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We give a prescription for embedding classical solutions and, in particular, topological defects in field

theories which are invariant under symmetry groups that are not necessarily simple. After providing ex-

amples of embedded defects in field theories based on simple groups, we consider the electroweak model

and show that it contains the Z string and a one-parameter family of strings called the 8'(a }string. It is

argued that although the members of this family are gauge equivalent when considered in isolation, each
member becomes physically distinct when multistring configurations are considered. We then turn to
the issue of stability of embedded defects and demonstrate the instability of a large class of such solu-

tions in the absence of bound states or condensates. The Z string is shown to be unstable for all values of
the Higgs boson mass when 8~=~/4. 8'strings are also shown to be unstable for a large range of pa-

rameters. Embedded monopoles suffer from the Brandt-Neri-Coleman instability. Finally, we connect

the electroweak string solutions to the sphaleron.

PACS number(s): 11.15.Ex, 11.27.+d

I. INTRODUCTION

Topological defects are classical solutions of certain
field theories and have been known for nearly three de-
cades. These include domain walls, strings, and mono-
poles. However, few field theories admit the required to-
pology and the standard model of the electroweak in-
teractions [1] lacks any topological defects. Over the last
few years, it has been realized [2] that even if the non-
trivial topology required for the existence of a defect is
absent in a field theory, it may be possible to have defect-
like solutions. The idea is simply that topological defects
may be "embedded" in such topologically trivial field
theories. Embedded defect solutions are very common,
and even the electroweak model admits string solutions.
It is the properties of these solutions that are discussed in
this paper.

A crucial difFerence between topological and embedded
defects is that the stability of the former is guaranteed by
topology while embedded defects are generally unstable
against small perturbations. Therefore, if embedded de-
fects are to be significant, some mechanism by which they
can be stabilized must be found. At least one embedded
defect, the semilocal string [3,4], is stable by itself and
electroweak strings can also be classically stable [5—7]. A
general mechanism for stabilizing embedded defects was
proposed in Ref. [16], where it was shown that scalar
bound states on electroweak strings vastly improve their
stability. It was also argued that fermionic bound states
would improve the string stability and that this mecha-

'Present address: Department of Physics, Princeton Universi-
ty, Princeton, NJ 08544.

nism of stabilizing solutions would apply to other saddle-
point solutions as well. Hence, the possibility that stable
embedded defects exist in the real world must be con-
sidered.

In this paper we investigate the existence and stability
of embedded defects with particular emphasis on defects
in the electroweak model. We first consider an arbitrary
pattern of symmetry breaking G ~H and derive the con-
ditions under which embedded defects are possible (Sec.
II). In doing this, we clarify the analysis in Ref. [2]
where only the case of a simple group 6 was considered;
here we also treat the case when 6 is not simple. This ex-
tension has direct relevance since the electroweak model
is based on G=SU(2)XU(1), which is not simple. We
also find that a suitable choice of basis in the Lie algebra
of 6 reduces the six conditions given in Ref. [2] to two
conditions. In Sec. III, we ofFer a few concrete examples,
including the simplest embedded defect —a domain wall
embedded in a global O(2) model, the O(3)~O(2) string
of Ref. [2], and the known string solutions in the elec-
troweak model. We provide further insight into elec-
troweak strings and show that there is a one-parameter
family of string solutions —the W(a) string, a being the
parameter. All the 8'-string solutions are equivalent in
isolation but become distinguishable when patched to-
gether. It is also pointed out that the 8' string is super-
conducting.

We turn to the issue of stability in Sec. IV, first show-
ing that embedded global defects are unstable by con-
structing a continuous sequence of field configurations of
lowering energy. The same construction is then applied
to embedded gauged defects when the group 6 is simple
and we find that they are unstable provided a certain con-
dition on the group generators is satisfied. This analysis
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immediately shows that the O(4) ~O(3) monopole [2], the
O(3)~O(2) string and the electroweak Z string at
0~ =a/4 are all unstable.

