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We consider WZW models based on the non-semi-simple algebras that were recently constructed as
contractions of corresponding algebras for semisimple groups. We give the explicit expression for the
action of these models, as well as for a generalization of them, and discuss their general properties. Fur-
thermore we consider gauged WZW models based on these non-semi-simple algebras and we show that
they are equivalent to non-Abelian duality transformations on WZW actions. We also show that a gen-
eral non-Abelian duality transformation can be thought of as a limiting case of the non-Abelian quotient
theory of the direct product of the original action and the WZW action for the symmetry gauge group
H. In this action there is no Lagrange multiplier term that constrains the gauge field strength to vanish.
A particular result is that the gauged WZW action for the coset (G, ® H,)/H, ;, becomes in a certain
limit, involving [ — oo, the dualized WZW action for G, with respect to the subgroup H.

PACS number(s): 11.25.8q, 02.40.Dr

I. INTRODUCTION

One of the most striking symmetries in string theory is
that of duality. The simplest example of a theory with
this symmetry is that of a single boson compactified on a
circle of radius R [1]. From the mathematical point of
view the partition function of the theory is invariant un-
der the duality transformation R — 1 /R (in Planck units)
for all genera (a redefinition of the constant dilaton is also
necessary to ensure the invariance of the string coupling
constant) and from a more physical point of view invari-
ance under duality implies that physics at small scales is
indistinguishable from physics at large scales and that a
smaller distance beyond which probing physics does not
make sense should exist [1-3]. Duality is not a property
of pointlike objects. Moreover it is exclusively stringy in
the sense that it is not also a property of higher than
one-dimensional extended objects (p-branes) [4].

This simple case was generalized to arbitrary toroidal
compactifications [5,3,6] and subsequently it was realized,
at the nonlinear o-model level, that duality was a symme-
try of all string vacua with one [7] or more Abelian
isometries [8—10]. In the case of d Abelian isometries the
duality transformations enlarged to O(d,d,R) ones relate
apparently different curved backgrounds in string theory
and can be used to generate new solutions from known
ones [11,12]. Also duality plays an important role in dis-
cussing cosmology in the context of string theory
[13-15]. It has been argued [8] that in the case of d
Abelian isometries with compact orbits the duality group
0(d,d,Z) [9] interpolates between different backgrounds
that are manifestations of the same conformal field theory
(CFT) (for the noncompact SL(2,R)/R case see
[16-20]). An important feature is that the dual of such
background has also the same number of Abelian
isometries and that its dual is the original model. For the
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relation between Abelian duality transformations and
marginal perturbations of string backgrounds see [21]
and for review articles see [22,23].

There is a second kind of duality transformation which
is much less understood, where the isometries with
respect to which the dualization is done form a non-
Abelian group [24] (for earlier work see [25]). This has
very important consequences. First of all generically the
dual model has much less symmetry that the original one
and the isometry group usually disappears or gets smaller
[24-28] (in fact the local original symmetry seems to
manifest itself in a nonlocal way in the dual model [26]).
Moreover, it has been argued that the non-Abelian duali-
ty transformations interpolate between solutions not of
the same CFT but of different ones possibly related by or-
bifold construction [24,26] (for an extensive treatment of
global issues on duality transformations see [27]). The
analogue of the duality group of O(d,d,Z) for Abelian
duality is not known and in fact because the initial
isometry group is not preserved, one does not know how
to find the “inverse” transformation.

A common characteristic of all duality transformations
is that they can be formulated in a way that the action is
that of the original theory written in a gauge invariant
way by using gauge fields and a Lagrange multiplier term
that constrains, upon integration in the path integral, the
gauge field strength to vanish [25], thus giving (after
gauge fixing) the original model [8,24]. The dual theory
is obtained by integrating instead over the gauge fields.
At this point the procedure resembles the one that is be-
ing extensively followed in the case of gauged Wess-
Zumino-Witten (WZW) models [29], when the original
theory is a WZW model [30], or more generally in the
case of non-Abelian quotient models where a target
spacetime symmetry is being gauged. For instance, simi-
larly to what we have already mentioned for the case of
non-Abelian duality transformations, in the case of
gauged WZW models the original global symmetry that
is being gauged also disappears; i.e., it is being gauge
fixed. Therefore one may wonder whether or not this ap-
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parent similarity can be made more precise. It will be ex-
plained that such a relationship is found in the context of
contraction of certain non-Abelian quotient models and
on gauged WZW models based on a particular class of
non-semi-simple groups.

Recently WZW models based on non-semi-simple
groups have been constructed [31-33]. It was shown in
[32] that the symmetry current algebra for these models
can be obtained by a contraction procedure on the
current algebra of the WZW model for the direct product
group G® H. A feature all of these models have in com-
mon is that their central charge is an integer. A bosoni-
zation and computation of the spectrum of the first and
the simplest of these theories [31] with G =SO(3) and
H =SO0O(2) and denoted by E§ can be found in [34].
Gauged WZW models were also constructed by gauging
various anomaly-free subgroups of E§ [34,35]. In partic-
ular the three-dimensional (3D) model in [35] was shown
to correspond to a correlated limit of the charged black
string background SL(2,R)®R/R of [36,37] both in the
semiclassical limit as well as when all a’ corrections are
included. Moreover, although curvature singularities are
still present it was shown that they can be removed via
Abelian duality transformations that map this back-
ground to a flat spacetime with constant antisymmetric
tensor and dilaton fields (for the neutral black string, that
is directly related to the two-dimensional (2D) black hole
[38], a similar conclusion holds). One of the aims of this
paper is to generalize this as much as possible to the gen-
eral models of [32].

The organization of the paper and some of the main re-
sults are as follows. In Sec. II in order to set-up our nota-
tion and for completeness first we review the current
algebra construction of [32] for WZW models based on a
class of non-semi-simple algebras as a particular correlat-
ed limit of the current algebra for the direct product
G®H. Next we derive an explicit form of the corre-
sponding WZW action that reveals all the essential prop-
erties of these models, such as the existence of dim(H)
null Killing vectors, by generalizing the work of [33]. We
also explicitly show how this action can be obtained from
a correlated limit on the WZW action for G® H. In Sec.
III we formulate gauged WZW models by gauging an
anomaly-free subgroup. Before the contraction this cor-
responds to the gauged WZW models for the cosets
(Ge®H)/H and we show the explicit correspondence.
Unlike the original WZW models who have integer cen-
tral charges the gauged models have in general rational
central charges. Section IV contains two main results.
First, general non-Abelian duality transformations are
shown to correspond to limiting cases of direct product
models, where a target spacetime symmetry is being
gauged. In these models before the limit is taken the
gauge field strength is not constrained to vanish. As a
particular case non-Abelian transformations on the
WZW model for a group G with respect to the vectorial
action of a subgroup H can be thought of as a limit of the
gauged WZW model for the coset (G H)/H. The
second result is that the gauged WZW models of Sec. III
are equivalent to non-Abelian duality transformations on
the WZW model for the direct product H® U(1)4im(G/H),

As we shall see, our formulation of non-Abelian duality
makes possible to compute the a' corrections to the semi-
classical expressions for the o-model background fields,
by making contact with known results from the coset
models. We end the main part of the paper with conclud-
ing remarks and discussion of our results in Sec. V. In
Appendix A we extend the results of Sec. III to the case
of axial gauging and we show that the resulting curved
backgrounds can be obtained from the flat one with con-
stant antisymmetric tensor and dilaton fields. In Appen-
dix B we extend the construction of [32] to cover more
general cases. In Appendix C we present a CFT descrip-
tion for the generalization of the plane wave model of
[31] in higher dimensions.

