clear that collective modes as-
sociates with a high temperature or density plasma can-
not be studied by a simple perturbative treatment. The
large-N expansion also resums and rearranges the Feyn-
man perturbation series for scattering diagrams (col-
lisions in the Boltzmann language) in a way that automat-
ically includes self-energy corrections generated by the
very same microphysical scattering and collisional pro-
cesses [16]. This points the way to a systematic quantal
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generalization of classical transport theory even in the
presence of strong mean fields, where quantum self-

energy (and all vacuum polarization or off-shell virtual
processes) are treated on the same footing as collisional
or real particle creation processes in the plasma. Fields
which scale like N to a positive power for large N can be
considered strong quasiclassical mean fields in this ap-
proach. Particle creation effects are contained already in
the leading order (i.e., N ) approximation. In the next-
to-leading order (1/N) the eff'ects of collisional, virtual,
and radiation reaction processes back on the quasiclassi-
cal fields appear for the first time. For almost all applica-
tions of physical interest, these effects are essential, and
cannot be described by Gaussian wave functions. Their
description requires the full power of the Schwinger-
Keldysh initial value formulation of quantum field
theory.

In order to expose the general method in as clear as
possible a manner we shall consider in this paper two
specific field theories for definiteness, scalar A,4 theory
and quantum electrodynamics (QED). Each of these is
interesting in its own right. The A,4 theory may be ap-
plied to the study of the time development of phase tran-
sitions characterized by a scalar order parameter, wheth-
er in the early Universe or in a laboratory environment.
In particular, the method is directly applicable to the
chiral phase transition and the evolution of a disoriented
chiral condensate in collisions of relativistic heavy nuclei
[17]. Electrodynamics is interesting first because QED is
arguably the most completely verified theory of funda-
mental interactions known and an excellent testing
ground for general notions of dissipation or decoherence,
and second, for application to particle production pro-
cesses in strong field astrophysical plasmas. Although
the details of the technique will be discussed in scalar 4
theory and QED in this paper we would like to em-
phasize that the technique itself is ideally adapted to ad-
dressing the interesting fundamental issues of quantum
dissipation, decoherence and time irreversibility in quan-
tum field theories generally. The extension of these same
methods to non-Abelian gauge theories such as quantum
chromodynamics (QCD), for application to the nonequili-
brium time evolution of the quark-gluon plasma, and to
gravity, for application to particle production processes
in the very early Universe and by black holes is planned
in future publications.

We are encouraged to believe that our methods will be
applicable to all these problems by an additional techni-
cal advance in the area of renormalization. In earlier pa-
pers on the initial value formulation of quantum field
theory (ours included), an adiabatic WKB expansion in
the time variation of the frequency of oscillation of the
fiuctuating quantum modes is employed [10,18]. The ul-
traviolet divergent contributions in the efrective equa-
tions of motion appear in the first few orders of this
asymptotic expansion and may be removed by explicit
subtractions. In trying to extend this method beyond the
lowest order mean field approximation and/or to spatial-
ly nonuniform mean fields we found that it quickly be-
comes very complicated, and i11-suited to practical calcu-
lations. Fortunately, we are able to dispense with this

II. THE LARGE-N EXPANSION

Scalar field theory with a A,4 self-interaction is the
simplest renormalizable quantum field theory with which
to develop the techniques for separating a closed system
into mean fields and the fluctuations about them. This
model is interesting in its own right for the study of phase
transitions characterized by a scalar order parameter,
and for its role in the Higgs sector of the standard model
of electroweak interactions. Let us begin by reviewing
the large-N expansion in the context of an N-component
real scalar field with the O(N) invariant Lagrangian densi-
ty [15]:

h']@;+ &X 2
—

S
N X 2 (2.1)

where i =1, . . . , N and

'[x]—= —&+X

This form is equivalent to the Lagrangian density

(2.2)

(4;4;)

with the definition of the composite field y by

y=p +
2N (2.4)

adiabatic expansion entirely, by the simple device of in-
troducing an ultraviolet cutoff on formally divergent in-
tegrals (which one always does in practice on the comput-
er in any case). Then we have only to check that rescal-
ing the cutoff and flowing the coupling constant accord-
ing to the standard continuum renormalization group to
a given order in 1/N leaves physical, renormalization
group invariant quantities unchanged. If the scale of
nonequilibrium time evolution and other physics of in-
terest is far from the cutoff scale this procedure is a very
sensible one on physical grounds, and certainly it is much
easier to verify that this procedure works a posteriori than
it is to apply adiabatic type expansions beyond the lowest
order in 1/N. We give some explicit numerical evidence
of the practical feasibility of this method in this paper.

In order to make the paper as self-contained and read-
able as possible we review in the next two sections first
the derivation of the effective action for the mean fields in
the large-N expansion for both 4 theory and QED, and
second, the basics of the Schwinger-Keldysh real time
CTP formalism, from the functional integral point of
view. In Sec. IV we bring the two ingredients together
and derive the causal equations of motion for both scalar
44 theory and electrodynamics in the large-N expansion.
Section V is devoted to consideration of renormalization
issues for the equations of motion, conserved currents,
and energy-momentum tensors of each theory. We
present here preliminary numerical evidence of the prac-
ticality of the renormalization scheme without the
cumbersome adiabatic expansion employed in earlier pa-
pers. Our conclusions are summarized in Sec. VI.
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since the two Lagrangians L and I. differ only by a constant and a surface term. The quartic coupling in the Lagrang-
ian has been taken to be A, /N from the outset, rather than rescaling it later by 1/N as is sometimes done [16].

Adding independent sources to the Lagrangian and integrating over each of the fields y and 4; defines the generating
functional

Z[J,K]=e—xp(iNW[J, K])
N=—f [2)y] II f [d4;]exp ~ i fd x(1.[@,y]+J;4;+NKVD)i=i

(2.5)

Here factors of N have been inserted which multiply both the g source E and the generating functional for connected
Green's functions W, in anticipation of the large-N expansion which we wish to examine. Because of the introduction
of the composite field g, the integrations over the N scalar fields 4; are Gaussian and may be performed explicitly:

r

Z[J,K]=f [2)g]exp i f d x —g ——p

Xexp i f 14x NKy+ f d—yJ, (x)G[g];,(x,y)J (y)

Xexp ——Tr lnG [g]
2

(2.6)

f d x f d y J;(x)G[y];,(x,y)JJ(y)=NJoG0 J
in a more compact notation. In all of the following, the
symbol o will denote summation over internal indices and
integration over continuous spacetime coordinates in the
quantities on either side of it (the de Witt summation
convention), whereas omission of the o will denote simple
multiplication without summing or integrating over the
coordinate labels.

Once the generating functional (2.6) has been obtained
by integrating over the N copies of the scalar field, (2.7} is
obviously equivalent to simply rescaling the source J for
a single 4 field (and the 4 field itself) by ~N. This is the
sense in which the 4 field is quasiclassical, since its mean
value is strongly enhanced with respect to ordinary per-

I

(2.7)

where the notation G[y]; (x,y) =5; G[y](x,y) for the in-
verse of G '[y] has been used. If we take each of the N
copies of the original scalar field 4 to be equivalent, we
may set each of the N components of the source J; to be
equal, and write

turbative treatments of the quantum field. A large value
of the classical field strength implies that we are expand-
ing about a field configuration far from the perturbative
vacuum, which is the reason that the large-N expansion is
useful for matter under extreme conditions of high densi-
ty or temperature. We should remark in passing as well,
that scaling all N copies of the scalar field in the same
way is not appropriate if one is interested in spontaneous
breaking of the O(N) symmetry, in which case one com-
ponent should be singled out and treated differently from
the remaining N —1 Goldstone fields. We shall ignore
this distinction in the following, and focus on the O(N)
symmetric case in order to simplify the presentation.

It should be clear now why we introduced the factors
of N as we did, for the exponent of the integrand in (2.6}
contains an explicit overall multiplicative factor of N,
and the y integration may be performed by the stationary
phase method in the limit of large ¹ The stationary
phase point of the integrand y, [J,K] is determined (im-
plicitly) by the relation

K(x)+ —(y(x) —p ) ——JoG(,x)G(x, )oJ+—G(x,x)1 z 1 i
2

' '
2

=0, (2.8)

and the second derivative of the exponent in (2.6) with respect to y(y) is iND with—

D '[J,K](x,y)= ——5 (x,y) —JoG(,x)G(x,y)G(y, )oJ ——G(x,y)G(y, x)

Hence the result of the Gaussian stationary phase integration over y is

&=&s
(2.9)

2 ' 2 ' 2 ' 2X
—p +Koy, +—Jo G[y, ]oJ+—Tr lnG '[y, ]+ Tr lnD '[J,K]+0 (2.10)
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where g, is to be vie~ed as a function of the sources J
and K through Eq. (2.8) above, and order 1/N terms
have been dropped. By expanding the field y in a Taylor
series about y, in the original integral in (2.6) it is
straightforward to derive the corrections to W[J,K ] ap-
pearing in (2.10) to any desired order in 1/N. Hence the
approximation scheme is systematic and controlled, and
respects all the invariances of the original Lagrangian I.
or L' [16].