Embedded monopoles fall into the class of "nontopo-
logical" monopoles considered by Brandt and Neri [8]
and by Coleman [9],who showed that such monopoles al-
ways suffer from a long-range instability. We relate the
Brandt-Neri-Coleman instability to the more general is-
sue of the instability of a constant magnetic field in a
non-Abelian gauge theory [10].

It is a little more involved to show that the electroweak
8'string is unstable. Fortunately, the realization that the
sphaleron and electroweak strings are equivalent (dis-
cussed in Sec. VII) and also the elegant derivation of the
sphaleron instability can be combined to show that the 8'
string is unstable in the absence of bound states (Sec. VI).

In addition to strings, the electroweak model is known
to contain a saddle-point solution called the "sphaleron. "
The sphaleron is an important solution because it medi-
ates baryon-number-violating processes. We discuss the
connection of the sphaleron to the electroweak string in
Sec. VII. Our arguments show that the sphaleron can be
interpreted as a collapsed segment or loop of electroweak
string. Finally, we summarize our findings in Sec. VIII.

II. EMBEDDING SOLUTIONS

In this section we discuss what conditions must be
satisfied for embedded solutions to satisfy the equations
of motion. A discussion of the equally important ques-
tion of stability is postponed until the next section. We
first state the problem precisely. Consider a field theory
in which a gauge symmetry G is broken to a smaller
group H by the condensation of a Higgs field P. In such a
theory there exist topologically stable defect solutions
when one of the homotopy groups m k (6 /H) is nontrivial,
with nontrivial no(6/K), n..i(G/H), and m.z(G/H) corre-
sponding to topologically stable domain wall, cosmic
string, and monopole solutions, respectively. To con-
struct "embedded" defect solutions, one chooses a sub-
group 6, &CG such that irk(G, &/H, &) is nontrivial,
where H, &=HAG, &. The idea is to find a smaller
theory containing a topologically stable defect solution
and then to embed this solution into the larger theory.

The embedded subtheory is defined by the pair
(6, &, V,m&), where V,m& is the linear subspace of V, V
being the vector space in which the Higgs field P lives.
We shall use 9 and 0, & to denote the Lie algebras of 6
and G, ~, respectively. We further require that the sub-
space V, & be invariant under the action of the subgroup
6, &. Let a and I denote indices of the Lie algebra of
G, ~ and indices of the vector space V, ~, respectively,
and a and I denote orthogonal directions in 9' and V, re-
spectively. (For defining V, i„ there is a natural choice
of inner product for V, uniquely defined up to an overall
constant. For defining 5', &, when 6 contains several
simple factors, the correct choice of inner product de-
pends on ratios of the gauge coupling constants, as shall
later be discussed in more detail. )

When mk(6, &/H, &) is nontrivial, it is well known
that topological defect solutions of the form

P (x)=P, (x), P (x)=0,
A„(x)=A„, q(x), A„(x)=0

(2.1)

exist in the smaller theory.
Before proceeding to the equations of motion, we first

discuss how the inner product on 0 (and thus the direc-
tions for the c7 indices) is defined. When 6 is a product of
R simple factors G=G, X - . . XG~, the Maxwell term
appearing in the Lagrangian may be written as

—1 1

f 1 gf
(2.2)

This Maxwell term defines a G-invariant inner product
(, ) on 9, parametrized by the coupling constants

g&, . . . , gz, so that the Maxwell term may be expressed
as

IJ gyA

ri, i, [2)„F""]"=J, ,

where ri, l, =(T„T&)=5,i, and

2)„=d„+iA „'T, ,

[ Ta Tb ]=if,s, T,

JI'i =i [P T, (SF') (XFP) T,P) . —

(2.3)

(2.4)

(2.5)

We know that the equations of motion for unbarred in-

dices, that is, those indices corresponding to the embed-
ded subtheory, are satisfied. The fact that 0, i, acting on

V, & also lies in V, & ensures that the left-hand side of
Eq. (2.3) is nonvanishing only for the unbarred (embed-
ded) directions.