II. WZW MODELS BASED
ON NON-SEMI-SIMPLE GROUPS

In this section we will construct WZW models based
on non-semi-simple groups. This will be done by first re-
viewing the work of [32] on the construction of the
current algebra for such models via a contraction of the
current algebra for WZW models based on semi-simple
groups. Then we will give explicit expressions for the ac-
tion of the resulting WZW ¢ models by following [33].
Many other formulas derived in this section will be useful
in subsequent ones.

Let us consider the WZW model for the direct product
group G® H, where G and H are groups (throughout this
section they are taken to be compact ones) and where G
should contain a subgroup isomorphic to H. The holo-
morphic currents associated with the current algebra
symmetry of the corresponding WZW model are
g={u;,R,}, il\={v,-}, where i=1,2,...,dim(H) and
a=1,2,...,dim(G/H). They obey the operator product
expansions (OPE’s)!

uAu'~ifijkuk kemi; v~vA~i ijkvk N kg
YU z—w (z—w?’ " z—w (z—w)’
iMaBiu,- + iSaByR y kGT’aB
R_R;~ + , 2.1
«nh z—w (z—w)? @
iM, PR
uiRa~ zin ’

where f, ,-jk, M agi, and S,g" are structure constants of the
corresponding Lie algebras one can use to compute the
Killing metrics 7;;7,5. The levels kg and kj are as-
sumed to be positive integers. The energy-momentum
tensor and the central charge of the corresponding

IThroughout this paper OPE’s that are not written down ex-
plicitly are assumed to have only regular terms. Also we will not
explicitly mention the various Lie algebras since one can easily
read them from the associated OPE’s. Moreover, we will use
the same symbols for Lie algebra and current algebra genera-
tors.
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Virasoro algebra are

T— w?+R% w
Akg+gs) 2Ukytgy)
2.2
kedim(G)  kydim(H) 2.2
C:
ket+ge ky+gu

where g;,gy are the dual Coxeter numbers for G and H
and where the regularization prescription of [39] is as-
sumed in writing current bilinears. As in [32] we let

T,=u,+v,, F,=elu;—v;), P,=V2R,,
kg=L(B+a/e), ky=LB—ale),

and rewrite (2.1) in the basis {J,}={P,,T;,F;}. In the
limit €e—0 we discover a new current algebra not
equivalent to (2.1), because the transformation (2.3) is not
invertible in that limit. Let us also note that S& R’ and
a€R. The OPE’s of the new current algebra one obtains
are

(2.3)

TT ~ ifijka + BTIij TP ~ iMiaﬁPB
Yozew o (z—w)? T 2w
ok
rp~JuEe o (2.4)
ozw (z—w? '
P P~ iMaBiFi + aNgp
“Pz—w (z—w?

We will denote this current algebra by g and the corre-
sponding Lie algebra by g; (for the group G} will be
used). The holomorphic stress tensor and the central
charge of the corresponding Virasoro algebra obtained
from (2.2), using (2.3) in the €é—0 limit, read

_ :P2+2FT: Bt8ct8n F2.
2a 202

¢=dim(G)+dim(H) .

T

(2.5)

Of course with respect to the above energy-momentum
tensor all currents are primary fields of conformal dimen-
sion one. The OPE’s in (2.4) define a quadratic form

Py T, F;
P, | a/Bngg 0 0

Qap = T; 0 ny  a/Bn;| 2.6
Fi 0 a/BT]ij 0

which is symmetric, i.e., Q 45 =Qp4, a group invariant,
ie., f2.Qcp+f2Qpp =0 and the inverse matrix

Pg T; F
. Fa 7?0 0
0 = Ti 0 0 T','j B/a 5 2.7)
F. |0 %Y —B/an’

obeying Q480 - =n¢ exists. The above properties of the
quadratic form (2.6) are a consequence of the fact that
the current algebra (2.4) is a contraction of (2.1) for
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which the Killing metric 1 45, sharing all of these proper-
ties, is taking as the quadratic form.? Nevertheless one
may explicitly verify them.

A form for the WZW action whose symmetry algebra
is (2.4) was given for the general model in [32]. However,
it is not very explicit (in particular it involves two Wess-
Zumino terms) and extracting general conclusions from it
is rather difficult. Here we will follow the method, ap-
plied explicitly for the case of Ej [in our notation
Ej=80(d +1)§0(4] models in [33], which involves an
explicit parametrization of the group element g €Gj,. The
latter can be generally parametrized as (summation over

repeated indices is implied)
g=e[‘"Pe"”'th , a-P=a°P,, v-F=viFi s (2.8)

where the group element A, € H parametrizes dim(H) pa-
rameters x* and the a®s and v”s the remaining ones. It
will be useful at this point to further establish our nota-
tion by introducing some useful matrices:

C,(h )=Tr(T;h, T;h, ") =B/aTr(F:h, T;h "),
Cikcjkznij )

L, =—iTr(T'h, '3,h,),

R, =—iTr(Tdhh, ")=C'L},

(2.9

Mij Ci—nyj > Mg Mig,a®, n;; fij Vg -

We will also denote by L}, R}* the inverses of the matrices
L,,R,, respectively, and by m' the transpose matrix of
m. Using Duhamel’s formula

defl= folds e HdH 19 (2.10)

one can compute the left-invariant Maurer-Cartan form
g 'dg=ilda-P'—'da®m,'F/)+idv-F'+iRdx"T/,
(2.11)

where the generators J', =h_'J  h, satisfy the same
commutation relations as the J ,’s. Similarly we compute
the right-invariant Maurer-Cartan form

dgg '=i(da-P+1da®m,'F;)
+iR ! dxte'*Fe” T e ™" Fe 1 +idy-F .
(2.12)

explicit expression we note that
dgg '=—gdg ' and then we make use of (2.11) with
(a;——a;,v;——v;,h,—h, ') and (P,—P/ F,—~F/)
with the additional contribution of the terms a-dP’ and
v-dF’ (these terms contribute when derivatives with
respect to the parameters x* of h, are taken). The result-