The mean field expectation values in the presence of
the external sources are now given by the variations

When no confusion with the integration variables in (2.S}
is possible we shall oinit the overbar on the mean fields in
the following to simplify the notation.

The effective action functional may be defined in terms
of the mean fields (2.11) by a Legendre transforination in
the usual way:

&[0 xl= W—Ja—d Ko—x (2.13)

where J and E are to be regarded here as functionals of
the mean fields by inverting Eqs. (2.11). Performing the
inversion to order 1/N we find

5W 5W
5J(x) ' 5K(x)

(2.11) J(x)=G '[y]P(x)+ —TrIG(x, )oGoPoD)N

Note that the mean field y differs from the stationary
phase point of the Gaussian integral at order 1/N: name-

ly,

1 5W'" 4'
N 5y, 5J(x)

+0 . (2.14)
1

N

+158'" X + 1
(2.12)

When this is substituted into (2.13) and account is taken
of Eqs. (2.8) and (2.12), most of the 1/N terms cancel and
we arrive at the relatively simple result

eP[P,g) = ——Po G '[g]o P+ —go —p +—Tr lnG '[y]+ Tr lnD '[P,y],2 A, 2 2 2N
(2.15}

with

'[p, y)(x,y )= ——54(x,y )—P(x)G [y](x,y }P(y)+—6[p](x,y )G [p](y,x ), (2.16)

which gives the correct effective action to order 1/N
when substituted in (2.15). By difFerentiating the
definition of the mean fields in (2.11) and using the form
of the generating functional (2.10) and the stationarity
condition (2.8) again, it is easy to check that G[g] and
(I/N)D[P, y] are precisely the lowest order connected
two-point functions of the fluctuating quantum fields,
propagating in background mean fields specified by (P,y).
In the following the explicit functional dependence of
G[y] and D[P,y) on the mean fields will be suppressed,
and we adopt the notations G(x,y) and D(x,y) or more
simply 6 and D in the following.

From the explicit factor of 1/N multiplying the two-
point function of the y field and the last term in the
efFective action (2.15) it is clear that the fluctuations of
the composite y field enter the discussion at one higher
order of 1/N than the original scalar @field, whose fluc-
tuations couple to the mean fields already at lowest order
through the TrlnG ' term in the effective action. The
fact that y is an auxiliary field introduced into the discus-
sion only for convenience and not a true propagating de-
gree of freedom is rejected in the fact that there is no
differential kinetic operator appearing in the expression
for D ' (unlike in the definition of G '}. The y field has
no independent dynamics of its own, and its fiuctuations
are determined by those of the P field. In the last term of
(2.16), we define

is the one loop vacuum polarization of the y field due to
its interaction with the fluctuating P field. It is included
at the same order as the point vertex I/A, in the large-N
method because all loops of the P field are enhanced by a
factor of N (for the N identical tf} fields) relative to what
one would expect in an ordinary perturbative loop expan-
sion. Finally we remark that

X(x,y ) = iG(x,y—)D(y, x ) (2.18)

carries the interpretation of the one loop P self-energy, as
may be seen by calculating the P inverse propagator func-
tion to order 1/N:

'[y] =G '+ —2+0
N2

(2.19)

[—CI+y(x }]P(x ) +—Id y X(x,y )P(y }=01

N
(2.20}

The functional form of the quantum effective action
(2.1S) is the starting point for the analysis of the dynam-
ics of the theory in the large-N expansion. By
differentiating 4' with respect to the mean fields we obtain
their equations of motion. In the absence of external
sources these read

(2.17)
and
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X(x)=p + p (x) G(x,x)+ f1 x, f d x2G(x, x, )X(x„xi)G(x,xi) (2.21)

with

X(x„xz)
—=X(x„xz ) —P(x, )D(x „xz )P(x2 )

=D(x„x2)[iG(x„xz)—P(x, )P(x2)] . (2.22)

Equation (2.21) for y will be recognized as just the expec-
tation value of the (operator) definition of y, Eq. (2.4)
computed to order 1/N.

Since the original Lagrangian (2.1) possesses the sym-

metry 4~ —4, Eq. (2.20) is homogeneous in the P mean

field and always admits the solution /=0. In this form it
is suitable for study of second order phase transitions.
Transitions other than second order may be studied by
adding appropriate symmetry breaking terms to the clas-
sical potential. Both equations for the P mean field and

the g mean field contain nonlocal self-energy effects, and
are therefore integro-differential equations. In the case of
the auxiliary g field the differential term is absent, and

Eq. (2.21) is an equation of constraint (or gap equation)
rather than a true propagating equation of motion for an

independent degree of freedom.
In this derivation of the equations of motion for the

mean fields from the quantum effective action (2.15} we
have encountered the two-point functions 6 and D. The
equations of motion should be solved concurrently with
those for the two-point functions obtained by inverting
Eqs. (2.2) and (2.16), respectively. Since there is no
unique inverse of these relations, the question of which

propagator function(s) should be chosen presents itself.
If the standard Feynman propagator functions are substi-
tuted uncritically into Eqs. (2.20) and (2.21) we find that
the equations are both complex and acausa/, in the sense
that the integrations in (2.20) and (2.21) have support in

regions of spacetime that are spacelike with respect to x.
The absence of a well-posed causal initial value problem
and the complex valuedness of the field equations both
signal that this choice of Feynman boundary conditions
for the Green's functions is not the correct one. The
reason is that we do not wish to consider off-diagonal
(out~in) matrix elements of field operators but diagonal
(in~in) expectation values. If the field operators are

L= —g f1 x+G '[A]+,

4e
(2.23)

where antisymmetrization with respect to the Dirac field
operators %' and '0 is understood and

G '[A ]=i ~ (8„—B„}+y Ai„+im . (2.24)

The Dirac matrices here obey

7 T +3' T"=2g"

=2diag( —,+,+, + )

so that y = —
yo is anti-Hermitian and

(2.25)

(2.26)

Introducing external sources for the gauge potential and
Dirac fields, we define the generating functional

I

Hermitian, such diagonal matrix elements must be real.
If one's next thought is to try purely retarded propaga-
tors in the equations of motion (2.20) and (2.21}, the re-
sult will be no better. The equations are intrinsically
nonlinear, so that no one simple choice of particular solu-
tions to the linear equations 6 'o6=1 and D 'OD=1
for the propagator functions will yield real, causal equa-
tions of motion for the mean fields. This situation is fa-
miliar in nonrelativistic condensed matter applications,
and is the reason that a more complete method for deriv-
ing the correct boundary conditions as well as the equa-
tions for the mean fields must be introduced. Having
pointed out the generic nonlocal structure of the field
equations following from the quantum effective action,
we defer the discussion of the Schwinger-Keldysh CTP
formalism which is precisely one such inethod until the
next section, preferring first to carry out the derivation of
the large-N equations of motion in another interesting
field theory, quantum electrodynamics.

For QED with N identical charged fermion fields
(flavors) we begin with the Lagrangian

Z[J, ri, q]=exp(iNW[J K]}=f [2)A„]' g f [d+, ][d@,]exp i f d x L[A, %,%] exp[iNJo A —go% —toriI,

(2.27)

where the prime on the gauge field integration measure denotes that we should integrate only over distinct gauge invari-
ant configurations (or equivalently, fix the gauge). Performing the Gaussian integration over the anticoinmuting Dirac
fields, and rescaling the Grassmann valued sources q~&N g so that we can drop the sums over i = 1, . . . , N as in the
previous scalar case, we obtain

Z[J, ri, ri]= f [2)A„]'exp iN f d x A„(g""2 i)"i)")A, exp[N Tr—lnG ' NgoG[A ]&&ri+iNJo—A I .
e
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As in the previous discussion we have defined the sources and coupling with the correct powers of N to justify perform-
ing the remaining functional integration over the electromagnetic potential by the stationary phase method. The sta-
tionary phase value A „' [J,7), ri ] is fixed by

1 (g""G—8"8")A'„(x)=itr{ G[ A'](x, x)y"]+iso 6[A'](,x)y"G[A'](x, )oui —J"(x), (2.29)
e

where tr denotes the Dirac inatrix trace only (without integration over spacetime coordinates). The second derivative
of the exponent in (2.28) at its stationary point is iN—TrD where

'[J, il, i) ](x,y )"'=—
z

(g""CI—8"8")54(x,y )
1

e

i—tr{G(y, x )y"G(x,y )y "+2rio G(,x)y~G(x, y )y "G(y, )o i) j (2.30)

and A = A, [J,i), i) ] from Eq. (2.29) and symmetrization with respect to interchange of the pair of spacetime labels (x,p, )

with (y, v) is understood. Thus, the result of the stationary phase evolution of (2.27) and (2.28) in the QED case is

