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XVe find a simpler formulation of the Green-Schwarz action, for which the %'ess-Zumino term is the
square of supersymmetric currents, like the rest of the action. On a random lattice it gives Feynman dia-

grams of a particle superfield theory.
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I. INTRODUCTION

Green and Schwarz [1] found the first action for the
mechanics of the superstring that was invariant under
spacetime supersymmetry and tt symmetry [2] (needed for
gauging away half of the anticommuting coordinates). In
an e8ort to replace the troublesome second-class con-
straints (needed for eliminating half of the remaining fer-
mionic coordinates), we introduced the affine Lie algebra
of supersymmetry covariant derivatives D, P„Q [3]
and wrote a complete set of first-class constraints (and
corresponding action) in terms of them [4]. Like the
original Green-Schwarz formulation, the only coordi-
nates appearing (ignoring Lagrange multiplier gauge
fields like the world-sheet metric) were those familiar
from the usual superspace applied to particles, 8 and x'
(now defined on the world sheet rather than the world
line}. Unfortunately, elimination of second-class con-
straints did not solve the covariant quantization problem
[5], and it seemed that additional coordinates were neces-
sary [6].

Green, to try to fix the first-class formalism, derived a
new representation of the supersymmetric affine Lie alge-
bra with an additional spinor coordinate [7] by applying
the usual group-theoretic construction [8], which uses
separate coordinates 8, x', P for all the generators of
the algebra. This construction actually produces two
such algebras, one for each chirality. The only available
expressions for the supersymmetry generators were the
zero modes of the generators of the affine Lie algebra.
Unfortunately, one chirality of these has the wrong sign
in its algebra for unitarity. This follows from the usual
argument that the square of supersymmetry must be plus
the energy. This was to be expected from the fact that the
generators of the affine Lie algebra are to be identified
with the supersymmetry covariant derivatives, which
have this "wrong" sign even for the superparticle. We
will show below how the correct interpretation of the
second chiral algebra reproduces the original representa-
tion, and gives a more direct derivation of it.

Another approach to string quantization, which direct-
ly expresses the string as a bound state of particles, is the
random lattice [9]. There the world-sheet metric is re-

placed by a sum over lattices with the geometry of Feyn-
man graphs, the surface of the string resulting from the
usual limit of the

llew

expansion. This method was ap-
plied to the Green-Schwarz superstring [10], but the
Wess-Zumino term led to problems when relating to the
corresponding superparticle theory: (1) when defined on
the Feynman diagram lattice, this term was defined only
on loops, which has no analog in Feynman rules; and (2)
the Green-Schwarz action is supersymmetric only up to a
surface term, which is sufficient to make each Feynman
diagram supersymmetric, but not the individual vertices.
We will show that the use of the redundant coordinate P
yields a simple reformulation of the second-class action in
terms of just (supersymmetry} covariant momenta, avoid-
ing the problems the Green-Schwarz action had on the
random lattice. This method of quantization might also
shed some light on the quantization of superparticles, just
as string field theory has given new understandings of
particle field theory.

In the following section we will review the construction
of representations of Lie (super)algebras on group space,
the corresponding actions for particle mechanics, and
representations of affine Lie (super)algebras and their
string mechanics actions. In Sec. III, we will discuss the
quantization of such strings on random lattices. We spe-
cialize these methods to the superstring in Sec. IV. The
main results of this paper are described in the final sec-
tion. They include very simple forms for the action of
the superstring: The second-order Lagrangian is just

I. = ——'p "J'J —i—'e "J Jn ma 2 n ma

in terms of the currents

J =t}8

J'=Ox' i (t}8 )y'tt8—

J =dg 2i (t)x')y, i'—~ 2(d8~)ytt 8ry—,—s8

invariant under the supersymmetry transformation

50 =e
5x'= —ie y'P',
5$ =2ie y, ttx'+ 23(e~yttr8"—)y, s8 (3)
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Lagrangian is identical to the Green-Schwarz Lagrang-
ian. However, that derivative term contains all the P
dependence. The existence of the coordinate P allows the
%ess-Zumino term to be expressed in the manifestly su-
persymmetric way above (without the extension of the
world sheet to a three-dimensional space). It also allows
the Lagrangian to be expressed completely in first-order
form as

U 'dU = i —(dX )E~"T~,
(d U) U ' = i—(dX )E~"T„

which define the covariant derivatives

(10)

in propagators, and as the lattice versions of the corre-
sponding infinitesimal differences, as we will see in the
next section.