To obtain an
1

2For the case of G =SO(3) and H =SO(2) the Lie algebra that
(2.4) defines appeared before in the context of contraction of Lie
groups [40] and in studies of (1+1)-dimensional gravity [41].
For the same case the quadratic form (2.6) had appeared in [42].
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ing expression is
dgg '=ida®P,+im 'F))+idv-F
+iR | dx*[T;+m;"P,+(im;*m /—n/))F;] .
(2.13)

Using the previous expression for the right-invariant
Maurer-Cartan form we compute the following matrix

defined as dgg '=idXME,"J,, where
XM= {xH a0,
Py T, F,
A—x“ Rﬁmkﬁ RL Rﬁ(%mkymy"—-nk")
Eu"=ge| 52 0 im,
v/ 0 0 Sji
(2.14)
and its inverse
x#*  a“® v/
Pg|l 0 85 —imy
E,,M—Ti RE —ma  n (2.15)
F, |0 0 8,/

_ a 2y a\p i A,
S(g)—ﬁlo(hx)+Efzdzz[aa-aa+(2avi+m,—a6a )R, dx*],

where Iy(h,) is the WZW action for the group element
h,€H. It is clear that the above action corresponds to
string backgrounds, in dim(G)+dim(H) space-time di-
mensions, with dim(H) null Killing vectors correspond-
ing to the coordinates v’, thus generalizing the similar
statement made previously for the cases of the WZW
models for E§ [31] and EJ [33]. The signature of the
spacetime has for a >0 (a <0) dim(G) positive (negative)
entries and dim(H) negative (positive) ones as it can be
seen from the eigenvalues of the quadratic form (2.6). To
obtain models with one timelike coordinate we should
take a>0 and consider only one-dimensional subgroups
H. If among the set of generators {R,} there is an in-
variant subset with corresponding structure constants
M aBi =0, i.e., if the subgroup H is not the maximum one,
then after the contraction (2.3) they correspond to com-
muting generators or to free decoupled fields in the WZW
action (2.18) and therefore we can safely ignore them (for
an example see Appendix C). The correct measure in the
path integral for the action (2.18) is the Haar measure for
the group H times the flat measure for the sets of coordi-
nates {v'} and {a®}, as one can see by explicitly comput-
ing the square root of the determinant of the metric cor-
responding to (2.18). Even though the constant B as
defined in (2.3) can be any positive real number it should
be chosen to be a positive integer in order to have a well-
defined path integral for (2.18) [30]. It is also a
quite straightforward computation to verify, using
the stress tensor (2.5) and the Lie algebra differential

The zero modes of the holomorphic currents J, can be
constructed as first order differential operators acting on
the group parameter space of G using J,=iE 3,,.
Their explicit form is
Pa——'iaaa—émajauj ,
: (2.16)
T;=iR}d ,—im3 s+in3 ;, F,=id ;.

Using the fact that iR}'d_, separately obey L(H), i.e., the
Lie algebra of the group H, one may explicitly verify,
with the aid of the Jacobi identities that the various
structure constants obey, that the operators (2.16) indeed
generate the Lie algebra g;. The WZW action whose
current algebra symmetry is (2.4) is defined as

_B 2 -13
S(g) 27szdzTr(ag agQ)
B —1 —1 -1
+ [ Tr(g 'dgNg Tldg AgTldgQ), (2.17)
6w VB

where Q ,,=Tr(T,TzQ) and 2=3B. Using a pro-
cedure analogous to the one in [33] or by using the
Polyakov-Wiegman identity [43] (the latter is valid in our
case because of the properties of the quadratic form Q ,z)
and (2.13) we evaluate

(2.18)

operators (2.16), that the same metric (up to a shift
B—B+gs+gy), and a constant dilaton arises using the
operator algebraic method of [19,44].3

Being a WZW action (2.18) has a number of “obvious”
global symmetries corresponding to the transformations

h,—h.A,

h,—Sh_,v—SvS La—SaS™ '}, (2.19)
P X

v—>v+N,

where A,S are constant group elements of H and N is a
constant matrix in .L(H). The first two transformations
in (2.19) represent “left” and “right” global transforma-
tions of the group element in (2.8) and the third one is
due to the fact that there exist Killing vectors along the
directions v’. One might use these symmetries to gen-
erate new solutions via duality transformations.

We could have obtained (2.4)—(2.6) with a different log-
ic (this was effectively used for the cases of E§ and Ej in

3The forementioned shift in the value of the constant 8 is a
direct consequence of the regularization prescription used in
(2.5) and obviously does not affect the vanishing of the B func-
tions in conformal perturbation theory (see for instance [45]).
Also notice that the fact that the central charge in (2.5) does not
depend at all on B means that no matter what regularization
scheme we use all loop contributions to it should vanish.
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[31,33]). If one starts with the Lie algebra of the group G
performs an Indni-Wigner contraction [46], ie., R,
—(1/€)R 4, then one discovers that the WZW action one
writes down using the Killing metric cannot be anything
else but that of the WZW model for the subgroup H itself
(this is because the Killing metric is degenerate due to the
non-semi-simplicity of the corresponding contracted alge-
bra). If one insists that all the currents are primary fields
of conformal weight one then the minimal resolution to
the problem (for a different and more involved one see
Appendix B) is to introduce extra generators {F;} with
the OPE’s given in a unique way by (2.4) which corre-
spond to the nondegenerate quadratic form (2.6), thus
making it possible to write the corresponding WZW ac-
tion. However, this approach is not as nice as the one in
[32] since it does not make contact with already existing
models. If the condition that all the currents must be pri-
maries is relaxed, then we can still have a consistent
current algebra given by (2.4) with the F;,’s taken formally
to zero. Then one can show that there exist a stress ten-
sor and a corresponding central charge given by

.p2. 2.
T= P 4 :T+: ’
2a 2(B+gH)
5 (2.20)
86 T 48H
¢=dim(G)+———dim(H) .
B+gy

However, only the T,’s and not the P,’s are primary
fields with conformal dimension one with respect to that
stress tensor. Because of this there can be no WZW ac-
tion with the symmetry algebra we just described. A
similar conclusion arises from the fact that the quadratic
form for this theory [given by the relevant entries in (2.6)]

J
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even though it is invertible and symmetric it is not a
group invariant and therefore the Wess-Zumino term,
necessary for any WZW model, cannot be defined. Nev-
ertheless, because (2.20) is a solution of the Master equa-
tion [47,48] (a new one, to the best of our knowledge) it is
conceivable that an explicit form for the corresponding
action using the results of [49-51], can also be found.