W[J,E]=—A'od 'o A'+Jo A'+ii)oG[A']or) i Tr—lnG '[A']+ TrlnD '[A'],
2N

(2.31)

where order 1/N terms have been dropped, and

d '(x,y )""—:— (g""CI—Bl'B")5 (x,y )2
(2.32)

II [ A ](x,y )""—= l tr' {—y"6 [ A ](x,y )y G [ A ](y,x ) ]

(2.35)

is the difFerential operator from the classical action.
The mean fields and quantum effective action are

defined now by the analogues of Eqs. (2.11) and (2.13),
after solving for the sources J, ri, r) in terms of the mean
fields. Omitting the details which are quite analogous to
the scalar case, the result of this Legendre transformation
is simply

4[A]=—
—,'Aod 'o A i TrlnG '—[A]

+ Tr'lnD '[A ],2
(2.33)

in the case of zero mean value for the Dirac field. The
photon inverse propagator in the last term is given by

D '[ A](x,y )""=(d '+ ll[ A])(x,y )"' (2.34)

with

the polarization tensor in the presence of the mean poten-
tial A. The inverse propagator cannot be inverted
without fixing a gauge, which may be done by a variety of
standard methods. In the case of a non-Abelian gauge
symmetry, the gauge fixing introduces ghosts which will
also contribute to the quantum efFective action at order
1/N, and whose contribution is essential to obtaining
gauge invariant results. In the Abelian QED case the
ghosts are independent of the mean potential (i.e., they
decouple) and therefore may be omitted from the effective
action (2.33). Of course, the non-Abelian case is of great
interest for describing the nonequilibrium evolution of
the quark gluon plasma from first principles of QCD, and
will be discussed in detail in a future publication.

The integro-differential equation for the mean potential
is obtained by varying the efFective action. In this varia-
tion will appear

511[A](x„x,).i'
=itr[y G(x, ,x)y"G(x, x2)y G(x2,x, )]+i tr[y'G(x„x2)y G(x2, x)y"G(x,x, )],5A„x

so that the equations of motion for the mean potential read
~ 2

Bg"'(x)=—ie tr{y"G[A](x,x)]+ Tr D[A]o
2N 5A„(x)

~ 2= —ie tr{y"G(x,x)]+ f d x& fd x2tr{y"G(x,xi)X(xi,x2)G(x2, x)]

(2.36)

(2.37)

with

X(x„x2)=i y"G(x „x2 )y D„„(x2,x—, ) (2.38)
I
+—

the fermion self-energy. The current expectation value to
order 1/N is represented pictorially by the graphs in Fig.
1.

To leading order in 1/N the mean field equations are

FIG. 1. First two graphs in the 1/N expansion contributing
to the induced current that governs the back reaction on the
electric field.
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III. THE SCHWINGER-KELDYSH CLOSED
TIME PATH FORMALISM

The conventional path integral formalism used freely
in the preceding section defines transition elements be-
tween states at one time, t (usually taken to be in the
infinite past) to states at another time t' (in the distant fu-

ture). If the class of paths is restricted to be the vacuum
configuration at both of its end points, then the two states
are the l in & and ( out

l
vacuum states of scattering theory,

respectively. The functional Z[J,K] of Eq. (2.5) is the
transition matrix element

Z[J,K](t,t')=( otu, t'li nt &J z (3.1)

in the presence of the external sources J and K.
By varying with respect to the external sources we ob-

just the semiclassical Maxwell equations, obtained by re-
placing the electric current operator of the Dirac field by
its expectation value. This leading order semiclassical
equation already contains the dynamical reaction of
e+e pairs created by a nonzero electric field (the
Schwinger mechanism) back on the electric field itself,
and has been studied in previous publications [10]. How-
ever, at leading order in 1/N the created pairs can in-
teract only through the mean field, not directly with each
other. The order 1/N term with the fermion self-energy
X contains the quantum Cornpton scattering, bremsstrah-
lung, and Coulomb interaction effects of these particles
on each other and their back reaction on the self-
consistent mean field. Clearly these processes are essen-
tial mechanisms for the approach to equilibrium and
must be included in any realistic transport theory of a rel-
ativistic e+e plasma. Higher order processes (such as
multiple scattering} can be included by working to higher
orders in the 1/N expansion in a straightforward way.

Having derived the integro-differential equations for
the mean fields in both scalar k4 theory and electro-
dynamics to order 1/N, we turn now to the Schwinger-
Keldysh closed time path formulation of the effective ac-
tion, in order to determine the correct propagator func-
tions needed to obtain a causal (and real) solution to these
equations.

tain matrix elements of the Heisenberg field operators be-
tween the lin & and (outl states. For this reason we may
refer to the conventional formulation of the generating
functional Z as the "in-out" formalism. The tirne-
ordered Green s functions obtained in this way necessari-
ly obey Feynman boundary conditions, and these are the
appropriate ones for the calculation of transition proba-
bilities and cross sections between the lin& and (outl
states. On the other hand the off-diagonal transition ma-
trix elements of the in-out formalism are completely inap-
propriate if what we wish to consider is the time evolu-
tion of physical observables from a given set of initial
conditions. As we have remarked the in-out matrix ele-
ments are neither real, nor are their equations of motion
causal at first order in 1/N, where direct self interactions
between the fields appear for the first time. What we re-
quire is a generating functional for diagonal matrix ele-
rnents of Geld operators with a corresponding
modification of the Feynman boundary conditions on
Green's functions to ensure causal time evolution. fhis
"in-in" formalism was developed more than 30 years ago
by Schwinger, Bakshi, and Mahanthappa, and later by
Keldysh, and is called the closed time path (CTP} method
[12].

The basic idea of the CTP formalism is to take a diago-
nal matrix element of the system at a given time t =0 and
insert a complete set of states into this matrix element at
a different (later} time t'. In this way one can express the
original fixed time matrix element as a product of transi-
tion matrix elements from 0 to t' and the time reversed
(complex conjugate) matrix element from t' to 0. Since
each term in this product is a transition matrix element
of the usual or time reversed kind, standard path integral
representations for each may be introduced. If the same
external source operates in the forward evolution as the
backward one, then the two matrix elements are precisely
complex conjugates of each other, all dependence on the
source drops out and nothing has been gained. However,
if the forward time evolution takes place in the presence
of one source J+ but the reversed time evolution takes
place in the presence of a diferent source J, then the re-

sulting functional is precisely the generating functional
we seek. Indeed (setting K =0 and N = 1 here for simpli-

city),

Z;„[J+,J ]—= I [2)%](inly&J (flin&z

= f ($%'](in 9 *exp —(f dt d'xd (x)4(x)

so that, for example,

I4t' 4t' exp i dtd xJ+ x4x in
0

(3.2)

5W;„[J+,J ]

5J+(x) J+ =J =0

58;„[J+,J ]
5J (x)

= ( inl @(x)I
in &

J+ =J =0

is a true field expectation value in the given time-independent Heisenberg state lin &. Since the time ordering in Eq. (3.2}
is forward (denoted by 'T) along the time path from 0 to t in the second transition matrix element, but backward
(denoted by 7') along the path from t to 0 in the first matrix element, this generating functional receives the name of
the closed time path generating functional. If we deform the backward and forward directed segments of the path
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slightly in opposite directions in the complex t plane, the symbol V', may be introduced for path ordering along the full
closed time contour, C depicted in Fig. 2. This deformation of the path corresponds precisely to opposite i@ prescrip-
tions along the forward and backward directed segments, which we shall denote by 8+, respectively, in the following.

The doubling of sources, fields, and integration contours in the CTP formalism may seem artificial, but in fact it ap-
pears naturally as soon as one discusses the time evolution not of states in Hilbert space but of density matrices. Then it
is clear that whereas

I & ket states evolve with Hamiltonian H, the conjugate & I
bra states evolve with H—, and the

evolution of the density matrix requires both. Hence a doubling of all sources and fields in the functional integral repre-
sentation of its time evolution kernel is necessary. Indeed, it is easy to generalize the functional in (3.2) to the case of an
arbitrary initial density matrix p, by defining

Z[J+,J,p]=Tr p 5'exp i f—dt d xJ (x)@(x)
0

I

Texp i f dt d'x J+(x)4(x)
0

= f [&q][&q'][&y]&qlplq'&&q'I&'exp t —f «d'x J (x-)@(x) It&

X&/IV exp i f dtd x J+(x)4(x) Iq&& .
0

(3.4)

Variations of this generating function will yield Green s functions in the state specified by the initial density matrix, i.e.,
expressions of the form

Tr[p@(x, )4(x2)4(x3 ) (3.5)

Introducing the path integral representation for each transition matrix element in Eq. (3.4) results in the expression

z[J,J,p]= f [&q][&q']&qlplq'& f [&y]f '[y, ]f '[&y ]

Xexp i f dt d x(L[P+] L[P ]+—J+P+ —J P } (3.6)

where L, is the classical Lagrangian functional, and we
have taken the arbitrary future time at which the time
path closes t'~ 00.