The infinitesimal forms of these differences are

where P„are the covariant (group-space) derivatives D,
P, 0, represented as independent variables. Consequently,
the action can be put on a lattice in a way that corre-
sponds to Feynman rules derivable from the field theory
action for a superparticle. The fact that the Wess-
Zumino term has no explicit dependence on the coordi-
nates 8, x, P, but only on their covariant momenta D, P,
0, means that the kinetic and interaction terms of this
field theory are independently supersymmetric; i.e., the
supersymmetry transformations are homogeneous in the
fields (as in usual superfield theories).

II. RKVIK% OF SUPERALGKBRAS

A (super)group element U can be parametrized on the
group space, e.g., by the usual exponential parametriza-
tion

P, AX12 — P2AX12 =i 5 A
B B ~ B (14)

These group elements have a quantum-mechanical
description: Defining the currents

PA =E, r BM, PA =EA iBM .

The covariant derivatives P and —P are two group-space
coordinate representations of the generators T„:

[P~ Paj &f~a —Pc

[P~ Pa j
— &f~a'—Pc

[P,Pj=0.
Expanding the identities

U '(Pq U) =(P„U)U '= T„

in T, we also find

in terms of group-space coordinates X and Lie algebra
generators TA, which satisfy

We can also define a group metric (not necessarily the
Cartan metric, which may be degenerate)

J =iU 'U, J=iUU

we can consider the second-order Lagrangian

L2= —
—,'trJ = ——'trJ = —

—,'X X G~M,

where

GMX —EM EW nBA
—EM EX nBA

A B A B

(15)

(17)

tr( T„Ts )=

The action of the group on these coordinates can be de-
scribed in two different ways, corresponding to left and
right group multiplication:

is the metric on the group space. (We are now a bit slop-

py with signs corresponding to supergroups, but they are
determined by the ordering of contracted indices. ) If 7i is
invertible, we can write the first-order form

O'= UOU, O'= UUO, (8) L, =tr(iJP ,'P )=tr(iJP————,'P ),

where Uo is the transformation, parametrized in a similar

way (so Xo are the parameters of the transformation).
Because left and right multiplication commute (associa-
tivity), so do the two sets of transformations. We can
then define combinations of two different coordinate
points that are invariant under one or the other of these
two transformations:

where P =P "T„(and similarly for P), and P„ takes the
above form of covariant derivatives upon quantization.
[The i's are for Euclidean time, functionally integrating
exp( fdtL)].

More generally, we can consider first-order Lagrang-
ians of the form

O12 —O2 +1 O 12 O12
—1 L, = tr( iJP) —H (P), (19)

(and similarly for the other handedness). We then have

X,2
= —X2, =X1—X2+ . -, where the ellipsis covarian-

tizes this finite difference. These finite differences appear

where the Hamiltonian 0 corresponds to any Casimir of
the group: i.e. , (H, P„]=0. (Note that H(P) has no T
dependence; this commutator involves [P„,Ps j, not

[T„,Tz j.) Then P satisfies the equation of motion P =0.
As a result, we can perform the first-quantized path in-

tegration exactly: With appropriate measure factors,
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u Pexp tL, ~=e ' ' P Uf 'U;

= JdPexp[ i—x,"P.„(—tf t—;)H(P)], (20)

where P is now a single remaining integration variable (since P =0). This result is equivalent to writing the propagator
in operator notation:

~x&=v(x)lo&=a=&o~vf-'e ' v,. [0&,

H(P )=H(P)—~=e f ' ' &o~vf-'v, (o&,

(21)

(22)

where ~0& is the state in the Hilbert space corresponding to the identity element in the group space. In the case of
SU(2), these methods correspond to the use of Euler angles to describe the quantization of a rigid body.

In the generalization to afBne Lie algebras,

J.=tV '5. V-=(a.X )E "T„,
etc. The second-order action then takes the form

(23)

+2= —tr &—,'p" J J„+i 0 —3e" J J„J~

mX nX p GNM+ ~ ~ ~NM (24)

where B is the potential for the torsion (structure con-
stants):

,'d(atBNt)=—Eat "Ew'Et f~ac

For the bosonic string, we start with the second-order
continuum action

d CTS&= —g —
—,'g "

mX „X
=Eat"Ex'Ep f~ac .