One may wonder whether or not it is possible to obtain
the action (2.18) through a limiting procedure taken
directly at the level of the WZW action for the direct
product group G® H. After all this is how one obtains the
OPE’s in (2.4) in a natural way. Let us start with the ac-
tion for the G® H (with a general parametrization for the
group elements):

S=kgly(th,)+kyly(h,), t=e*k (2.21)
where ¢ belongs in the left coset, i.e., t €E(G/H);, and h,.
and h, contain the remaining subgroup variables. Next
we expand the subgroup element 4, near the correspond-
ing element 4, as h,.=(I +2iev-u)h,, where by the v"s
we collectively call the result of various, generically more
complicated, shifts and rescalings of the original parame-
ters x* and* also we scale the parameters a®—V 2ea®
Then by writing th,.=t_h, where the matrix ¢, and its in-
verse are

t,=I+iV2ea-R+e[2iv-u—(a-R1?1+0(?),
_ (2.22)
t.'=I—iV2ea-R —€[2iv-u+(a-R?]+0(e7?),

one can compute, in powers of €, the corresponding left-
and right-invariant Maurer-Cartan forms and the WZW
action for the group element ¢ :

ts_ldt5=i\/2_eda-R +ie[2dv-u —daamaiu,-+a“daBSaB7’R7,]+0(€2) ,

dt.t'=iV2eda-R +i€e[2dv-u+da®m,'u;—a’daPS 4R, |+ 0(e),

€" €
e —_
Io(te)z;fzdzz da-3a+0(e?) .

Also the formulas

(2.23)

kg Trlu(th,)"'3(th,)]+ky Tr(vh, "0k, )=iBL! dx*+ia(dv;+1im;8a*)C”,
kg Tr{u;3(th,)th, )~ 1+ky Tr(v;dh b, )=i[BI +a(n+Limm")];R}dx* +ia(dv; —4m;,0a®)

valid in the limit €é—0, will prove useful in subsequent
sections. Using the above expansion formulas, the
Polyakov-Wiegman identity, as well as the redefinitions
of kg and kg in (2.3) one can see that in the limit e—0
the action (2.21) reduces to that in (2.18).

III. COSET MODELS G; /H

In this section we use the results of the previous one to
construct gauged WZW models based on non-semi-
simple groups. In particular we gauge the subgroup gen-
erated by the subset of generators {T;}. We explicitly
show how all the relevant formulas at the algebraic as

(2.24)

-
well as at the action level can be obtained as limiting
cases of the corresponding ones for the (G®H)/H
gauged WZW models.

Let us consider the gauged WZW model one obtains by
gauging the diagonal subgroup, generated by {u; +v,], of

4If we write h.=e** (and similarly for h,) and let
x/=x;+2ied; we can easily show using (2.10) and (2.9) that, in
the limit €e—0,
1
P— 4] CiAh R hsx: l'sx<u’
v'=¢ fo ds C';(hy,) e

where C;; is the matrix defined in (2.9). Obviously only for
Abelian subgroups v'=¢".
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the direct product group G® H (the axial gauging case is
considered in Appendix A). For the corresponding CFT
coset model (G® H)/H the energy momentum tensor and
central charge of the Virasoro algebra are given by

T= u?+R% vk . (u +v) ’
2Akgtgg) 2Ukytgy) 2kgtkygtgy) )

_ kgdim(G) | kydim(H) (kg +ky)dim(H)

- ke t+8c kytgu - kg tkytgn

Then we use (2.3) and take the limit ée—0. The energy
momentum tensor for the resulting coset theory, denoted
by G; /H, reads

Of course one may obtain the same result by directly con-
sidering the gauging of the subgroup generated by { T},
of the non-semi-simple group G;. We also see that the
central charge for the gauged WZW G /H model is no
longer an integer as it was in the case of the WZW model
for G, unless the subgroup H is an Abelian one.

To obtain an explicit form for the gauged WZW action
we start with [29]

S=BlI,(h " 'gh)—I,(h~'h)], (3.3)

.p2 . .T2.
T= PTHAFT: Bte :gH Fh— ]_;_ —, where h,h are group elements in the subgroup H generat-
20 . 2a 2B+ey) (32) edby {T;} and the group element g € G}, is parametrized
¢ =dim(G)+ gpdim(H) as in (2.8). Writing explicitly the above action with the
B+gy aid of (2.18) we obtain
J
S=BI(h,,A)+ % fzdzz[Da -Da+i(Da)*m (Dh h,");—2i Te(DvDh h'—vF_)], (3.4

with I (h,, A) being the usual gauged WZW action for H /H,

I(h,, A)=Io(hx)+l fzdzz Tr( A3h h '—Ah "dh,+h 'Ah, A—A4), 3.5
o

and where the gauge fields A4, 4 take values in L(H), and the corresponding field strength F_ and the covariant deriva-
tives are defined as

A=03hh~', A=0hh~', F_=04A—3A—[4,4], D=3—[4,"], D=3—[4,]. (3.6)

Naively one might have expected that (3.3) would have been given just by the sum of the gauged WZW for the coset
H/H, ie., I (h,, A), and the covariantized terms one obtains by simply replacing ordinary derivatives by covariant
ones in the terms involving a® and v’ in (2.18). In fact, such an action is gauge invariant by itself. However, only by the
inclusion of the term involving the field strength F,, one is able to rewrite it as a sum of two independent WZW actions,
as in (3.3), that guarantees conformal invariance. The action (3.4) is invariant under the infinitesimal gauge transforma-
tions

8h,=[h,,ie], 8a®*=—m%€ , Sv'=n'e/, 8A=—iDe, 84A=—iDe, (3.7)

where e=¢€'T;. To obtain the o model one integrates over the gauge fields. A straightforward computation gives’

§,=B I (h,)+ 31; J 4%2(3a-8a + (200, +m;,8a IR | 3x# ~2 L L,0x "+ (3w +4m 9a*)CH)

X[M +(n+1tmm"CI; ' [ +n +Limm'V,RL3x"+3v/—tmi@Ba®]} | . (3.8)

There is also a dilaton field induced from the finite part of the determinant one obtains by integrating out the gauge
fields in (3.4):

d=Indet[M +(n +1mm")C]+®, . (3.9)

The above forms for the action and the dilaton can be simplified considerably by using the properties of the matrix C;;
in (2.9). The final expressions are

S, =B |~ Ioth )+ 5 [ d%2[8a-8a+2RLox"+8v'+ m ' Ba ) M'~n — tmm ) (L {3x"+8v/— m/g8aP)]

(3.10)

_5Throughout this paper whenever an action or a dilaton is denoted with a tilded symbol will contain the rescaled
vi>B/av’and a®*—-V B/aa’.
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and

P®=IndettM'—n —tmm")+d, . (3.11)