The double path integral over the fields P+ and P in
(3.6} suggests that we introduce a two-component contra-
variant vector of field variables by

(3 9)

J+0+ J 0 ~—— (3.10)

with a 2 X2 matrix with indefinite signature, namely,

c,b =diag(+ 1, —1)=c'

so that, for example,

, a=1,2

with a corresponding two-component source vector

J+
, a=1,2 .

(3.7)

(3.g)
5 W6'(x,y)=

5J, (x)5Jb(y)
(3.11)

These definitions imply that the correlation functions of
the theory will exhibit a matrix structure in the 2X2
space. For instance, the matrix of connected two-point
functions in the CTP space is

Because of the minus signs in the exponent of (3.6), it is
necessary to raise and lower indices in this vector space

Explicitly, the components of this 2 X2 matrix are

6 '(x,y)—=6&(x,y)=i Tr[p4(x)4(y)]„„,
6' (x,y ) =—6 & (x,y ) =+i Tr I p@(y}4(x)]„„,
6"(x,y) =i Tr[p'7[4(x)4(y)]] „„ (3.12)

Imt
c+

c—
Ret

gcJ

=8(xy )G & (x y )+8(y, x }6& (xy },
6 (x,y ) =i Tr[pM [N(x)C&(y)]]„„

=8(y, x )G & (x,y )+8(x,y )G & (x,y ),

FIG. 2. Complex time contour C for the closed time path
propagators.

where the + refers to Bose or Fermi fields, respectively,
and N—:4~ for bosons but %=%~y for Dirac fermions.
Notice that G & (x,y) =G & (x,y) if x and y are spacelike,
and therefore
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G "(x,y)=G (x,y} for (x,y) spacelike, (3.13) 8(t, t)= ,' —. (3.15}

8(t, t')+8(t', t)=1 for all t, t' (3.14)

so that, in particular,

and in particular on the spacelike surface t =t . This
will be fully consistent with the expressions for time or-
dered and antitime ordered propagator functions in
(3.12), provided we extend the usual definition of the
discontinuous 8 function so that

The 2 X 2 matrix notation has been discussed extensive-
ly in the literature [12]. However, the development of the
CTP formalism is cleaner, both conceptually and nota-
tionally, by returning to the definition of the generating
functional (3.4), and using the composition rule for tran-
sition amplitudes along the closed time contour in the
complex plane. Then we may dispense with the 2 X 2 rna-

trix notation altogether, and write simply

f [Xlg]&y' '7'exp i f— dt d x J (x)4(x) lp)&&IV exp i f dt d x J +( x)@( x)
0 0

=&q'l&, exp ~ f dtd'xJ{x)@(x) Iq & (3.16)
C

so that (3.4}may be rewritten more concisely in the CTP complex path ordered form

Z, [J,p]=Tr p 'T, exp i f dt d x J(x)@(x}
C

2= f [Dqo ]f [2)qo ]&q'IplqP) f, [2)P]exp i f dt d x(L [P]+JP) (3.17)

The advantage of this form is that it is identical in
structure to the usual expression for the generating func-
tional in the more familiar in-out formalism, with the
only difference of path ordering according to the complex
time contour C replacing the ordinary time ordering
prescription along only C+. Hence, all the-functional
formalism of the previous section may be taken over line
for line, with only this modification of complex path or-
dering in the time integrations. For example, the propa-
gator function becomes

6(x,y ) =8C(t„,t )6& (x,y)+8C(t, t„)G & (x,y )

—:8p(t„, t )6 '(x,y)+8~(t, t, )6'z(x,y},

(3.18)

where 6[ is the CTP complex contour ordered theta
function defined by

8(t, t') for t, t' both on C+
8(t', t) for t, t' both on C

8C(t, t') =
1 for t on C, t' on C+
0 for t on C+, t' on C

(3.19)

A second simplification is possible in the form of the
generating functional of (3.17), if we recognize that it is

always possible to express the matrix elements of the den-

sity matrix as an exponential of a polynomial in the fields

[5]:

~ith this definition of 6(x,y) on the closed time contour,
the Feynman rules are the ordinary ones, and matrix in-

dices are not required. In integrating over the second
half of the contour C we have only to remember to mul-

tiply by an overall negative sign to take account of the
opposite direction of integration, according to the rule

(3.20)

&y'lply ) =exp R+ f d Rx, ( )yx'( )+xf d xd yR,&(x,y)y'(x)y"(y)+ (3.21)

Since any density matrix can be expressed in this form,
there is no loss of generality involved in expressing p as
an exponential. If we add this exponent to that of the
action in (3.17), and integrate over the two end points of
the closed time path y' and y, then the only effect of the
nontrivial density matrix p is to introduce source terms
into the path integral for Z~[J,p] with support only at
the end points. This means that the density matrix can
only inAuence the boundary conditions on the path in-

tegral at t =0, where the various coefficient functions R„

I

R,&, etc., have the simple interpretations of initial condi-
tions on the one-point (mean field), two-point (propaga-
tor), functions, etc. It is clear that the equations of
motion for t&0 are not influenced by the presence of
these terms at t =0. In the special case that the initial
density matrix describes a thermal state, p&=exp[ PH]-
then the trace over p& may be represented as an addition-
al functional integration over fields along the purely
imaginary contour from t = iP to t =0 traversed —before
C in Fig. 2. In this way the Feynman rules for real time
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thermal Green's functions are obtained [13]. Since we

consider general nonequiHbrium initial conditions here
we have only the general expression for the initial p
above and no contour along the negative imaginary axis
in Fig. 2.

To summarize, we may take over all the results of the
previous section on the generating functionals, effective
actions, and equations of motion of scalar 4 theory and
QED, provided only that we (1}substitute the CTP path
ordered Green's function(s) (3.18) for the ordinary Feyn-
man propagators in internal lines, (2) integrate over the
full closed time contour, C, according to (3.20), and (3)
satisfy the conditions at t =0 corresponding to the initial
density matrix p.

IV. CAUSAL EVOLUTION EQUATIONS
IN 44 THEORY AND QED

To show that these three modifications of ordinary in-

out formalism do lead to a well-posed initial value prob-
lem for quantum field theory with real and causal equa-
tions of motion for the mean fields and their Green's
functions, let us reconsider Eqs. (2.20) and (2.21), Sec. II.
First, the self-energy has the CTP ordered form

X(x,y )=i 8+( t„,t„)6 & (x,y )D & (x,y )

+i 8&(t„,t„)G& (x,y )D & (x,y ) (4.1)

since both G(x,y ) and D(x,y) have this form separately.
Using the rule (3.20) for the time contour integration we
have

f dryX(x, y)p(y)=i f "dtyG (x,y)D (x,y)p(y)+i f dtyG (x,y)D (x,y)p(y)

i f—dt„G & (x,y )D & (x,y )P(y)
0

x=i tz 6& xy D& xy —6& xy D & xy y0
x2f—dt~Im[G&(x, y)D&(x,y)]P(y) .

0
(4.2)

The minus sign in the second line is because t~ is on the second branch of the contour, and the fact that

[G (x,y)] = —G&(x,y), [D&(x,y)]'= D&(x,y)—,

for real boson fields has been used. Therefore, the equation of motion for the mean field (2.20) is

(4.3)

x
[—0+y(x)]P(x)——f dt d'yIm[G & (x,y }D& (x,y )]P(y) =0 .

0
(4.4)

This equation is now explicitly both real and causal. Furthermore, it is not difficult to see that the cancellation of the
acausal parts of the integration (when t & t„here) is completely general in the CTP method, since every internal vertex
requires a time integration over the full path C, and equal and opposite contributions will always come from the por-
tions of the integration on C+ and C with t & t„One s.imply decomposes the time integration for each internal ver-
tex r; into three segments, viz. ,

(i) 0&t, &t, on .C+

(ii) t&t;&~, on C+

(iii) 0& t, & oo, on C

(4.5)

uses definitions (3.18), (3.19), (3.20), and collects the noncanceling terms. In this way we find that the 1 lE term appear-
ing in Eq. (2.21) for the y mean field reduces to

i f dti f dt2G(t, t2)G(t„t)X(ti, t2)

dt) dt2 6& t~t2 6& t)~t X t&~t2 6 & t~t2 6& t)~t X&

(4.6)

where the last term is antitime ordered since ti and t2 are both on C, and all spatial dependences have been
suppressed. By now expanding in the possible orderings of t, and t2, interchanging integration variables, and using

[G& &(x,y)]»= —G& &(y,x), [D& &(x,y)]*= D& &(y,x), —

which is true for real or complex Bose fields, we can write (4.6) in the form

(4.7)

2Im f dt, f dtz[G&(t„t) —G&(t„t))[G&(t,t2)X&{t„tz)—G (t, t&)X 2(t„&t2)]0 0
(4.8)
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which is manifestly real and causal. It is easy to see that
this result is identical to that obtained in the matrix nota-
tion from

i f dt, f dt, G "(t,t, )6"(t„t)X„(t,, t, )
0 0

(4.9)

provided indices are raised and lowered with the
indefinite metric c,t, defined in Eq. (3.9). Since the causal-

ity and reality of the equations are assured on general
grounds, the result of any calculation is obtained most
rapidly by proceeding to this matrix form directly.