P and P are now functions of cr:

(25)
+A, + (in')R ], (30)

Pw E„(t5—M+X BxM )+X EM rlaa

Pa =Ex (i5M+X' BNat) X' Eat via

[P„(1),P (2a)] =2i5'(2 —1)rl~a

(26)

(27)
Sz= —

—,
' g(x; —x ) +A,pl+(lng)X,
(ij)

(31)

where A, is the cosmological (Liouville) term and R is the
curvature (Euler) term, for constants A, and g (in units
a'=1). This is discretized as

+ l5( 2 1)f„acPc—,

[Pq ( 1 ),Pa(2) I
= —2l5'(2 —1)rl qa

—t5(2 —1)f„a Pc,

(28)

(29)

where 5M —=5/5X . (These expressions for P and P are
for both the Euclidean and Minkowski world sheets. )

III. SUPERRANDOMIZATION

We now consider general properties of the random lat-
tice approach to relating superstrings to superparticles.
The main point of the random lattice approach is that the
first-quantized path integral for a string on a random lat-
tice is identical to the second-quantized Feynman dia-
gram integral for some particle (preon and/or parton).
This choice of random lattices makes checking unitarity
(determining measure factors) and treatment of zero
modes (overall momentum conservation 5 functions for
each disconnected graph) straightforward, since these
properties of the string theory then follow from those of
the underlying particle theory. The continuum limit of
the lattice string is then identified with the 1/N ("pla-
nar") limit of the particle theory, whose fields are N XN
matrices.

g x e''- xe' .
graphs i

where we recognize

5(x, ,x, )=e ' ', G=e,

(32)

(33)

for the propagator 6 and coupling (vertex) G for the par-
ticle (with the value of g being the usual topological rela-
tion for the 1/N expansion). These Fepnman rules follow

from the particle action (using e P in the second-
quantized path integral)

~n/2 —1
(34)

where we have chosen the vertex to be n point. For pur-
poses of deriving strings in the N —+ Do limit, we assume
that we can approximate the kinetic operator as

where the suins are over propagators (links) & ij & and ver-
tices i, and X is the Euler number for that graph (which
can be defined as a surface with the help of the 1/N ex-
pansion [11]). Then the first-quantized path integral for
the string becomes a second-quantized Feynman diagram
for a particle, described by an N XN matrix field:
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p p lj lJ (35)

where P;j are integration variables (P; are operators) and

X; are the covariant differences of the previous section.
A full Feynman supergraph is then given by the product
of propagators with covariant vertex operators acting on
them:

Pj X F Pj exp —i X; .P;
(ij & i &ij &

(36)

where the P integration is over all propagators, and the X
integration is over all vertices (but not over X's on the
free ends of external lines). For the usual superfields we
have coordinates X =(8,x'), the covariant derivatives
d =id/'d8 y'&8A—Idx' and p, =i8/Bx', and

X;~ =(8, —8i,x, —
x& i8, y8—i) .

To describe superstrings we will need an additional spi-
nor coordinate P, and perhaps additional coordinates as-
sociated with (super)spin and internal symmetry, which
may be necessary to cancel conformal anomalies, depend-
ing on the spacetime dimension, and whether we want a
Liouville term in the continuum limit.

We can identify this as the momentum-space (first-

order) form of a first-quantized string path integral if we
identify

F(P)=e

P will be identified with string currents of conformal
weight one, so H must be quadratic. (In the bosonic case,

— 2F-e & ~~.) Because of the results of the previous sec-
tion, the intermediate step of writing the discretized
string is unnecessary: The result of discretizing the JP
and HAPP terms in the string mechanics action is to pro-
duce a propagator resulting from analogous terms in a
first-quantized path integral for a particle:

fd'o(iJ P ,'p „P P")~—Jd~(i—JP——,'P') (38)

but with the condition ~&
—~,. =1 on the difference be-

—e = —1+—,', the usual one for a massive particle.
(However, notice that G is positive, which corresponds to
wrong-sign P theory for n =4, which is asymptotically
free in four dimensions, and with the 1/N expansion is
"asymptotically convergent" [12].)

