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Intermittency and a phase transition in a lattice gas model
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On the basis of a lattice gas model and the convolution formula with a cell construction scheme,
we demonstrate that intermittency, i.e., the power law behavior of the moments in rapidity space,
is caused by a phase transition between the ordered phase and disordered phase with respect to
the particle number distribution. In this model the critical moments are directly connected with an
order parameter at the phase transition point. The indices of these moments are simply given by
the critical exponent near the critical point. It is pointed out that the critical indices of this phase
transition are not constant, but depend on the size of the rapidity interval, if the system is not near
enough to the critical point.

PACS number(s): 13.85.Hd

I. INTRODUCTION

Inspired by the stimulating proposal of intermittency
in rapidity space with respect to the factorial moments

[1], several authors [2—6] have presented their theoreti-
cal ideas to examine intermittent behavior [7] from the
viewpoint of a phase transition between hadronic mat-
ter and a quark-gluon plasma. Most of the authors in-
vestigated this behavior supposing the intermittency of
the moments of rapidity distributions as a striking signal
of short-range Huctuations characterized in cooperative
phenomena near the critical point. However, some au-
thors [5] have considered that such behavior is only to
show the relevance to short distance correlations.

If the intermittent power law behavior of the moments
is some signal of critical phenomena, i.e., not a mere rep-
resentation of the short distance correlations, this ap-
parent short-range Buctuation in rapidity space is due to
yield a Huctuation of a macroscopic quantity of state con-
nected with some order parameter. In the critical state
the Quctuation gives the singularity of the macroscopic
quantity of state, and so we have a critical power law
behavior of an order parameter. Therefore, one should
make clear the relation between the characteristic mo-
ments and the order parameter. This convenient rela-
tion makes us comprehend the similarity between the in-
termittent power law behavior of the moments and the
power law of the order parameter. This is a reliable way
to ascertain whether one can surely find evidence of crit-
ical behavior in intermittency.

The aim of this paper is to show the universal relation
between intermittent behavior and cooperative phenom-
ena with regard to phase transitions. We will present
a method to obtain the factorial moments of the parti-
cle number distribution &om an order parameter in view
of the universal correspondence between the Ising model
and the lattice gas model [8]. In the same manner to illus-
trate the universal singularity [9] of the order parameters

near the critical points of these models, we relate the rea-
son why these factorial moments show intermittency, i.e.,
the characteristic power law behavior in rapidity space.
It is pointed out that the indices of these moments are
simply given by the critical exponent in the Ising model
and the lattice gas model near the critical point. We de-
duce this power law behavior from the convolution for-
mula of probability theory [10] with the cell construction
scheme of these lattice systems. In the &amework of the
convolution theory it is easy to comprehend that self-
similarity of the cascadipg models [1, 4] and the fractal
systems [2, 3] is an extremely restricted condition for the
singular factorial moments. It may be possible to loosen
this condition for intermittency in connection with phase
transitions.

In the next section, on the basis of a-lattice gas model
we will present a method to express the factorial mo-
ments of the particle number distribution of lattice gas
among configured cells in terms of an order parameter,
i.e., the macroscopic Buctuation of the number of dis-
tributed particles. This order parameter is equivalent to
magnetization in the Ising model. In Sec. III, accord-
ing to the convolution theory for phase transitions, we
demonstrate that the power law behavior of the moments
is derived &om the singular probability densities for find-
ing particles in the rapidity interval space near the critical
point. In the &amework of the Ising model and the lat-
tice gas model, the indices of these moments are simply
derived &om the critical exponent of these models. The
Gaussian model, which is given by modifying the Ising
model, provides more realistic indices (see Table I). In
Sec. IV, we summarize our conclusions.

II. MOMENTS IN THE LATTICE GAS MODEL

It is well known that the lattice gas model for the
liquid-gas transition is mathematically equivalent to the
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TABLE I. Comparison of the indices Pi between the experimental data [16] and the model
calculations. Theoretical values for Gaussian model are given by Eq. (3.12) with ( = 0.199 and
0. = 0.256.

Data of Pi in the two-dimensional

(y, P) distribution
Two-dimensional Ising (lattice gas)

model
Gaussian model based on the con-

volution formula

0.153 (5)

0.125

0.150

0.250
I

0.413
I

0.375

0.874

&3 &p4

0.481 (20) 0.897 (100)
&5

1.32 (2O)

0.500

1.68

0.625

Ising model of a ferromagnetic phase transition. Accord-
ing to the lattice gas model [11],the number of particles
of lattice gas corresponds to the number of down spins in
the Ising model. The z component of the spin Bi at the
lattice point i is connected with the gas density p; as

E2
(2.1)

If the lattice consists of Iq sites, with the help of Eq. (2.1)
the magnetization per lattice site is given by