The effective Feynman rules for the CTP method in the
large-E expansion may be summarized then as follows.
Derive the effective action and equations of motion for
the mean fields and propagator functions to a given order
in 1/X in the usual in-out formalism, as in the previous

section. In the corresponding graphical representation of
these equations, replace the propagators with the 2X2
matrix propagator of the CTP method, raising and lower-
ing all contracted indices at internal vertices with the
metric c,&, and fixing the "external" vertex of the mean
field(s) to be of type l. After all time orderings have been
taken into account only the Wightman functions such as
6& =6 ' or 6& =6' will appear in the equations,
which can be solved for concurrently with the corre-
sponding mean fields in a well-posed real and causal ini-
tial value problem.

For the 4 theory we have gone through the CTP pro-
cedure in some detail using the above manipulations.
The final result for the equation of the P mean field has
been given already by (4.4). The corresponding causal y
equation (2.21) is

g(x)=p +—P (x)— [G&(x,x)+6&(x,x)]

+—Im dt
~
d x& f dt2d x2[G (x,x

~
)
—G (x,x, )][X & (x &,x2 )6 & (x2,x )

1V 0 0

—r &(x],x2) —6 & (x2,x )], (4.10)

with X given by Eq. (2.22) of the previous section.
Concurrently with the mean field equations we must

solve for the two-point functions 6 and D. If both have
the causal form of (3.18) in the path ordered notation,
then the Wightman functions 6& & satisfy the homo-
geneous equations with

xiH x,xi D xi,p

homogeneous integral equation

5 (x,y)= — D(x,y)—1

(4.13)

[ —U+y(x)]G& &(x,x')=0, (4.11) II(x,y ) —= II(x,y )+$(x)6(x,y )(()(y)

[G&(x,y) —6&(x,y)], =, =5 (x—y) (4.12)

which guarantees that the inhomogeneous equation
6 'o 6=1 is satisfied by (3.18}. There is no correspond-
ing derivative condition for the D propagator function
since the operator D ' of (2.16) does not contain any
time derivatives. Instead, the function D satisfies the in-

together with the initial conditions following from the in-

itial density matrix p as specified by Eqs. (3.13). Because
of the canonical equal time commutation relations the in-

itial conditions on the first derivatives of 6& & must

satisfy the constraint

=G(x,y )
——6(y, x )+P(x)P(y) (4.14)

D& &(x,y)= —A5 (x,y)+D& &(x,y)

with D & & smooth functions satisfying

(4.15)

The only way to satisfy the inhomogeneous equation
(4.13) is for the D & & functions themselves to contain a 5
function term. This is simply a consequence of the fact
that the y field defined by Eq. (2.4) is an auxiliary field,
purely constrained in terms of P by its definition with no
conjugate momentum or independent dynamics of its
own. Hence we seek a solution of (4.13}of the form

t

D& &(x,y)=A, II& &(x,y) —
A f d x, [II&(x,x, )

—II&(x,x, )]D& &{x,,x)
t

+A f d x II (x x )[D (x„y) D(x„y)] . —
0

(4.16)

Evidently the functions D & & are determined completely
by the initial conditions and causal evolution of the P
field and its propagator functions G& &, consistent with

g being a fully constrained field with no independent dy-
HBIICS.

This completes the derivation of the causal equations
of motion for the initial value problem of nonequilibrium

I

theory to order 1/N. The derivation of the corre-
sponding equations for nonequilibrium electrodynamics
proceeds in an exactly analogous manner with the only
difference that the relation

[G. .(x,y )]'= r'6. (y—,x)r', (4.17)

for complex Dirac fields replaces the first member of
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(4.7). The result is that the causal Maxwell equations of motion take the form

Bg""(x)= (j"(x))

tr[y"[6 (x,x)+6 (x,x)]]
2

+ ' f dt&d x& f dt2d x2lmtrIy~[6 (x,x&)—6&(x,x&)][&&(x&,x2)6&(xz,x)
n o

' '
o

—X&(x&,x2)6&(x2,x)]] . (4.18)

=Tr [p[%(x),%(y) ]+],

=y 5 (x—y),
appropriate for Fermi-Dirac statistics.

(4.20)

The Wightman functions for the Dirac field satisfy

(y~a —iy~A +m)6 .(x,y)= (y—~V +m)G (x,y)

(4.19)

together with the initial conditions implied by the first
two members of Eqs. (3.12), which satisfy the canonical
equal time anticommutator condition
—i[6) (x,y ) —G & (x,y )],

For a complete initial value problem to order I/N, one
needs also the two-point function of the Maxwell field ob-
tained by inverting (2.34) subject to some gauge condi-
tion. The simplest way to impose the gauge condition is
to treat it in a way similar to the constraint of the A,44
theory, i.e., we write

D„„(x,y)=e2d„„(x,y)+D„,(x,y ) (4.21)

with d„, the inverse of the difFerential operator (2.32) of
the free action in a definite gauge. The gauge fixing can
be performed at the level of the free photon propagator
once and for all, independently of the dynamical time
evolution problem, and the nontrivial time evolution is
contained entirely in D„„,which obeys

(g" 0—8"8")D k( x, y)=e f d x&IP (x,x&)[e dk, (x&,y)+Dk„(x&,y)] .

Writing the propagator in terms of its time ordered structure along the contour 8 as in Eq. (3.18) we obtain

(4.22)

(g" CI —8"8 )Dz„' (x,y)= e f—d x, IP (x,x, )[e dz„(x&,y)+D&„(x„y) ed&,—( xy) —D&„(x„y)]
x+e f "d x&[IP (x,x, ) —IP (x,x, )][e d&„' (x„y)+D&„' (x&,y)],

0
(4.23)

gmD /md gmD —()mv mv mv (4.24)

The Coulomb gauge condition substituted into (4.23) al-
lows one to solve for the time components of the propa-
gator D,„explicitly in terms of the other components
since there are no propagating timelike photons in this
physical radiation gauge.

In cases of special symmetry, such as spatially homo-
geneous mean fields, considerable simplification of the
equations of motion occur. In the scalar field case let
y=g(t) and P=P(t) be functions only of time. Then the
Wightman functions may be expressed as the Fourier

I

which is explicitly causal. We remark that a particularly
useful gauge choice for practical implementation of the
initial value problem on a computer is the Coulomb
gauge, which has the advantage of clearly isolating the
physical transverse modes of the photon and allowing the
longitudinal and gauge modes to be eliminated from the
evolution problem, thereby making most efBcient use of
computer memory. In the Coulomb gauge the propaga-
tor and each of its pieces satisfies

I

transform

G) (t, x;t', x')

= —6 & (t, x; t', x')

a (x-x)G (4.25)

with

d2
+k2+y(t) fk(t) =0

dt
(4.27)

and normalized by the Wronskian condition

dfk .dfk
fk dt fk

we may express the Wightman function in the form

(4.28)

[dk] —= (4.26)
(2n )3

and G & a function only of k—:
~
k ~. Introducing the

Fourier mode functions fk(t) satisfying

6& (t, t', k ) =if„(t)fk (t'}[N(k)+ I ]+ifk~(t)fk(t')N(k)+2i Re[fk(t)fk(t')F(k)], (4.29)

where N(k} and F(k) carry the interpretation of particle number and correlated pair density in the general spatially
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homogeneous initial state:

Tr(paiaz. )=(2m) 5 (k —k')N(k), Tr(pazak. )=(2ir) 5 (k+k')F(k) . (4.30)

By likewise Fourier transforming the D propagator, the field equations for the spatially homogeneous case may be ex-
pressed in the Gnal form

+y(t) P(t)= f dt'f k2dkIm[G (t, t';k)D (t, t', k)]P(t'),
dt

(4.31)

y(t)=IJ'+ P(—t)+ f k dk ImG, (t, t;k)
4~

+, f dt, f dt, f k'dk R e[G, (t, t, ;k)]I m[X, (t, , t, ;k)G, (t„ tk)],
o o o

I

D (t, t', k)=A, II (t, t', k)+2Af , dtiII (t, ti, k)ReD (ti, t', k) —2A, f dt, [ReII (t, ti, k)]D (t„t';k)
0 0

(4.32)

(4.33)

11,(t, t';k) =y(t)G, (t, t', k)(('(t') ——' f [dq]G, (t, t', q)G, (t', t; lk —ql)

X (t, t', k)= P(t)D—(t, t', k)P(t')+i f [dq]G (t, t', p)D, (t, t', lk —
q ),

(4.34)

and Eqs. (4.27)—(4.29) above. All the equations have
been expressed in terms of the 6 & and D & functions by
using relations (4.3) and (4.7).