If the condition

' [&] =0 for y~V
/~I

(2.6)

is satisfied, then the right-hand side of (2.3) vanishes for
the barred indices. For the left-hand side of (2.5) the clo-
sure of 9 ensures that [2)„F""]lies entirely in 0, and the
orthogonality of the barred directions ensures that g,&

does not mix unbarred into barred directions. For the
currents, a priori the possibility exists that the barred
currents might not vanish despite the fact that both P
and [Xl„P]lie in V, &. However, if

(F' T F "'T )= F'g ""(T T ) .
4 pv a& b 4 )M a& b

Let us choose a basis for 9 orthonormal with respect to
the inner product (, ) so that T =T, with a=1, . . . , P
spans 0, & and T = T, with a =P+ 1, . . . , R spans

In this basis the structure constants are

f,I„=([T„T&],T, ). Invariance of the inner product is
expressed by the relation ([T„Ti,],T, )+(Tl„[T„T,])
=0. From this it follows that f',. =f"&, making f',
antisymmetric in all pairs of indices. (It is only in such a
special orthonormal basis that the distinction between
upper and lower indices disappears. )

We now write the equations of motion
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T PEV for PEV, (2.7)

then the barred currents do indeed vanish.
In this section we have given a prescription for embed-

ding defects in larger theories. First a subgroup G, „CG
is chosen so that nk(G. ,mb/H, b) is nontrivial. Then a
linear subspace V, b C V is chosen so that V, b is invari-
ant under the action of G, b and a topologically stable
solution is found in the smaller subtheory. This solution
in the smaller theory is also a solution in the larger
theory provided that conditions (2.6) and (2.7) are
satisfied.

III. EXAMPLES

—1 —1S=f d x W' W""'+ B B""
4 pv 4 pv

+[2)„4]t[2P4]—A,(4 4—u ) (3.4)

where

(3.5)

the Weinberg-Salam electroweak model [1,23], with

SU(2)z XU(1)&~U(1)&. In the electroweak model we
have

(3.1)

where a =1, . . . , N and V[/]=A[/, P, —g ] for
specificity.

We form the simplest embedded solution, an embedded
domain wall, by setting N =2. In this case 6 =O(2). We
take G, b=Z2 by restricting $2=0, so that there is an
embedded domain wall in the smaller theory. Clearly,
the potential V[/] =A, [P,P, —ri ] satisfies condition
(2.6). Furthermore, the embedded domain wall does not
generate any nonvanishing sources for the gauge fields.

By setting N=3, we construct an embedded string
solution [11,12]. Here 6 =SO(3). We choose
G, b =SO(2) and define V, b by setting $3=0. The em-
bedded string solution is

1

P=f„„(r)e' e 0
0

A; =(A;)„„, (3.2)

A =0 a=1,2,

We now present some concrete examples. The first
series of examples arises in models with an O(N} symme-

try, with N taking various values. Consider the static en-

ergy functional

E[p(x)]=f d x —,'(2)kp, )(2)kp, )+V[/]+8

With 4(x}=(&~„~},it is convenient to rewrite

Z„=cos8a W„—sin8~B„,

A„=sin8a, W„+cos8a B„,
(3.6)

where tan8=g'/g. Consequently,

n =a +i&[W'~'+ W'a]
P P 2 P IJt

(3.7)

In the electroweak model, there are two types of em-
bedded string solutions —the Z string and the W string.
The embedded Z string may be written as [5,13]

0
4(r, q)=uf„„(r) e'+

u„„(r}Z= e, W=O, A=O .
T

(3.8)

In Ref. [2] it was shown that the electroweak model
has a W-string solution that is not gauge equivalent to the
Z-string solution. Here we show that there exists a one-
parameter continuous family of such solutions. Original-
ly, the W-string solution was written as

where r, 8 are cylindrical coordinates and the subscript
vor indicates the Abrikosov-Nielsen-Olesen vortex solu-
tion. It is easily verified that the conditions (2.6) and (2.7)
are satisfied by this candidate configuration.

Likewise, by setting N=4, one may embed the 't
Hooft —Polyakov monopole into a model with 6 =O(4).
Here we set G, b =O(3) and H, b =O(2) so that

2(G, b/H, b)=. Z and write down the candidate solu-
tion

r

NtHP

(} A; =0, (3.3)

where the subscript tHP stands for the 't Hooft-
Polyakov monopole solution. It is readily verified that
the embedded solution satisfies the equations of motion.