N
AN
N ' (2.2)

where N+ (N ) is the number of up (down) spins, and
AN = N+ —N indicates the Quctuation of the number
of particles. Putting N = V and N = P,. p; [11], we
obtain from Eqs. (2.1) and (2.2) the specific volume per
particle:

V 1

(p)

2

1 —I' (2.3)

qi+ q2+. - -+ qM = ~, (2.4)

where qi is the number of particles in the ith cell. This
lattice gas model yields the lth moment for a given con-
figuration as follows:

f, (M) = (1/M)) q

M

(1/M)) q;

where (p} = P,. p;/X. It turns out from the above-
mentioned correspondence between the lattice gas model
and the Ising model that magnetization can be repre-
sented by I = b,X/V [12], and, hence, if the fiuctuation
of the number of particles becomes large, the order pa-
rameter I ought to be nonzero even if the volume of the
system V is large enough. This means the system is in
ordered phase.

Let us imagine the cell construction of a lattice gas, i.e. ,

particles partitioned among M cells, such as KadanoH's
construction of block spins [13]. In the framework of cell
construction the total number of particles (n) distributed
in M cells is provided by

(2.6)

Therefore, we get from Eqs. (2.2), (2.3), and (2.6) the
moment f) in terms of an order parameter I in the form

ln fi(I) = (l —1) ln
~

t' 2

&I-I) ' (2.7)

where I & 1. This formula is valid also for large cells
in which the spins and the gas densities are renormal-
ized [14] to satisfy Eq. (2.1). If the system is extremely
ordered like I 1, Eq. (2.7) yields

ln fi (l —1)I .. (2.8)

where I' = I + ln2. It turns out &om Eq. (2.8) that
1nfi is proportional to the order parameter I in ordered
phase, while lnfi becomes constant for I = 0 in disor-
dered phase. Thus, we can verify the phase transition of
this system by analyzing the behavior of lnf).

III. CONVOLUTION FORMULA
FOR INTERMITTENCY

As shown in the previous section, in the lattice gas
model the lth moment fi is represented by fi(M) cc M
in terms of the number of lattice cells M as Eq. (2.6).
This moment is quite similar to the intermittent power
law behavior of the moment of the particle number dis-
tribution in rapidity space.

In the lattice gas model and the Ising model the order
parameter I is given by I ~~ near the critical point in
terms of the temperature T and the critical temperature
T„where P is the critical exponent and e = (T —T,)/T, .
Therefore, we have

1, we obtain g,. r q,
' = M, and thus fi ——1 because of

n = M. If the system shows an extreme Buctuation, e.g. ,

q„= n at i = r, we have fi = M' i. These results
are essentially the same as the moments for some specific
configurations in the Ising model as shown in Ref. [3].

In order to see the relation between this model and the
Ising model, we set M = N and n = N for the minimum
cells, assuming q, = p, . With the help of Eq. (2.3) it is
possible to rewrite Eq. (2.5) into

M
=M' 'n ') q (2 5) (3.1)

In the case of equidistribution, i.e. , qi ——q2 ——. . - ——qM ——

The number of subdivisions M, which is inversely propor-
tional to the correlated cell size, is considered to be pro-
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portional to the inverse of the correlation length ( e

where v is the critical exponent in this lattice systexn.
Accordingly, we obtain

f -e&' "~ -M!'-'l)'~" -M~', (3.2)

and hence Pi = (l —1)P/v. The two-dimensional Ising
model and the lattice gas model yield P( = 0.125(l —1)
because of P = 0.125 and v = 1. This result is the same
as the speculation [15]based on the two-dimensional Ising
model. It is natural to identify M cells of lattice gas with
M intervals in rapidity space, in accordance with Satz's
illustration [3] for obtaining intermittency from the Ising
model, since the Ising model and the lattice gas model are
mathematically equivalent [11]. Our result is compared
with the experimental data [16] in Table I.

In order to investigate in detail intermittency for the
particle number distribution, we must know the behavior

&yi = gi1+ g'2+. +Km& (3.3)

where g;~ is the rapidity size of the jth segment in the
ith interval. Since these segments are independent ran-
dom variables, the probability density p;(b, y;) for finding
particles in the ith rapidity interval is given by the con-
volution of the respective probabilities p;~((7;~) in each
segment as [10]

of the moxnents according to the decreasing size of ra-
pidity interval where Huctuations of the particle n»mber
become the macroscopic quantity. Therefore, we divide
large cells into small ones. This corresponds to separat-
ing rapidity intervals Ey; (i = 1, 2, . . . , M) into small
segments.

Let us consider random separation of the ith rapidity
interval Ayi in m segments such as

m

P(& ')0= N. Q(m) f" fP' &0' —).0' Pn(0's) "P;-(0;-)00;s gp;-, "
m j=2

(3.4)

where Q(m) is the weight function to convolute each
probability.