The result of our derivation is a we11-defined initial
value problem posed by the closed set of causal equations
of motion and initial data (4.27) —(4.34) corresponding to
the mean Gelds and their fluctuations evolving forward in
time from a specified spatially homogeneous initial densi-
ty matrix. These equations are now suitable for numeri-
cal solution, provided the ultraviolet divergences in the
momentum integrations are absorbed into renormalized
parameters of the theory in the usual way. It is to this
technical issue of the renormalization procedure that we
turn next.

V. RENORMALIZATION
AND ENERGY-MOMENTUM TENSOR

To lowest order in 1/N (which includes the time
dependent Hartree-Fock or Gaussian approximation) a
convenient approach to the identification and removal of
ultraviolet divergences in the evolution equations is the
adiabatic method. This method is based on the fact that
the large rnomenturn behavior of the mode functions
satisfying the differential equation (4.27) is determined by
an asymptotic expansion in derivatives of the time depen-
dent frequency )/ k +g( t) The dive. rgences in the
currents appearing in the mean field equations for y(t) or
A "(t) are contained in the first few terms of this adiabat-
ic expansion for the mode functions, and coincide with
the divergences of the manifestly covariant in-out forma1-
isrn. Hence they are removed by the same countertems as
in the covariant approach.

At next order in 1/X the structure of the integro-
differential equations for the mean fields is considerably
more complicated, and the adiabatic method for identify-
ing and explicitly removing the ultraviolet divergences
appears to be quite unwieldy. In solving the evolution
equations numerically, an ultraviolet (and infrared) cutoff'

is always present. There is no rea1 need to remove the ex-

I

plicit cutoff' dependence appearing in intermediate quan-
tities, provided only that physical results are cutoff in-
dependent in the end. If all bare quantities are taken to
depend on the explicit ultraviolet momentum cutoff and
the renormalized parameters of the theory in the same
way as in the usual covariant treatment, then the results
for the physical time evolution of the system should be
insensitive to the cutoff in the final analysis. This insensi-
tivity of the solution to the cutoff may be checked ernpiri-
cally by changing the cutoff and evolving the equations
again with the same initial data. That is, we increase the
cutoff and rescale the bare parameters keeping the renor-
malized parameters fixed until the evolution is insensitive
to the cutoff. On the order of several thousand Geld

modes are typically required to approach this regime of
insensitivity to the cutoff.

To illustrate the practicality of this method consider
the simplified case of spatially homogeneous mean fields
in the lowest order of the 1/N expansion. The scalar 4
equations read in this case simply as

dt2
+y(t) P(t)=0,

~Ay(t)=p+p , (t)
2

(5.1)

+ Imf k dk G (t, t;k),
4m'

with G&(t, t;k) given in terms of the mode functions
fk(t) by Eqs. (4.27) —(4.29), and the dependence of the
bare coupling upon the momentum cutoff'is recorded ex-
plicitly. The y equation contains a quadratic divergence
in the momentum integration as the cutoff A~ 00, which
is independent of time and must be compensated by a
counterterm in the bare mass parameter p . This quadra-
tic divergence may be removed by the simple device of
expressing y(t) in terms of its finite initial condition at
t=O: i.e.,
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1+ A.Aln
1 A

16&
(5.4)

g(t)=g(0)+ [$ (t)—$ (0)]
2

+ f k dk ImIG) (t, t;k) —G) (0,0;k)I .
4~2

(5.2)

The integration over k still leads to a logarithmic depen-
dence on the cutoff for large A, but this is precisely com-
pensated by the A dependence of the bare coupling ac-
cording to the usual renormalization framework: viz. ,

AA=Zi„'(A, m )Aa(m2) (5.3)

with

Z (A, m)=1 — I, (m )ln
1 2 A

m

and A,i, (m ) the renormalized quartic coupling defined at
soine finite mass scale m . Indeed, by dividing both sides
of (5.2) by A,A and using Eqs. (5.3) and (5.4), it is straight-
forward to verify that the logarithmic dependence on A
of the integral in (5.2) is canceled by the logarithm in
(5.4), so that the resulting equation for y(t) is indepen-
dent of A for A large (provided Zi )0). Since there is no

P (wave function) renormalization at lowest order in 1/N
these simple steps are all that are required to arrive at
cutoff independent evolution equations for the scalar
theory at this order. Notice, in particular, that no adia-
batic expansion of mode functions to isolate divergences
is necessary in this approach. Such an expansion is useful
only for verifying explicitly the cancellation of the cutoff
dependence in (5.2) which must occur in any case.

In QED the Maxwell equation for the homogeneous
mean electric field in the gauge AD=0 and A, =5,,A(t)
at lowest order in 1/N becomes simply

A (t)=e ~Tr[pj'(t) ]=—
dt2 2 f [dk]tr [[6,(t, t;k)+ G, (t, t;k)]y'I . (5.5)

The wightman functions G) & may be expressed in terms of spinor mode functions obeying

i —a (k —A) —Pm
f

ui (t)

vi„(t) (5.6)

through

G) ((t, t', k)= '

i g ui (t)u) (t')

i g N(—ks)[ui„(t)uj (t') —vi„(t)v&(t')]

+i g [F(ks)ui (t)vi„(t')+F'(ks)v&(t)u&(t')], (5.7)

respectively, where N and F are the mean number of par-
ticle pair and correlation densities in the initial state, and
s=1,2 labels the spin. By assumption, N hand F fall off
faster than IkI for large IkI, so that the only divergence
on the right side of Eq. (5.5) comes from the N=F=O
(vacuum) contribution, viz. ,

Z (A, m)=l — e (m )ln
1 2 2 A

m

1+ e Aln
1 2 A

m
(5.10)

e2~ &OIj'(t) IO&

2

f [dk]g Iui (t)y'ui„(t) —
vi (t)y'v~(t)) .

(5.8)

e~=Z, '(A, m)e„(m ) (5.9)

with

A naive cubic divergence in this expression is canceled
between the two charge conjugated spinors u and U.
There remains only the logarithmic cutoff dependence re-
lated to charge renormalization. Let

which is the usual covariant charge renormalization of
QED to this order. By dividing both sides of the
Maxwell equation of motion, (5.5) by ez and using rela-
tions (5.9) and (5.10) it is straightforward to check that
the logarithmic cutoff dependence of the current expecta-
tion value is precisely canceled by the logarithmic A
dependence of (5.10). Numerical results demonstrating
the cutoff independence of the final result for the time
evolution are presented in Fig. 3. The adiabatic expan-
sion of mode functions previously employed in Refs.
[9,10,18] is therefore quite unnecessary.

The same strategy may be followed at any order of the
1/N expansion provided that the A dependence of the
bare couplings are known to the same order in the covari-
ant treatment. This is an enormous technical
simplification over standard adiabatic expansion methods
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10

0

FIG. 4. Born diagram for y exchange which defines the re-
normalized quartic coupling A,z in the 1/N resummed 4 field

theory.
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with I i, the renormalized proper vertex part and 0„' the
renormalized inverse P propagator in the case the mean
field /=0. In the case /%0 we may continue to define

Sit
' as in (5.11) with the understanding that the two-

point function for the fields P and y becomes a matrix
with off diagonal (i.e., Py) components, so that, in partic-
ular the renormalized P propagator is no longer given
simply by inverting Qii '.

The other diagonal two-point vertex is

LLI 0 (x,y):—— =2)~ (x,y),
&Xx &Xy

(5.12)

-20 '
0 1 2 3 4 5 6 7 8 9 10

which requires no renormalization; i.e., it is already re-
normalization group (RG) invariant, since it can be relat-
ed directly to the physical Born scattering amplitude as
discussed in the third paper of Ref. [16] and represented
in Fig. 4. Indeed, the renormalized A, coupling is
specified by the Schwinger-Dyson equation for the g in-
verse propagator,

FIG. 3(a) Unrenormalized time evolution of the electric field

in lowest order in 1/N for fixed initial conditions and fixed bare

charge (e =50) but different values of the cutoff. The electric
field is scaled by the critical field (E~eE/m'), and the time

and cutoff are scaled by the mass (the cutoff is given in units of
m while time is measured in units of m ). The solid, dashed,

and dotted lines correspond to cutoffs of 64, 48, and 32, respec-

tively. (b) Same evolution as in (a) but with fixed renormalized

charge (e& =50), i.e., with the bare charge rescaled with cutoff
according to Eqs. (5.9) and (5.10). All three evolutions now fall

on top of each other. Corresponding to the cutoff values of 64,
48, and 32, the values of Z, are 0.12, 0.18, and 0.26, respective-

ly.