The signature of the spacetime described by (3.10) will
have (if G and H are compact groups) for a>0
dim(G /H) positive and dim(H) negative entries and for
a <0 dim(G) negative and no positive ones (analytically
continuing S to negative values renders a positive signa-
ture spacetime). Obviously for models with one timelike
coordinate the subgroup H has to be one dimensional and
a,3>0. If we allow the use of noncompact groups more
possibilities exist. We find that one timelike coordinate
is also possible if (1) >0, H=G and G is a non-
compact group with one timelike generator, i.e.,
G =80(1,d)_p,(2) >0, <0, H a compact group, and
G a noncompact one such that the coset G/H gives rise
to a spacetime with one timelike coordinate. All such
models have been classified in [16]. The
complete list is (SU(p,q),SU(p)®SU(q)),
(SO(p,2)SO(p)), (Sp(2p,R),SU(p)), (SO*(2p),SU(p)),
(E4,SO(10)), and (E4,Eq), where the first entry in the
parentheses refers to the group G and the second one to
the subgroup H. The lowest dimensional examples have
D =6, i.e., (G,H)=(S0(2,2),S0(2)) or (SO*(4),SU(2)).
The actions (3.8) and (3.10) as well as the correspond-
ing dilaton fields are still invariant under the transforma-
tions (3.7). A convenient gauge choice would be to set to
zero all the parameters in A, except those corresponding
to the Cartan subalgebra of H which cannot be gauged
away due to the existence of a nontrivial isotropy (for dis-
cussions relevant to this point see also [24,26]). That still
leaves a number of parameters equal to the rank of H to
be fixed among the remaining ones {a®} and {v’}] [in the

|

[¢4
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second set those with an H-Cartan subalgebra index are
inert under the remaining gauge transformations in (3.7)].
As in the case of the WZW action (2.18) that follows
directly from (2.21) through the limiting procedure de-
scribed in the previous section, one can also show that
(3.4) can be obtained from the usual gauged WZW action
for the coset (G® H)/H (the gauge group is the total sub-
group generated by u'+v),

S=kg[Io(h th h)—Iy(h 'h)]

+kylLo(h ' h)—Iy(h " 'h)], (3.12)
via a similar procedure. In addition to the expansion for-
mulas (2.22), (2.23), and (2.24) the following one

Tr(u;t housh 't 7')=C,+e2n +mm") X Cy, +0(€) ,

x“jitx
(3.13)

should also be used.

Let us also briefly discuss how possible a’~ 1/ correc-
tions to our o model (3.10), (3.11) can arise, by consider-
ing the effective action for it. Again the connection with
the original (G® H)/H proves useful. The effective action
for the latter models is [52,53] (we ignore possible field re-
normalizations since they give rise to nonlocal terms in
the final ¢ model [54])

S=(kg+gc)olh "thh)+(ky+gy)Io(h~'h.h)
—(kg+ky+gy)l,(h'h), (3.14)
where all the definitions were given in® (3.6). Then the

limit €e—0 this reduces to the effective action for our
Gy /H coset models:

r=(B+gs+gy)lh,, A)+ £y fzdzz[Da-Ba +i(Da)*m (Dh h, "), —2i Te(DvDhh [ '—vF_)]+gsloh ~'h) .

v

The above action although local in the 4 fields is not local
in the gauge fields 4 and 4, due to the presence of the
last term. Of course in the limit of large B it reduces to
the action given in (3.4). Next, one is to solve for the
gauge fields via their equation of motion and identify the
local part containing the second derivative terms as the
final o model. We will not repeat this procedure here as it
has been discussed extensively in [53,54] and especially in
[57] and because the final expressions for the 0 model are
quite complicated. We will only mention that for the
metric and the dilaton there are 1/8 corrections (in the
standard ‘“conformal” scheme [57]) in agreement with
what is expected from the different shiftings of B in the
F? and the T? terms in the expression of the stress tensor
(3.2). For the antisymmetric tensor it was shown in [57]
that there are two natural prescriptions, consistent with
gauge invariance, for extracting it. The one which was
called “corrected” gives 1/ corrections to the semiclas-
sical result for the antisymmetric tensor. However, the
second prescription gives just the semiclassical result. At
this point we should mention that for the case of the

(3.15)

f

coset ES/U(1) the explicit expressions containing all
quantum 1/f corrections were derived in [35], both in
the axial and the vector gauging cases. In the case of the
axial gauging both of the prescriptions mentioned give
the semiclassical result for the antisymmetric tensor. Be-
ing derived via correlated limit from the 3D charged
black string [36,37] its conformal invariance has already
been checked up to two loops in conformal perturbation
theory in [57].

Notice also that in (3.15) the coefficient of the last term
which is responsible for all 1/ corrections cannot vanish
even if H =G (nevertheless in such cases the o-model ex-
pressions will further simplify since m;,=0). In contrast
with the case of a G /G coset model where we can gauge
out all degrees of freedom, except those corresponding to

6We should emphasize that (3.14) does not belong to the
“induced-type” actions for gravity (see for instance [55]), in
which the level shifts are different. For further details on this
distinction between “effective” actions see [54,56].
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the Cartan torus that constitute a free field theory, in the
case of a Gy /G coset model the resulting o0 model is a
nontrivial one. This fact receives more significance in
view of the results that will follow and specifically to the
relation to non-Abelian duality transformations con-
sidered in the next section.

IV. ON NON-ABELIAN DUALITY

In this section we formulate the non-Abelian duality
transformations [24] as a particular limiting case of a
larger class of models where an anomalous free symmetry
of the target spacetime geometry is being gauged. More-
over we show how the gauged WZW models correspond-
ing to the cosets Gy /H, considered in the previous sec-
tion, can be thought of as non-Abelian duality transfor-
mations on the H®U(1)*™/® WZW model with
respect to the vectorial action of H.

A. Non-Abelian duality transformations
and gauged WZW models

In the usual Lagrangian formulation (for a Hamiltoni-
an one see [28]) of non-Abelian duality [24,26-28] one
starts with an action S(X) corresponding to some CFT,
denoted by A, and then gauges a nonanomalous symme-
try corresponding to a group H and adds a Lagrange
multiplier term (of course the same procedure is applica-
ble to any nonlinear, not necessarily conformal, o model
with a global symmetry). The total action reads

SX, A, A,0=SX, A, D)+ [ d’2iTrwF,) . @.1)

Each term in the above action is invariant under gauge
transformations which for 4, 4 and the v”s were given
in (3.7). The “matter” fields X’s transform in some repre-
sentation of the gauge group H in such a way that the ac-
tion S(X, 4, 4) is gauge invariant by itself. In the path
integral for S (X, 4, 4,v) integration over the Lagrange
multipliers v”s forces the gauge fields to be pure gauges,
i.e., A=0hh !, A=03hh~!. Choosing the gauge condi-
tion h =1 one recovers the original model with the action
S(X). If instead one integrates out the gauge fields one
obtains the dual model. In the case of non-Abelian duali-
ty the original and the dual model do not necessarily cor-
respond to the same CFT [24,26,27] as in the case of the
Abelian duality for compact groups [8]. Instead it has
been conjectured that non-Abelian duality transforma-
tions interpolate between solutions of different CFT’s
possibly related by an orbifold construction [24,26]. Next
we will show how (4.1) can be thought of as a limiting
case of a more general gauged theory. Consider the direct
product of the CFT’s A and the current algebra for H at
level kz. In order to gauge the H symmetry the ap-
propriate action is

X, 4,4,h,)=S(X, A, A)+kyI(h ,A), 4.2)

where I (h,, A) is the gauged WZW action for H /H as in
(3.5). Let us consider the above action in the limit of very
large ky, or equivalently the limit e —0 with ky=a/e
and a a finite constant. In order to obtain a finite contri-

bution in that limit we consider elements 4, € H close to
the identity element.” If we parametrize h, =I+iev-u
then we can easily show that in the limit € —0 the action
(4.2) becomes identical to the action (4.1). Namely, we
have proved

SX, A, 4,h ). o=S(X, 4,4,v),
4.3)

kH=—(:— , hy=I+iev-u .