This probability density p; is equivalent to q;/ P,. q; in
the lattice gas model with the cell construction scheme.
Accordingly, we have the 1th moment for the particle
number distribution of Eq. (2.5) in the form

M

fi(M) = —) (Mp;) .
i=1

The normalization condition requires

(3.5)

P1+P2+ '' +PM ——l. (s.6)

' (P1)00', g=pJ P-(0)00 = W-,i (3.7)

In our lattice gas model the probability density for
finding particles in the ith rapidity interval is equivalent
to the particle number density in the ith cell which corre-
sponds to the spin variable of the same cell. According to
Kadanoff's construction of block spins [13]and the renor-
malization group method [14],we can deduce the singular
critical order parameters with respect to these variables,
i.e., magnetization of the ferromagnetic transition (den-
sity xninus critical density in the case of the liquid-gas
transition), by means of iteration of cell construction,
assuming scale invariance near the critical point. In the
framework of the convolution theory [10], this assump-
tion of scale invariance is essentially the same as the
bootstrap condition [17] for a probability density such as
lnpi 1np;~. Thus, we obtain the scale-independent crit-
ical probability density p near the critical point. Since
this probability density does not depend on the cell size,
it should be independent of the rapidity interval g,z.

If we set the asymptotic value of the probability density
near the critical point as p;~ = p, in the ith rapidity
interval and put

I

in which we divide Ayi into m segments of the same
rapidity size g, we have, from Eq. (3.4),

p;(b, y;) = ) Q(m)W„. (3.8)

The normalization condition (3.6) provides P,. p;
Q(m)W„= 1. The scale invariant bootstrap

condition demands W„. W, . W, is defined like Eq.
(3.7) in the full rapidity region. Therefore, the moment
(3.5) near the critical point is given by

M

f((M) = —) (Mp;)' = ) Q(m)W,
i=1 m

(s.g)

where fi(M) = 1. As for the independent separation
of rapidity intervals, the Poisson distribution Q(m)
((m) /m!) exp( —W, (m)) yields

))(M) = exp (m) W (W, —1) = MP', (0.10)

where P& = (m) W (W —1) /!nM. Assuming~

~ ~

W, ' —1 = lnW, ' for W' = 1 and m

ln M/ (W, ln A), we have ()t)( = ln W, / ln A. This is the
case of a recurrent self-sixnilar separation of rapidity in-
tervals in A segments based on the &actal structure in
the rapidity space [1].

As shown in the beginning of this section, the indices
predicted from the two-dimensional Ising model and the
lattice gas model are not satisfactory to be compared
with the experiinental data (see Table I). Since the
Gaussian model [14],which can be obtained by modifying
the Ising model, provides xnore realistic critical exponent
v = 0.5, we should take the Gaussian-type probability
density p, ()7) = exp( —(T(7 ) instead of the b function for
obtaining the critical indices Rom the convolution for-
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mula. Integration of p, (rl) in the full rapidity region
yields

Equation (3.11) and the mean value (m) = (lnM/W,
lead to

P, = (m) W, (W,
' —1)/lnM = (((7r/4o)( ~ —lf.

It is shown in Table I that these indices are consistent
with the experimental data [16] especially in the large
M region where our convolution formula becomes sufE-
ciently valid.

The self-similar separation model demands W
J' p(rl) drl to be constant in the rapidity space, which pro-
vides the constant critical exponent P. However, it turns
out &om our model that, around the critical point, R'
depends on the finite lattice size (rl) in the strict sense,
and so R' may depend on the rapidity interval. If the ob-
served system is not near enough to the critical point in
rapidity space, we cannot observe the finite lattice size
which is small enough to be compared with the lattice
constant of this system. Therefore, it is probable that
the critical exponent P slightly depends on the observed
rapidity interval through W, if the system does not ap-
proach near enough to the critical point.

IV. CONCLUSIONS

We have shown that intermittency, i.e., fluctuations
of the number of particles in di8'erent sizes in rapidity
space, surely re8ects a phase transition between the or-
dered phase and disordered phase. We have presented
a lattice gas model which easily leads us to comprehend
that the Buctuation of the number of particles represents
the order parameter like magnetization of spin systems,
and the scaled moments are given only by this order pa-
rameter. We, thus, have concluded that intermittency
with respect to the moments results fmm cooperative
phenomena of the system near the critical point.

Intermittency of the system is characterized by the
power law behavior of the scaled moments such as the
power law singularity of the order parameters in vari-
ous phase transitions. The indices of these moments are
simply obtained &om the critical exponent near the crit-
ical point. This behavior of the moments is derived from
the critical value of the probability number density in
rapidity space on the basis of the convolution formula
with the cell construction scheme. We have shown our
model calculation in comparison with the experimental
data. In contrast with other results obtained from usual
self-similar fractal models, we have pointed out that the
critical indices should depend on the lattice size, i.e. , the
size of rapidity interval, if the system is not near enough
to the critical point. Recent experimental data [18] show
the energy dependence of f&, and hence may support this
consequence.
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