for removing the cutoff dependence explicitly.
In A,4 theory the general renormalization algorithm

beyond lowest order requires knowledge of the P y vertex
and P-wave function renormalization constants Z, and

Z2, respectively, as well as the coupling renormalization
Z&. The first two of these are defined in terms of the
e6'ective action by the conditions

'(q )—= —2) '(q)

p+q I p,p+q p2 (2m)

(5.13)

illustrated in Fig. 5. This defines the coupling renormal-
ization Z&(A, m =+—

q ) in Eq. (5.4) to any order of the
I/N expansion. To lowest order the vertex function,
I = I o= 1 and the result of the previous discussion lead-

ing to Eq. (5.4) is recovered.
Now, from the definitions (5.11) it follows immediately

that

-1
~ +

5S
5$(x)5$(y)

l
Q~ (x,y),

Z2

5'4
5$(x)5$(y)5y(z)

1 I &(x,y;z),
Z]

(5.11)

FIG. 5. Exact Schwinger-Dyson equation for the y inverse

propagator 2) '. Here 0 represents the exact unrenormalized P
field propagator and I the exact unrenormalized vertex func-

tion. For the case of QED, the photon inverse propagator has a
similar graphical representation where the first term is replaced

bye ' and the vertex I by I „.
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g = G +
N

(a)
1

g = G +
N

{a)

r = ~— r (b)
+

N

(b)

FIG. 6. (a) Exact Schwinger-Dyson equations for 9'. (b) Exact
Schwinger-Dyson equations for I ".

FIG. 7. (a) First two terms in the large-N expansion of Q. (b)
First two terms in the large-N expansion of I ~.

I'(x,y;z)= 9 '(x y)Xz
1 5

Qa (x,y)

1 I &(x,y;z)
2

(5.14)

I "(x,y;z) =—
5$(x)5$(y)5 Aq(z)

1
I'&z (x,y;z ),

1

(x,y)= — = Qa (x,y) .511
5$(x )5$(y)

(5.16)

since the renormalized vertex part I z may be defined by
the y variation of the renormalized self-energy appearing
in Qz (x,y). Comparing the last relation with the first
member of Eq. (5.11) implies the Ward identity

Z] Z2 ~ (5.15)

Hence the vertex renormalization Z& may be computed
from the self-energy renormalization Zz directly, just as
in QED. Indeed, the definitions analogous to (5.11) in the
QED case are

The Ward identity (5.15) follows immediately for the
same reason as before. The general polarization tensor is
guaranteed to be proportional to q gi""—q"q" by the
Ward-Takahashi identity following from gauge invari-
ance of the efFective action, so that

q„2) '(q)""=0, (5.17)

and the renormalized charge may be defined by the
Schwinger-Dyson equation for the photon inverse propa-
gator,

'(q)""= 22 (q—g"" q"q")—1

~ d4p=d '(q)"" i f —
4 tri y"Q(p)I"(p,p+q)Q(p+q)I,

(2m )
(5.18)

illustrated again by Fig. 5, with the point vertex now representing d '(q)"'" and I' replaced by I'". This defines the
coupling renormalization Z, (A, m =}/—q ) to any order of the 1/N expansion. To lowest order the vertex function,
I "=I g=y" and the result of the previous discussion leading to Eq. (5.10) is recovered.

If there is no mean value of the Dirac field, the Ward Identity guarantees that wave function and vertex renormaliza-
tion drops out of the Maxwell equations for the mean field and that the charge renormalization Z, (A, m} alone is
sufficient to arrive at cutoff'-independent time evolution for the potential. To prove this we make use of several facts
from the standard covariant analysis. First, we recall that the inverse propagator and vertex functions satisfy the
Schwinger-Dyson equations

'(q) =G '(q) ——f y"Q(p+q )I "(p,p+q )$,(p),N (2n}
7 JM~

d4r
I'"(p, q) =y& —J trI Q(p+r )I &(p+r, q+r )R(p+r, q+r, p)Q(q+r )),

(2m. )

(5.19)

where % is the two particle irreducible scattering kernel. These equations are illustrated in Fig. 6. The diagrams con-
tributing to 9 and I to first order in 1/N are illustrated in Fig. 7. The advantage of introducing the kernel%' into
the discussion is due to the fact that O'QA is RG invariant, viz. ,

gonzo g= g~oao g~ (5.20)

in the condensed notation of Sec. II. This means that we may eliminate the bare pointlike vertex y" in favor of fully re-
normalized dressed quantities via

y"=I "+TrII &o 9'oA'o QI = (I'~z+Trf I ~&o Q~o%'&o Q+ I } .1

1

Then varying the exact Maxwell equation

Bg" = ie TrIy"q—[A]}

(5.21)

(5.22)
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with respect to the mean potential and using the definitions (5.16}yields

so-'
d '"'5A =i Tr y"9 09 5A

5A V

=i TrI(I'~&+TrII'~&0 gsoJVs&& Qs j)Qsol'so &s j~A„, (5.23)

by Eqs. (5.16), (5.15), and (5.21). The point of this exer-
cise is that the %'ard identity guarantees the cancellation
of wave function and vertex renormalization constants
from the gauge invariant Maxwell equation for the mean
potential. Since Z, /Zz = 1 have canceled out, the
remaining loop integration over the skeleton diagrams of
the last form of Eq. (5.23) can have only log divergences
which must be absorbed by charge renormalization alone.
Indeed, comparing the second line of Eq. (5.23} with the
Schwinger-Dyson equation which defines the renormal-
ized charge (5.18} shows that this is precisely what hap-
pens, since

2) '"'5 A, =2) '""5A (5.24)

'(p = —m„)=0. (S.ZS)

To first order in 1/N (with / =0) we have

1
m~ =y+ —( —ms )

(5.26)

By definition m& is cutoff independent and RG invariant.

is the RG invariant linear response equation. Setting this
quantity to zero allows us to study the dynamics of sma11

perturbations in any given background mean field in a

gauge covariant way independent of the cutoff. Since
higher functional derivatives of the Maxwell equation in-
volve no divergences whatsoever by simple power count-
ing, we have proven that charge renormalization alone is
suf6cient to render the Maxwell equation fully RG invari-

ant, and that the logic of the lowest order renormaliza-
tion carries through to arbitrary order in 1/N without
modification. One simply needs the corresponding ex-
pression for Z, to the given order of 1/N, which has been

given in the literature [20].
The analogous argument for the A,4 case encounters

two complications. First, y contains quadratic diver-
gences which must be handled correctly before applying
the Ward identity (5.15) and second, the mean field equa-
tion for P will introduce the need for P field renormaliza-
tion over and above the coupling renormalization en-

countered in QED with zero mean Dirac fields. The first
complication is handled by shifting from g to the renor-
malized mass, defined by

I

Shifting to the physical mass pole is necessary in order to
remove quadratic divergences on internal lines at order
1/N and higher. In the real time formalism the role of
ms is played by the time-dependent efFective mass

m (t)=y(t) —f d—t' f [dk]lmIG(t, t', k)D(t, t', k) j .
0

(5.27)

Since any potential quadratic divergence in m (t) is can-
celed by the time independent bare mass counterterm p,
the quantity m (t)—mi(0) is free of such divergences.
At lowest order we were able to show this explicitly by
Eqs. (5.2) —(5.4). At next (and higher orders) the proof is
a bit more involved since quadratic divergences appear at
the end point of the time integration t' —+t due to the
singular nature of the integrand(s) in the coincident limit.
Hence the divergent local counterterm as t'~t must be
identified explicitly and removed before sensible results
can be obtained. Since this counterterm is time indepen-
dent it can be extracted most simply by adding and sub-

tracting from the time dependent kernel,

Im[G(t, t';k)D(t, t';k}j the same quantity evaluated at
constant mass, which is the same as in the covariant treat-
ment and may be calculated analytically. The difference
Im[G(t, t', k)D(t, t', k) Go(t, t', k)D—O(t, t', k) j then has
no quadratic divergence, while the remainder has a quad-
ratic divergence structure which is known, and may be
removed explicitly by integration by parts with respect to
t' The upp. er limit of this integration by parts (at t'=t)
gives the local time independent quadratic cutoff depen-
dence that is canceled by subtracting m (0}, while the
lower limit (at t'=0) gives a finite cutoff independent
term which oscillates rapidly (with the cutoff frequency)
for small t. This high frequency "ringing" is a transient
result of the "kick" to the system coming from our sharp
initial condition at definite initial time which introduces
high frequency components in the Fourier transform, and
have been found in previous studies of quantum Browni-
an motion [4].

With these prior modifications to eliminate quadratic
divergences explicitly, the argument leading to Eq. (5.23)
may be carried over to the scalar 4" case line for line,
with the result that the evolution equation for
m (t)—m (0) is completely RG invariant, the remaining
logarithmic divergences being absorbed by the k coupling
renormalization alone with Z, /Z2 = 1 having canceled
from the expression, precisely as in the QED case.