It is worth noticing that the Lagrange multiplier term in
(4.1) is nothing but the dimensionally reduced non-
Abelian Chern-Simons action (v'u; is the third com-
ponent of the A4 field).® It should be emphasized that the
relation (4.3) holds up to a total derivative which, howev-
er, is important when one discusses global issues
(8,9,26,27], which for non-Abelian duality still remain to
be resolved. In this paper we are only concerned with the
local (short-distance) conformal properties of the models
for which the relation (4.3) [and also (4.4) below] is
unambiguous. Let us be more specific and consider for
the CFT A the one corresponding to the WZW for a
group G at level k. What we have proved is that

Gk®HkH

H k,— 0
k+ky H

=dual of G with respect to H (vector) , (4.4)

where the limit is taken in a correlated way, as in (4.3).
Our formulation of non-Abelian duality as a limiting case
of a larger class of gauged models makes it possible to
work out explicitly a’ corrections to the semiclassical ex-
pressions. We can illustrate this briefly by considering
the case of duality transformations on a WZW model for
a simple group G with respect to its subgroup H. In that
case the effective action replacing (4.1) is [cf. (3.15)]
(again we ignore possible field redefinitions)

I=(k+gg)(g, A)+gcly(h k)

+= [ d%iTiwF,) , (4.5)
(>

where gE€G is parametrized in terms of x#,
p=1,2,...,dim(G). We will not present the derivation
of the exact o-model background fields here. The
method is identical to the one followed in [53,54,57] for
the case of G/H coset models with only some

"We assumed that h, € H belongs to an irreducible representa-
tion. In that case all fixed points of the gauge transformation
(points ho € H such that [ho,u;]=0,Vu; EL(H)) are propor-
tional to the identity element according to Schur’s first Lemma.

8Abelian versions of that term were also derived by [38] in
showing that the gauged WZW action for the coset model
SL(2,R)/R close to the uv =1 “singularity” looks like a topo-
logical field theory and by [58] in the derivation, from a Chern-
Simons theory, of the Verlinde formula that counts the number
of conformal blocks of a rational CFT.
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modifications. The result is

1 — v
S(x)= d?z(Gpy + By )3x Max ™
(x) ra' fE z( MN NN) x Y0x ,
xM={xto’}, a'= 2 , (4.6)
k+gg

where the metric is
Gy =Gy —26(V M) L], Ry —b(V T,
XLy Ly =b (V™ Ry Ry 4.7)
with b = —g; /(k +g¢), the antisymmetric tensor is
By =By —20° [V MM (M~ MYV T L R
=X VT M=V )Ly LA

—bz[‘\ﬁI(J%—M')‘\f*‘],jﬁfMﬁ{éﬂ (4.8)
and the dilaton is
d=1lIndetV+a,. (4.9)
The semiclassical expressions, in the limit b —0, are
Gyn=Goun —2m;; I»C{Mﬁ{m )
Biin =Boyy — 20 'Ly Ry, 4.10)

d' =IndetM .

Gouny and B,y are the original WZW (group space)
couplings,

Goun =7 ABLAf;Lg ’

A B C 4.11)
3a[KBOMN] =ILgLyLyf 4pc »

and the various matrices are defined as

M;=M;+n;, YV=MM'—b(M+M") ,
_ (4.12)
V=MM—bM+M"),
where we have rescaled v'—(k +g5)/av’and
‘MaxMZLLBx“+avi ,
(4.13)

Y%fggxMZRl’;S_x“-f—gv[ )

Because of the gauge invariance we should fix dim(H) of
the parameters among the x™s. The remaining dim(G)
variables will be the string coordinates of the dual space
of G under non-Abelian duality with respect to a sub-
group H. Thinking of them as H-subgroup invariants one
can determine their range of values using group theoretic
methods [59]. If H7G then there is generically no
isometry and all of the parameters to be gauge fixed can
be chosen entirely within the group element g €G. No-
tice that similarly to the gauged models of the previous
section there are quantum corrections in (4.6) even if
H =G. For such cases there is nonvanishing isometry and
the remarks of the paragraph just before (3.12), about a
possibly convenient gauge choice are equally applicable.
Let us note that the exact expression for the antisym-
metric tensor (4.8) was obtained with the “‘corrected”
prescription of [57]. As it was explained also in Sec. III
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there is a second prescription that leads to the semiclassi-
cal result in (4.10) for the exact antisymmetric tensor.
Both prescriptions give the same metric and dilaton, are
consistent with the gauge invariance of (4.6) (before
gauge fixing) and with results available from conformal
perturbation theory [57]. The o model corresponding to
the case of G =H =SU(2) was previously considered, in
the semiclassical limit kK — o, in [26]. What we have
proved is that it is a limit of the semiclassical o model for
the coset SU(2), ®SU(2), /SU(2); 4, considered’ in
[60].

Since the relation (4.3) involves a singular limit the
final dual theory is not necessarily equivalent to the origi-
nal corresponding to the action S(X) even though some
quantities like the central charge in the case of (4.4) are
the same (equal to the central charge of G;). In the case
of duality transformations with respect to an Abelian
subgroup we can avoid taking any singular limit. This is
the case because under the vector gauge transformations
(3.7) any point in the group element A, =e™*™ is a fixed
point, i.e., 8x i=0,Vi. Then ifin

I(h,, A)= [ d*2(13x,;3x'+iA4,dx'—i4,3x")

we shift A,— A, +i/43x; and A;— A, —i/4dx; (this is
not a gauge transformation) we can absorb the bilinear in
the x’s term and then (4.2) takes the form of (4.1) with
a=ky and vi=x' The redefined 4, 4 have the same
transformation properties as the old ones and they are
the ones to be used in S(X, 4, 4).