As an example of a nonsimple group 6, we consider

1
+'(r, 8)=uf„„(r)U(8) 0

cos8
i sin8 (3.9)

u„„(r)W'= e, W =W =B=O,
g, &

where the subscript vor indicates the familiar
Abrikosov-Nielsen-Olesen vortex solution [12] and

U(8) =e
By making a new choice of gauge in which the magnet-

ic field lies along the T3 direction, we show that the W
string is not merely a Z string disguised in a different
gauge. This can be accomplished by a global rotation
such as U=exp[i(n. /2)Tz], so that (3.9) becomes
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1
e'

4(r, 8)= —f„„(r)

v„„(r)8=%''=W =0, W = e

(3.10)

~ i(94(r, 8)=vf„„(r)e' ~e 'e

cos8
=uf„„(r) ie ' sin8

u„«(r)
W'=cosa e&,

r

v„„(r}
W =sina ez,r

(3.1 1)

This choice of gauge facilitates comparison with the Z
string (3.8). For the Z string the U(1)„gauge fields are
excited; however, for the 8'string the U(1)r current from
the upper component of the Higgs field is exactly can-
celed by a contribution from the lower component. We
note that the W string has a zero mode, leading to the
vector type of string superconductivity first discussed by
Everett [14]. The orientation of the magnetic field inside
the string core is a physical observable with definite
gauge transformation and covariant transport properties.
Also, it is not invariant under U(1)& rotations. The gen-
erator of eleetrie charge is Q(8)= U(8)Q&U '(8), where

Qo =diag(0, 1). Now it is easy to check that, for example,
if 8=0 then

e' ~T, e ' ~=cosaT, +sinaT2 .

Therefore, one can construct the one-parameter family of
8'-string solutions, parametrized by a, which may be
written as

the adjoint representation. Here I' indicates that the ex-
ponential is path ordered. The operator takes values
C cos(a —a'), where C is a multiplicative constant de-
pending on the vortex core structure. The angles a and
a' indicate the orientation of the W field inside the string.
Although the angle a describing the orientation of an iso-
lated string is not well defined and can be changed by a
global gauge transformation, as shown above the relative
angles for 8' strings patched together, or for different
points along the same 8' string, are physically measur-
able, gauge-invariant quantities. As described in Ref.
[14], variations in a along the string, so that B,a@0,
where z is the direction along the string, give rise to su-

perconducting currents along the string. This would in-
troduce an A, gauge field to cancel the gradients of a.

IV. STABILITY

In this section we consider the stability of embedded
defects. Although the question of which embedded solu-
tions are stable against small perturbations is not
answered in its full generality, a large class of embedded
solutions are shown to be unstable by explicitly indicating
a particular instability. Qualitatively, this mode may be
described as a rotation of the embedded solution into a
trivial classical vacuum solution. The instability found
here applies only when the embedded gauge group 6, b

acts trivially on the subspace spanned by Pi and when the
potential is of the form A, [P P

—v ], although we expect
the result to apply to a much larger class of potentials. It
should be stressed that all global embedded defects are
unstable to small perturbations, provided the potential
has the proper form.

Let us consider an embedded solution in a model with
the energy functional given in (3.1}and with the specific
form of the potential:

V[4 ]=~[A—rI']' (4.1)
W =B=O,

or as
Let P' '(x) and A ' '(x) be the embedded defect solution.
We consider the sequence of configurations

1
e'

p(, )= —f„„( )

u„«(r)B=W'=W =0, W = eg .
r

(3.12)

The magnetic field in the core carries a U(1)& charge.
This expression can be generalized to any Q(8).

The angular parameter a is not a mere gauge artifact,
because differences in a along the same string, or between
adjacent strings, can be measured using gauge-invariant
operators. Let A and A' be points in the core of the
same string or in the cores of adjacent strings. Let n( A )

and n( A ' }be unit vectors pointing along the string at A

and A ', respectively. We define the operator

P(x; g) =cosg}' '(x ) +singPi,

A (x;g)=A' '(x),
(4.2)

P (x;g)P(x;g)=cos g'P' ' P' '+sm grl

Xl;P(x;g)=cosg'[8, +iA, (x)T ]P' '(x).