50 NONEQUILIBRIUM QUANTUM FIELDS IN THE LARGE-N EXPANSION 2867

The second difference of the 4 interaction from QED
arises because of the existence of the nonvanishing P
mean field. Although the renormalization constants Z,
and Z2 drop out of the mass equation due to the Ward
identity (5.15), when the mean field P is nonvanishing
then it must be renormalized, so Z2( =Zi) will appear in
the P mean field equation. In the covariant formulation
Z2 is the logarithmic wave function renormalization con-
stant given in terms of the derivative of the self-energy
function on mass shell: namely,

as-'(p')
Bp P Pl

1 QX(p) 1

N g+2 &2= —m2 N2
(5.28)

Since the field equation for the incan field involves 9
and Zz ' is a power series in 1/N, the mean field equation
is renormalized by multiplying only the first (order 1/N )

term of the P equation of motion (4.33) by Zz '. That is,

+mz(t) p(t) = f dt'[p(t) p(t—')]f k2dk Im[G&(t, t', k)D&(t, t', k)]
dt

(5.29)

with Z2 given by the previous relation is the correctly
renormalized equation of motion for the P mean field to
order 1/N, with the A dependence in Z2 just canceling
that of the momentuin integral in (5.29) to first order in
1/N. Naturally, if nonzero mean charged fields are con-
sidered in electrodynamics they will have to be renormal-
ized in the same way.

One additional remark about the A,4 theory and its re-
normalization is in order. It is well known that this
theory is trivial, in the sense that the cutoff cannot be re-
moved to infinity without vanishing renormalized A, .
From the point of view of practical numerical calcula-
tions this is irrelevant since a cutoff will always appear in
the computer implementation, and the theory with finite
cutoff is well defined and nontrivial. However, a neces-
sary consequence of this point of view is that the cutoff
cannot be removed in principle, and one should work in
the range where the cutoff is not too large, or more pre-
cisely where

I

greater than all frequencies of interest in the nonequilibri-
um time evolution of the fields, if the coupling is small
enough. This necessary limitation on the theory has a
positive side. If the quantity in (5.30) is small it is then
permissible to develop the expression for D in Eq. (4.16)
in a power series in A, , rather than solving this integral
equation numerically, thereby recovering its ordinary
perturbative expansion. This leads to an enormous econ-
omy of computer memory since the integral equation for
D involves very big arrays and is extremely memory in-
tensive. The evolution of the P propagator and mean
fields is still treated in the full 1/N expansion without
modification. Further details of this procedure will be
presented when we turn to numerical methods in future
publications.

Finally, for many applications it is useful to have the
energy-momentum tensor following from the quantum
effective action by variation with respect to the metric of
spacetime:

0&1—Z (A, m)= A, (m )ln
1 2 A

R
Nl

2 5$
pv Q g 5gpv

(5.31)

+0 A, (m )ln
A

R m
& 1 . (5.30)

That this is the right condition on the cutoff may be seen
either from triviality considerations or the senselessness
of the theory when the Landau pole is reached at Zi =1.
Similar considerations presumably apply to QED as well,
where the very weak coupling still affords an enormous
range of momenta before the Landau pole is reached. So
it is always possible to satisfy (5.30) and still have A much

I

Since general coordinate invariance is maintained in the
effective action, the energy-momentum tensor is con-
served. This is an important property in nonequilibrium
dynamics which is easily lost if one makes uncontrolled
stochastic assumptions or approximations in a transport
formulation. In the effective action approach, on the
contrary, conservation of T„„is automatic, provided the
cutoff procedure does not violate coordinate invariance.

In the scalar theory, after scaling out a factor of N we
have

f'„„=a„ca„c+g„„——a.ea.e ——+ y+ —y ——~ +g(g„„o—a„a„)c'z 1 x 2 (5.32)

in terms of the original quantum fields, where the last term proportional to the arbitrary parameter g may be added
without affecting conservation. By taking the expectation value of this quantity we may express the conserved energy-
momentum tensor in terxns of the propagator and vertex functions introduced above, viz. ,

T„(x)=T„"„[P,y](x) i(5„5~ ,'g ~g„)—B Otter(x—,x—')~„„.— g„ fd x'd y'd z'2l(z', x)Q( , x)xI (x',y', z')Q(y', x)1

g„~( , x)
—xg(g„.a —a„a„)S'(x,x), (5.33)
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where T„" [P,y] is (5.32) evaluated on the mean fields, and it must be recalled that 9, the full connected two-point func-
tion for the 4 field is not the inverse of 9 ' defined in Eq. (5.11) when /%0.

For QED the analogous expression is

T„,(x)=T„"„[A]——V'&„tr[y,~Q(x, x)J — t—„~p d dQ (x,x')~,

d x'd y'd z'2l, „(z',x )tr[y, , Q(x, x')I (x',y', z')Q(y', x ) I, (5.34)

where VI. CONCLUSIONS

r aiipir —] g (g aug Pp g aug per
)p& 8 p&

+—'(Sp 5 )g'~ —5 5~gp

+8('„5~)g —5(„5„jgp ) (5.35)

and

T„"„[A]=r„~"a.A, a,A.
= —

—,'g„F F~p —F„F~ (5.36)

is the stress tensor of the Maxwell mean potential, The
next two terms on the first line of (5.34) are the contribu-
tions to the energy-momentum tensor of the fermions
(moving in the mean potential A) and photons, respec-
tively, while the last term is the contribution of the in-
teraction between them which appears first at order 1/N.

Each energy-momentum tensor contains terms with
quartic and quadratic dependence on the ultraviolet
cutoff A. From general coordinate invariance of the
effective action, these divergent contributions to T„,
must be proportional to the metric of spacetime g„
which is fat here. Thus, these divergences may be isolat-
ed and removed rather easily by subtracting from the full

T„, above the same quantity in zero mean field(s). The
resulting subtracted T„, is still conserved and now com-
pletely finite. Indeed, the argument that the current ap-
pearing in the Maxwell equation (5.22) must be cutoff in-

dependent, provided that the bare charge is rescaled with
the cutoff while keeping the renormalized charge fixed,
may be taken over to the subtracted energy momentum
tensor as well. Like the mass in the 4 theory, once the
power-law divergences are removed from T„ the result-

ing quantity is RG invariant, and may be interpreted as
the physical energy momentum of the nonequilibrium
field theory evolution. Since this T„ is computed from
the same propagator and vertex functions appearing in
the evolution equations, the pressure, energy density, and
transport characteristics of the QED plasma or quantum

theory may be studied, and useful information about
the approach to hydrodynamic behavior and/or an
effective equation of state obtained. The effective equa-
tion of state for the QED plasma to lowest order in 1/X
has been discussed in [10]. Detailed numerical results for
these quantities and further applications of the large-X
CTP method are in preparation and will be presented in
future publications.

In this paper we have presented a general approach to
the nonequilibrium evolution of a closed system of quan-
tum fields. The large-S expansion permits a clean separa-
tion into mean fields and their fluctuations and consti-
tutes a controlled approximation scheme to the infinite
tower of coupled Schwinger-Dyson equations of quantum
field theory. We have derived the equations from an
effective action principle which preserves all classical
symmetries (which are not anomalous) at the quantum

level. This is important because of the central role invari-
ances play in the renormalization procedure through the
Ward Identities, which are in danger of being obscured in
a noncovariant time evolution problem. Nevertheless,
manifest causality of the time evolution is enforced by the
Schwinger-Keldysh CTP formulation of the effective ac-
tion principle. We have sketched a renormalization pro-
cedure involving an ultraviolet cutoff which is well suited
to numerical solution of the equations on a computer,
and demonstrated explicitly the practicality of this
scheme at lowest order of the 1/N expansion.

For definiteness, throughout the paper we have
developed the general approach in the framework of two
particular and familiar quantum field theories, viz. , k4
and QED. From this beginning there are three well-

defined vectors for future work. The first consists in car-
rying out practical numerical computations in these
theories for specific applications, for example, to the evo-
lution of disoriented chiral condensates in heavy-ion col-
lisions or to e+e particle production and shorting of
strong fields in astrophysical plasmas. These applications
are clearly interesting in their own right. The second
direction to pursue is the use of these particular field
theories as model systems for the study of more general
phenomena, such as dissipation and decoher ence in
closed quantum systems. The emergence of an effective
Boltzmann or transport equation description from funda-
mental time reversal invariant dynamics may be studied
in these realistic field theories in a controlled way without
additional stochastic assumptions. Finally, because of
the existence of a gauge invariant action principle, the
general method followed in this paper can be extended to
non-Abelian gauge theories such as QCD and gravitation
without essential difhculty. This will make it possible to
take into account consistently the backreaction of quan-
tum fluctuations on the nonequilibrium evolution of a
mean color or metric field and open up interesting appli-
cations in studies of the quark-g1uon plasma, black hole
decay, and cosmological models. We plan to take up
each of these lines of research in subsequent publications.
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