B. Relation of G{ /H to non-Abelian duality

Let us uncover the relation of the gauged WZW model
for the coset Gy /H that we considered in Sec. III to the
class of models one obtains via non-Abelian duality trans-
formations performed on the background corresponding
to the WZW model for the direct product group
H®U(1). In particular we will consider non-Abelian du-
ality transformations with respect to the group H itself.
Since we do not want to leave the coordinates corre-
sponding to the factor U(1)’ inert under the duality trans-
formation we embed the model into a larger one for the
group G that contains H as a subgroup. In this way the
gauge transformations are as in (3.7), with the a%®s
parametrizing the original U(1) factors whose number is
obviously restricted to be / =dim(G /H). The gauged in-
variant action we start with is [cf. (4.1)]

S:BIo(hx,AH-if d’z[Da-Da+2i Tr(vF )],
27 Vs

(4.14)

9This coset was also considered in [61,62] for the case k, =k,
where the geometry of the resulting o model is easier to inter-
pret. Obviously, in this case correspondence with non-Abelian
duality cannot be made.
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where all the necessary definitions are given by (3.6). Integrating over the gauge fields one obtains the dual action

S guat =B Io(hx)+ifzdzz[aa-ﬁa—2(LL8x“+avf+%miaaa“)(M +n+Lmm");(R1x"+0v/—tmi@a®)] | .

The induced dilaton is

®=Indet(M +n +1imm")+d, . (4.16)

A quick inspection (and taking into account the rescaling
as described in footnote 5) shows that if in (4.15) and
(4.16) we send B— —pB and h, —h,”! we obtain precisely
(3.10) and (3.11). In fact correspondence can also be
made for the “original” models one obtains by integrat-
ing over the Lagrange multipliers v”s in (3.4) and (4.14).
For the latter case the result is, as we have already men-
tioned, the WZW model for HeU(1)%m(¢/H);

S=BIO(hx)+%fzd2z da-3a . (4.17)
Varying (3.4) with respect to the v™”s and using the fact
that

F_=D(4—A), A=0hh™', A=0hh™',  (4.19)
we obtain the equation
Dh,h'+4—A4=0. (4.19)

Choosing the gauge fixing condition # =I one obtains
A=A=0and 4=—h_'0h,. After a little algebra (3.4)
becomes

- —1y4 @ 2 -3
S =—Blo(h; )+~ fzd z9a-3a , (4.20)

thus revealing the same relationship between the two
models we have already uncovered by comparing (3.10)
and (3.11) top (4.15) and (4.16). It appears as if the cen-
tral charge corresponding to the model (4.20) is not the
same as in (3.2); i.e., ‘“naively” it is c¢=dim(G)
+gxdim(H)/(B—gy). However, in order to correctly
compute it, one has to take into account the nontrivial
Jacobian arising from changing variables from
(A, A)—(h,h) in the path integral functional before the
gauge-fixing condition, A =1, is imposed. The Jacobian
regularized in a gauged invariant way [63] gives a factor

engIO(h;‘)

F= (detdd)dim(H) 4.21)

which shifts the value of f—B+2g; in (4.20). Thus the
central charge is given by

_ —(B+2gy)dim(H)

+2dim(H)—2dim(H) ,

+dim(G /H)

which produces the correct central charge as given by
(3.2). In the previous expression the second term is due
to the a®s and the last two terms due to the contribu-
tions of the v”s and the factor det(33)%™# in (4.21) [they

(4.15)

—

cancel because each factor corresponds to dim(H) in-
dependent (b,c) systems of conformal weight (0,1) but of
opposite statistics]. Therefore we have proved the rela-
tion

Gf /H<>dual of H® U (1)4m(G/H)

with respect to H (vector) , (4.22)

with the specific relation between the central extension
parameters that have already mentioned. The
equivalence relation (4.22) is very similar to (4.4). In fact
it seems that it can be directly deduced from it, without
having to go through the explicit computations of this
subsection. However, this is not true because there is a
double correlated limit to be taken on the left-hand side
of (4.4) instead of the simple one ky— . Also (4.22)
holds as a true equivalence relation (at least locally) be-
tween the two theories on the left- and the right-hand
sides, whereas (4.4) [and (4.3)] should be thought of only
as a way to reproducing the starting action for non-
Abelian duality transformations (4.1) from actions corre-
sponding to better understood theories. Let us also stress
that (4.22) is nontrivial in the sense that the actions
describing the two sides of it, namely, (3.4) and (4.14) ap-
pear quite different from one another.

V. CONCLUDING REMARKS AND DISCUSSION

In this paper we have been studying limiting cases of
WZW and gauged WZW models based on simple groups
both at the algebraic and the o-model action level. The
resulting models after the limiting procedure is per-
formed are WZW and gauged WZW models based on a
certain class of non-semi-simple groups. We have seen
that there is an intimate connection between these models
as well as non-Abelian quotient models, and the models
one obtains via non-Abelian duality transformations.
This correspondence facilitates a lot the systematic com-
putation of the a' corrections to the semiclassical results
of the non-Abelian duality transformations, as we have
already seen. A more difficult question to be answered is
how the spectrum of the dual theory is related to that of
the original one. In that case relations such as (4.3), (4.4),
and (4.22) are potentially useful.

A motivation for studying gauged WZW models based
on non-semi-simple groups was that according to the re-
sults of [35] for the coset E$/U(1), the o-model back-
ground fields corresponding to the Gj /H cosets might be
possible to be mapped to nonsingular ones, even though
themselves may have curvature singularities. In other
words, even though the original background for the coset
(G®H)/H cannot be dual to a nonsingular one (for in-
stance, the charged 3D black string is dual to the neutral
one and vice versa [64], but both backgrounds have cur-
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vature singularities), the one corresponding to the “‘con-
tracted” coset Gj /H can. This would have been a possi-
ble and quite general way string theory deals with gravi-
tational singularities (although the latter are not peculiar
from a CFT point of view [38,10]). We partially succeed-
ed toward this goal. In the case of an Abelian subgroup
H of a general group G it is shown in Appendix A that it
is possible to map the curved singular backgrounds to flat
spacetimes with constant antisymmetric tensor and dila-
ton fields under an Abelian duality transformation. The
reason that for the non-Abelian case we were not able to
make a similar statement is that, in view of the connec-
tion to non-Abelian duality transformations, such an “in-
verse” transformation is not known how to be performed
and as we have already mentioned the symmetry of the
dual background is much less than that of the original
one. Thus finding a way to define the ‘“inverse” non-
Abelian duality transformation will give a definite answer
to whether or not such a desired mapping is possible.

A natural question is whether or not the construction
of [32] and the similar one in Appendix B exhaust all pos-
sible non-semi-simple algebras with a sensible action
description. It will be desirable, for instance, to find the
action corresponding to the CFT whose Virasoro con-
struction is given by (2.20), using possibly the actions of
[49-51]. We should also mention that in [65] a formal-
ism for constructing WZW models based on non-semi-
simple groups that generically give rise to noninteger
values for the central charge was proposed. For the
models of [32] this formalism corresponds to a shift of
the constant /3 defined in (2.3) and it gives no new results

(the essential reason for that is the fact that QT’ T =0). It
will be of interest to search for models where the results
of [65] are applicable in a nontrivial way.