+ i sin(A; (x )T Pi,

so that V[/(x, g)]=cos gV[go(x)]. Moreover, if

(4.3)

where g varies from 0 to n. j2 and where Pi is constant
and independent of position with pi {ti =rj and

Pi P~o~(x}=0. For (=0 the configuration is simply the

original embedded defect solution; for g=m/2 it is the
trivial vacuum. One has

A
8( ,AA)=e' nJ'( )AW'"( )AP exp i f dx" W„(x) T pi=0 (4.4)

Xe'i "n'(A') WJ" (A'), (3.13)

where the vector field appearing in the exponential is in

for the embedded directions, in other words, if the gauge
fields do not create covariant gradients in the Pi vacuum,
then
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Consequently,

E(g)=cos ([EsG+E,]+E, (4.6)

~here EsG is the scalar gradient energy, E, is the po-
tential energy, and E, is the magnetic energy. It is
clear that whenever a vacuum direction Pi satisfying (4.4)
can be found, there exists a quadratic instability. In the
gauged case, although strictly speaking the continuous
sequence of configurations defined in (4.2) does not con-
nect the embedded defect to the vacuum, it is trivial to
show using a variant of Derrick's theorem that the final
configuration at g=n. /2 is unstable against dilations
when the number of spatial dimensions is less than four.
Under dilatations, the energy scales as L [15]. There-
fore, the curvature rapidly spreads out to infinity. For a
global embedded defects condition (4.4) is unnecessary,
because there are no gauge field to worry about. There-
fore, al/ global embedded defects are unstable.

We point out that the existence of a sequence of
configurations of lowering energy as given in (4.2) does
not necessarily imply that the defect will decay in a finite
amount of time. As written, the sequence of
configurations in (4.2) has associated with it an infinite in-

ertia, because the vacuum everywhere in space is being
rotated without there being a compensating gauge vector
potential. (By "inertia" here, we mean time derivative
contributions to the energy associated with changing g.)

In the gauged case, we may cutoff this divergence in the
inertia by introducing at large distances a compensating
gauge field in the time direction Ao to make the covari-
ant derivative 2)0$ vanish. The global case is more
tricky. It is possible that cutting o8' the inertia by re-
stricting the rotation to a finite volume might destroy the
instability by introducing additional spatial gradient en-

ergy.
For the SO(N) examples considered in the previous

section, condition (4.4) is clearly satisfied. The direction

Pz is invariant under SO(N —1). We now consider two
examples for which the procedure for demonstrating in-

stability described above fails. For the 8' string, with
G =SU(2)z X U(1) r, condition (4.4) cannot be satisfied be-
cause U(1)„does not annihilate any nonvanishing Higgs
vector, so the argument above does not apply. For the
embedded Z string the situation is slightly more compli-
cated. The above argument fails, except for the special
case 8&=m/4 for which Tz= ,'[r Y], which—ann—ihi-

lates

0)

This last result is of some interest because the stability
analysis of Ref. [6] did not include the case of very low
Higgs boson masses and it was not clear from the given
stability diagram whether it would be possible to find
some value of the Higgs boson mass for which the Z
string in the standard model with sin 8~=0.23 is stable.

[Q,.P(;g)]t[2),P(x;g)]=cos g[$,$.' '(x)] [2);P' '(x)] .

(4.5)

The result here shows that the Z string is unstable for all
Higgs boson masses at 8&=~/4, making it extremely un-

likely for there to be stable solutions for smaller values of
8ii, (also see Ref. [7]).