The bosonic string is described by an Abelian affine Lie
algebra. To generalize to superstrings, which are de-
scribed by non-Abelian ones, we first consider general
properties of Feynman graphs for particle field theories
described by the corresponding ordinary Lie algebras.
The basic idea is that the particle is described by
superfields f(X ), and invariant actions are written as in-
tegrals dX over this superspace (with group-invariant
measure) of local Lagrangians expressed in terms of just
these fields and their covariant derivatives P„. Variation
of such actions then gives propagators that are expressed
as covariant derivatives acting on 5 functions:

b, (X, ,X, ) =f(P; )5(X;—XJ )

]
( G AB ~ g AB)PnPm+ (39)

where the ellipsis is the part independent of the coordi-
nates X (cosmological and curvature terms). On the
random lattice, i(dX)EP becomes iX; P;—, while the
other terms become —H (P; ). In general, G and 8 could
be coordinate dependent (but without world-sheet deriva-
tives 8, and independent of the momenta P). However,
group invariance of Sp requires that they be coordinate
independent, since P is by definition invariant. (But coor-
dinate dependence is allowed when background fields are
coupled. } While the (BX)EP and p terms determine the
propagator as described above, the e term contributes
only to the vertex operators: p „acts as the conformal
gauge metric (on the Euclidean world sheet) 5 „, sum-
ming over P terms with both Ps on the same link (since
5 „ is diagonal, and with the same weight for links in
difFerent directions, since 5oo=5»=+ I). However, e „
is off diagonal, and so multiplies two P's on different links
with a common vertex. (This is obvious in the case of a
square lattice. ) Its antisymmetry produces a commutator
of the fields in Sz [10]. Note that the e „ term has an ad-
ditional factor of" i" on —the Euclidean world sheet as

compared to the Minkowski world sheet. This factor
goes naturally with the commutator of the fields, which is
anti-Hermitian (if the fields are Hermitian; if the fields
are elements of a Lie algebra, the commutator gives an
if,j„). There is also an i multiplying the (BX)P term in S,
so that it gives the usual Fourier transform when used as

S

A further restriction that must be applied to this S&,
but which is not obvious from considerations of S~, is the
world-sheet chirality (holomorphy) of the currents P.
For this purpose we construct S, by starting in the Harn-
iltonian formalism with an a%ne Lie algebra that is a
suitable generalization of the algebra of covariant deriva-
tives for the particle, as reviewed in the previous section.
By comparison with the form of S, given above, this re-
quires that B„&=—Ez Ez BM& be constant. The
Virasoro operators are then determined by the usual
(classical) current algebra construction. After including
any additional first- and second-class constraints, the
Hamiltonian form of the action is then completely deter-
rnined, and leads directly to the first- and second-order
forms.

IV. SUPERSTRINGS

This type of construction was already applied to the
superstring in [3,4], but the representation of the algebra

tween the final and initial times. (The propagator for
~&

—r, =1 is e .) This means that the form of the prop-
agator (and similarly for the vertices) can be read off
directly from the continuum first-order string mechanics
action, essentially by replacing covariant string mornenta
P~ with the corresponding covariant particle derivatives
P~, and exponentiating.

We therefore look for an S& of the generic first-order
form

S, =i(B X )E "P
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used was not suitable for deriving an action of the form
S, above because there was not an invertible metric on
the coordinates, although the metric on the algebra itself
was invertible. Green [7] solved this problem by using a
representation (the one following from the standard
group theory construction) with a coordinate for each
current, so the metric on the coordinates became the
same as the one on the algebra.

The ordinary Lie algebra T„=(d~,p„r0) with non-
vanishing commutators

0 0 —
5p

o q'b o
s~ o

From the representation of the group elements,

—i/ T —ix T —ieTU=e e 'e (42)

{d.dpI = 2r—'.pp. [d.,p. ]= 2-r..p P (chosen asymmetric for simplicity with the chosen chiral-
ity of the constraints), we find the explicit expressions

0 0 5P

tr(T~ Ta) ='9aa = 0 '9,b 0
—5 0 0P

has two representations in terms of group-space coordi-
nates 8, x', P, corresponding to left and right group
multiplication. We can also define a group metric (not
the Cartan metric, which vanishes):

J Bea

J'=Bx'—i(r}8 )y'pe

J =BP —2i(Bx')y, pe ——', (r}8P)yp„e y, se (43)

(41} The finite form of these difFerentials is

8,—er, (x, —x2) ie,—ye~, (P, —tI)r) —i(g, —g2)(8, +er) —
—,'(e,yer) y(8, +82) .