So far we have ignored the possibility that there may
be bound states on the embedded defects. It has been
shown [16] that such bound states can considerably
enhance the stability of the defect. The physical reason
behind this enhancement is the same as the reason behind
the existence of nontopological solitons [17] and is dis-
cussed in some detail in Ref. [16]. Mathematically, the
introduction of a bound state would result in the presence
of additional terms in the varied energy functional (3.1)
proportional to sin g. With these additional terms, it is
possible that (=0 describes a local minimum of the ener-

gy and so there is no instability towards increasing g.
For monopoles, the issue of stability has been ad-

dressed by Brandt and Neri [8] and by Coleman [9].
They find that the asymptotic magnetic field of a mono-
pole has an unstable mode unless the monopole is topo-
logically stable. Heuristically, this observation can be re-
lated to earlier work on the stability of a constant mag-
netic field in a non-Abelian gauge theory [10]. Nielsen
and Olesen showed that in a non-Abelian gauge theory a
constant' magnetic field has a classically unstable mode.
Quantum mechanically, this corresponds to some of the
gauge particles having a negative mass squared. The ex-
istence of such a mode can be understood in terms of
Landau levels. For the charged vector bosons (diarged
here meaning charged with respect to the direction of the
constant magnetic field 8), one has

E2 =m 2+p 2+ (2n + 1 )eB 2eBs, — (4.7)

V. JV-STRING INSTABILITY

Here we will show that the bare 8' string is unstable
for a large range of parameters. The proof follows from
the observation that the sphaleron and the W string are
closely related (see the following section) and so the insta-
bility of the sphaleron found by Manton [19]might well

By constant we shall mean that the covariant derivative of the
gauge curvature vanishes.

where s and m are the spin and the mass of the particle,
respectively, and z is the direction of the magnetic field.
For massless charged vector bosons whose magnetic mo-
ments are aligned with the field, n =0 and p, & eB
we have that the energy becomes imaginary, signaling
that this mode is unstable. For the 't Hooft
—Polyakov monopole, there is a massless U(1) gauge field,
and the charged gauge fields are massive. Thus the insta-
bility described above is avoided. Now let us embed the
't Hooft-Polyakov monopole in a larger theory, with an
SO(4) symmetry, so that the unbroken symmetry group is
SO(3). In the embedded theory there are massless
charged vector particles. Hence the long-range field of
the embedded object can decay by the instability de-
scribed above.
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apply to the W string also.
Consider the family of configurations parametrized by

where

U(r, 8,z;p, }= sinp —i cosy cosO
—cosp sinO

cosp sinO

sinp+ i cosIM cosO

0 sinO
4(r, 8,z;p ) =sing,

1 +cospf „„(r) cosO
J

A)(r, 8,z;p) = —iv„„(r)[i}.U) U

(5.1)

(5.2)

Here we smoothly deform the W string, corresponding to

p =0, into the trivial vacuum, corresponding to p = a /2.
The energy per unit length as a function of p is

E(p)=2nr. dr eos p +f' + + [u (1 —f) —2u(1 f)f(l——u)]+eos pA(l f )—
(5.3)

It is clear that E decreases monotonically as IM varies
from 0 to n. /2 provided that

ton [19]. For small 8~, the sphaleron solution is approxi-
mately [20]

E=i po p 1 — —2 1 — 1—

+cos p 1 U
r

(5.4)

e'~sinO 0
@=f,(r) 8 =f, (r)U

1
J

A „:—W„'r'= —iu, (r) [i}„U]U
(6.1)

also decreases monotonically. Let us denote the two in-
tegrals in (5.4) by Ii and I2, respectively. E decreases
monotonically over the desired range if and only if
I2 & I&. We have checked this condition numerically for
certain values of the parameters A, and g and found it to
be satisfied in every case. This demonstrates that the W
string is unstable for the parameters that we considered.

We wish to remark that if we could show that

s(g)—:g(1 —g) [u'(I —f)' —2vf (I —f)(1—u) ]

+(f (1—u) (5.5)

is an increasing function of g (/=cosy), then the condi-
tion regarding E would also be satisfied. Now it is
straightforward to show that s(g) is maximum at g= 1 if

(1+&2)f(l—v) ~ v(1 f)— (5.6)

VI. ELKCTROWEAK STRINGS AND THE SPHALERON

In this section, we connect [18] the eleetroweak string
solutions with the sphaleron solution discovered by Man-

Note that a condition similar to (5.6) is assumed to hold in the
case of the sphaleron [19].

for all r. Numerical evaluations of the Nielsen-Olesen
vortex profile have shown that (5.6) is satisfied for almost
all r for a large range of values of A, . The inequality (5.6)
is violated only in the large-r region, where the in-
tegrands in (5.4) are exponentially small. So the contribu-
tions that could change the monotonic increase of E&
with g are exponentially suppressed and E, (g) is an in-
creasing function of g for a wide range of parameters.

where

U =exp [i8(sings, +cosPrz) ]

cosO sinOe'~

—sin Oe '~ cosO
(6.2)

The sphaleron solution in (6.1) necessarily has an accom-
panying electromagnetic field which can readily be calcu-
lated to first order in 8 ii, [20].

A comparison of (6.1) with (3.11) suggests that the
sphaleron configuration (6.1) is precisely that of a degen-
erate "twisted" loop of %string in which a=/. A twist-
ed loop of W string can be collapsed to a single point,
thus becoming a sphaleron.

One can also obtain difFerent interpretations of the
sphaleron in terms of electroweak strings by considering
various slices of (6.1). For example, slicing the sphaleron
with the xz or yz planes yields W strings with different
values of a (a=a./2 and a=0, respectively). Therefore,
stretching the sphaleron along any axis in the xy plane
gives finite segments of W strings.

The final interpretation of the sphaleron seems like the
most interesting. It is possible to arrive at this interpreta-
tion in two ways. The xy slice of the sphaleron, obtained
by setting 8=m /2 in (6.1), is the Z string defined in (3.8},
up to a deformation of the profile functions and a globa1

gauge transformation. If one were to stretch the sphale-
ron along the z axis, we would get a finite segment of Z
string. From the work of Nambu [13) we know that a
finite segment of Z string ends on magnetic monopoles.
Hence, the sphaleron is equivalent to a monopole sitting
adjacent to an antimonopole along the z axis.

This interpretation can be arrived at directly by look-
ing at the Higgs field configuration of the electroweak
monopole found by Nambu [13],
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e '~sin8/2

cos8/2
L

(6.3)

VII. CONCLUSIONS

We summarize our main results.
(1) We described a procedure by which embedded de-

and comparing to the sphaleron Higgs field configuration
given in (6.1). [The gauge fields for the monopole are
given by the same formula as in (6.1).] The two
configurations are identical up to the profile functions
and, more importantly, up to a factor of 2 wherever 8 ap-
pears. Therefore, as 8 varies from 0 to m/2 in (6.1), the
full monopole configuration is mapped out. As 8 subse-
quently varies from n /2 to m, the antimonopole
configuration is mapped out.

However, the factor of —,
' inside the trignometric func-

tions in (6.3) are important when one finds the gauge field
configuration T.he derivatives in (6.1) mean that there
will be additional factors of —,

' that would spoil the com-
plete equivalence of the monopole-antimonopole pair and
the sphaleron. This observation agrees with the analysis
of Hindmarsh and James [21) in which they find that the
sphaleron is a monopole-antimonopole pair but, in addi-
tion, some currents are present.

An issue that we have not investigated but feel could
be interesting is the possible connection of electroweak
strings with the (deformed) sphaleron solutions found by
Yaffe [22] for large values of the Higgs boson mass.

feet solutions may be constructed in Sec. II. The pro-
cedure applies whether or not the symmetry group of the
theory is simple. We provided some examples. In partic-
ular, it was shown that the electroweak model contains a
Z string and a one-parameter family of 8'strings.

(2) In Sec. III we considered the stability of embedded
defects in the absence of bound states. By considering a
specific perturbation of the embedded defect solution, we
showed that embedded global defects are unstable and
the embedded gauge defects are unstable if condition (4.4)
is satisfied. By an application of this condition, we
showed that the electroweak Z string is unstable when
sin 8n =

—,'. Using another argument (in Sec. V), we

showed that the 8'string is unstable for a wide range of
parameters.

(3) In Sec. VI, we showed that the sphaleron may be
reinterpreted as segments or loops of electroweak string.
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