Similar expressions can be obtained for the right-handed
currents:

ly, we have co generating simple translations of P. How-
ever, supersymmetry transformations act nontrivially on

J =de

J'=dx'+i(de )y'pe

J =r}P 2i(r}8 )y—, px' ', (r}8P}yI—8—"y, es .

(45)
58 =e,
5x'= ie~r' —ep (48)

d. =ia. y'.pePa, —i ,'y'.pePy.—„e-a',
p. =ie. 2y..g—8, (46}

d.=ia.+y'./a, —2x'y..P +i-', y'.P r.„e a',
(47)

From these we can read ofF the expressions for E and E
and invert them, so we can also write the covariant
derivatives:

5$ =2ie y, px'+ ', (e yp 8 —)y, se

For the superstring we can apply the general expres-
sions for the covariant derivatives, reviewed in Sec. II.
All the terms can be read directly from the above expres-
sions for the particle, except for the B terms. For this
case, in an appropriate gauge for B, B&~ can be written
surprisingly as a constant matrix (though BbrN and B„p
cannot):

0

BMN = ~'V

I ga

Since {co,ro] = {io,co] =0 (in fact, co=co), we can apply
co = i'}/BP=0 as a first-class constraint to eliminate P and
get the usual superspace. The p =p is the usual momen-
tum. We can also identify d as the usual supersymmetry
covariant spinor derivative, while q =d is the supersym-
metry generator. Thus, as in the usual group-theory con-
struction that starts with just d and p, d and p are
identified with supersymmetry covariant derivatives,
while d and p are identified with the supersymmetry gen-
erators themselves.

Even before eliminating P, we find spacetime transla-
tions p represented by simple translations of x'. Similar-

oos~

5p 0 0
(49)

(B„& is graded antisymmetric, so this part is symmetric. )
Our choice of gauge for B under the usual gauge trans-
formation 5BMN =

B~M A,N&, generated by the unitary
transformations ln U =i fd cr X™Abr, difFers from
the usual "chiral" representation by A, —8 or

y.(fi -~~ fe P ) -The only . change in B~N is

the 5 terms.
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D =(i5, —,'P—)+iy'pOP(i5, +x,')

+ ,'[(—4i5r+8~)yrs8 ]y, pOP,

P, = (i 5, +x,' ) i—( 2i 5 +8' )y, pOP,

Q& —
) Q&+ 3 g'&

2

D =(i5,+ 3 P' ) i —y'p[OPi 5, 2i5—Px, + (OPx, )']

(50)

(51)

(52)

The resulting representations for the affine Lie algebra
with constant B&z are

is simpler than the Green-Schwarz one in the sense that it
is quadratic in the manifestly supersymmetric J's, while
for the Green-Schwarz action the Wess-Zumino term
must be written with an unphysical third "world-sheet"
dimension to be manifestly covariant (just as here we
used an unphysical coordinate P), and is then cubic. This
is a consequence of our special choice of gauge where

8„~ is constant: The total derivative term e(88)(BP) in
1.2 results from the gauge transformation from the stan-
dard gauge to our gauge.

This translates into first-order form as
2(i—5r—yrsO )y, pOP,

P, =I',5, —x,',
(53)

(54)

(5 ~M)g APm

(57)Sl~=i5' '—8'~—.
2

(55)

On the other hand, in the chir al representation
Q=i5/5$, and there is no P' term in D. In that repre-
sentation the original representation of the D, P, Q alge-
bra [3] is obtained simply by dropping all 5/5$ terms.

As explained above, the zero modes of D and D cannot
both be considered supersymmetries. However, if we
again impose the first-class constraint Q =0, since

ID, Q] 2i5-', all but the zero mode of D can be gauged
away. (The nonzero modes of D are canonical conjugates
of the nonzero modes of Q, and the conjugates of first-
class constraints are gauge degrees of freedom. ) This
leaves q =—Ido D as the only surviving part of D, so it
can again be interpreted as supersymmetry. (Also, all of
P survives, and is used to define the right-handed
Virasoro operators. } However, before applying the con-
straint Q=O, the zero modes of D, P, Q have no X™
terms, and have the same form as in the particle case.
This is because the action expressed in terms of D, P, Q
with constant B~& is invariant under these symmetries
without total derivative terms. (In the old representation,
the total derivative terms are responsible for generating
the X' terms in q by the Noether procedure [10].) In ad-
dition to Q, we also have as first-class constraints the left-
and right-handed Virasoro operators —,'g "P~P~ and

—,'q "P„Pz, and the second-class constraint D. This de-

scribes the heterotic string in a formulation equivalent to
the Green-Schwarz one. The generalization to the other
superstrings is straightforward, by introducing two 0's
and imposing opposite- (world-sheet-) chirality con-
straints on them.

Except for the appearance of P", this is also the Hamil-
tonian form: P" appears quadratically, and can be in-
tegrated out trivially. On the other hand, P ' and P ' ap-
pear linearly, as Lagrange multipliers enforcing the con-
straints D =0 and Q =0, which were described in the
previous section. (These constraints also destroy the
terms 0 D and 0 D in the Virasoro operators. )

The reason that an action formally identical to the
Green-Schwarz action (at least in second-order form) can
be written in a form where the Lagrangian is manifestly
supersymmetric without total derivative terms is that we
were able to drop P dependence only after integration by
parts. Although the fact that the gauge transformation
that removes P is Abelian and nonderivative means P
plays a trivial role in the classical mechanics, it clearly
plays a nontrivial one in the lattice quantization, and may
also do so in the continuum quantization: Its gauge
fixing might be related to the nontrivial zero modes asso-
ciated with ~ symmetry, which are needed to produce
vertex factors in Green-Schwarz amplitudes, even in
light-cone gauges [13]. Also, the appearance of P is the
result of a 8 gauge transformation, and the existence of a
gauge where B„~ is a constant must have some special
geometrical or group theoretical significance. At least,
B~~ should be considered as a group metric, like G„~,
which is also a constant only in a certain gauge for
tangent-space gauge transformations [14].

Since the interaction term appears exponentially in the
functional integral (as do all terms in the action S', ), the
vertex operator appears exponentially. We can then
write the particle field theory action as

V. NEW ACTION

As a result of this construction the Green-Schwarz ac-
tion can be rewritten in the very simple second-order
form

1

22 ] 6 z
Sp=tr jdOdx dP — ge ' g+ — —Pe

(56)

This is easy to check by direct evaluation: The g term is
the usual p term of the Green-Schwarz action. For the e
term, the (OyBO) term vanishes by symmetry, while the
(BO)(BQ) term vanishes by integration by parts. The
remaining term in the Wess-Zumino term is identical to
the Green-Schwarz Wess-Zurnino term. This expression

where we have chosen to use three-point interactions.
(The explicit expressions for d,p, co were given in the pre-
vious section. ) The labels "1"and "2"on co and d are to
indicate that for each term in the expansion of the ex-
ponential we are to sum (with appropriate signs) over the
two combinations of co and d acting on different f's. As-
suming it is sufficient to keep just the leading terms when
using the 1/N expansion, the action becomes
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Sz =tr fd 8 dx d P ——P 1+—p
z

+ — f—+i P—Ita f,d gI

(59)

This action is partially gauge fixed, and will need more
investigation to find both the gauge-invariant action and
the completely gauge-fixed one. Since only world-sheet
reparametrizations have been fixed by the random lattice,
both the usual gauge invariances associated with super-
symmetry (such as tr invariance) and the new gauge in-
variance associated with P need gauge fixing in both S,
and S~. However, it is important to first understand the
gauge-invariant action, and there may be a direct relation
between those invariances in S, and S~. Since a symme-
try relates the g and e terms in S„it relates the kinetic
and interaction terms in Sz. This was to be expected,

since this symmetry is generated by the field equation
gfd=0, which gets extra contributions from the interac-
tions. Another possibility is that the particle field theory,
since it is massive, might not need gauge invariances, if it
lacks Stueckelberg fields. Also, if we consider a
compactification to four dimensions with N=1 super-
symmetry, instead of the ten-dimensional (10D) super-
string, the particle quantization might explain the string
quantization, since 4D N=1 supergraphs are already
well understood.

We have written the particle field theory action for the
heterotic string, but it generalizes straightforwardly to
other superstrings. However, the heterotic case may be
more interesting, since in D =10 the only known super-
particle theory whose fields can carry a group theory in-
dex (to be NXN matrices) is super Yang-Mills theory,
which exists there only as an N=l supersymmetric
theory. In that case we also need chiral bosons on the
world sheet, to compensate for the difference in left- and
right-handed critical dimensions. A form of their La-
grangian [15] that can be latticized by these methods is

(60)
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