Note added

After the completion of this work we received Ref. [66]
which proves that there are no Sugawara-like construc-
tions (with respect to which all currents are primary
fields with conformal weight one) based on non-semi-
simple algebras that give rise to noninteger values for the
central charge along the lines of [65].

We would like also to suggest a possible explanation
for the origin of a problem with non-Abelian duality that

j

axial —
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was noted in [28]. In that paper the three-dimensional
symmetry algebra of the spatial part of the metric in
which the non-Abelian duality transformation is per-
formed admits no Sugawara-like construction. One can
easily prove that by a direct computation or by using the
result of [66] according to which the only such three-
dimensional algebras are su(2), sl(2), and u(1). That will
give rise to a conformal anomaly [28] when we perform
the non-Abelian duality transformation since the assump-
tion that the currents coupled to the gauged fields in the
action scale with dimension one is not satisfied at the
quantum level. A better and detailed understanding of it
is important but beyond the scope of this note. I would
like to thank R. Ricci for motivating me to think about
this problem.
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APPENDIX A: AXIAL GAUGING

In this appendix we consider the case of the axial gaug-
ing. This is anomaly-free when the gauge group is Abeli-
an, i.e., isomorphic to U(1 )%. We will show how the ac-
tion for the gauged WZW models Gj/H in the axial
gauging can be obtained directly from the action of the
gauged WZW models (in the axial gauging as well) for
the GeU(1)?/U(1)¢ through a limiting procedure and
also how duality transformations can be used to map the
final 0 models (with curvature singularities in general) to
fat spacetimes with constant antisymmetric tensor and
dilaton fields. For the former models the group element
is parametrized as in (2.8) with h, =e'7*. In the axial
gauging the corresponding action is given by (see for in-
stance [38,61,10])

S=1I,h 'gh)—I,(hh), (A1)

where h,h are groups elements in H~U(1)?. Defining
A =03hh ' and A=3hh ' and shifting A, — A4, —idx,
(this will, among other things, effectively change the
coefficients 3;— —f3; below) we obtain with the help of

(2.11) and (2.13) the action

S “—l—f d?*z{ada-da —B;dx;0x; +iA,[a(2dv; —m;,0a*)—2pB;dx;]
2r Y

—id;[a(28v; +m;,da*)+2B,3x; 1+ A [a(mm"),; +4B,8,14,} ,

(A2)

where the summation over repeated indices is implied. This action is invariant under the infinitesimal gauge transfor-
mations [in fact (A2) can be cast in a similar to (3.4) form, i.e., as the first two terms with covariant derivatives replacing

the ordinary ones plus the Lagrange multiplier term]

J— a— a
dx;=2€; , 8a"=m? ;

€, 8v,=0, 8A4,=ide; , 8A,=i0¢; .

(A3)

Let us next consider the action for the axially gauged WZW models (G® U(1)9) /U(1)%

S=k10(g)+£f2dzz[ Adgg ~'—Ag 'ag+ Agdg '+ AZ]+%fxdzzk,-[%ayﬁ‘y,+iAi§yi—iza'yi+2AfZi .
m

(A4)
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where the y,’s parametrize the U(1)? factor in G® U(1)?. The above action is invariant under the infinitesimal axial

gauge transformations

dg={g,ie} , 8y,=2,, 8A4,=id¢; , 8A,=—i0e; .

i
The group element g € G is parametrized as

g =ei\/2ea-Re26iu~u .

(AS)

(A6)

Using the expansions in powers of € [very similar to the ones in (2.23)],
g '9g=iV2€da R +i€[29v-u —da’m 'u; +a%afS 4R, 1+0(€?)

dgg ~'=iV2€da-R +i€[20v-u +3a°m 'u;—a®3a’S 4'R 1+ 0(€?) ,

(A7)

Tr(AgAg ~')=A;4;+eA,(mm"); 4,+0(€*) , Io(g)=f_—fzdzz da-da+0(%?),

choosing the gauge-fixing condition y; =0, i=1,2,...,d
and letting

k=2 | k=p—-2, (A8)
2e

2e

we find that the action (A4) in the limit €e—0 becomes the
action (A2) in the gauge x;=0, i=1,2,...,d. Notice
that in (A2) the v”s enter as Lagrange multipliers (up to
an important total derivative [8,9]) for Abelian duality
transformations in agreement with the general discussion
in Sec. IV. Moreover, since the duality transformations
are Abelian it is apparent that the final ¢ model one ob-
tains by integrating out the gauge fields will have dim(H)
Killing vectors along the v! directions; i.e., it will be in-
variant under the constant shifts v'—v‘+é€' (in the non-
Abelian case this symmetry gets replaced by a nonlocal
one [26]). By gauging this symmetry or in other words by
performing the inverse duality transformation one ob-
tains the background, in flat spacetime, described by (A2)
after setting the gauge fields to zero (for a nice proof that
two successive duality transformations corresponding to
the same Abelian isometries lead to the original model
see [26]). This is generalization of a similar statement
made in [35] at the o-model level (after integrating over
the gauge fields) for the case of E5/U(1) which was shown
to be related to the D =3 black string SL(2,R)® R /R.

APPENDIX B: CONTRACTION OF GRH®H'

In this appendix we construct new WZW models based
on non-semi-simple groups via a similar to the Sec. II
limiting procedure. Let us consider the WZW model for
G®H®H' where G, H, and H' (H,H' are assumed iso-
morphic) are groups and as before G should contain a
subgroup isomorphic to H and H’. We choose a basis
for the currents: §={u;,R,}, h={v;",v;"}, where
i=12,...,dim(H) and a=1,2,...,dim(G/H). Above
gand h belong to the current algebras associated with the
WZW models for the groups G and H® H', respectively.
The OPE’s for g are given by the corresponding ones in

(2.1), whereas those for % are
Lo fyfd KTy
R 20
w (z —w)
ek — _ (B1)
. - ifitug k™~ ny;
VY~ 5 -
z—w (z—w)

[
The corresponding energy momentum tensor and the as-
sociated central charge are

_ wu’+R% w1 w3:
2kgtgg) 2k, +gy) 2k,tgy)’
B2
kedim(G) | kydim(H) _ kydim(D) (B2)
c= )
ke tge kitg k,tey
where the currents (v;); =(v;*+v;7)/2 and

(v,);=(v;* —v,7)/2 generate two commuting copies of
the Kac-Moody algebra with levels k,=(k"+k~)/2
and k,=(k* —k 7)/2, respectively. Next we define

—_ — -+
T,=u,+v", F=elu;—v"),

P,=V2eR,, S;=V2ev, —LF,,
a

(B3)
k¢=XB+a/e), kT=LB—a/e),
_ 1
kT=——vy,
\/26y

and take the singular limit e—0. In this limit we discov-
er a new current algebra not equivalent to the original
one because the transformation (B3) is not invertible in
that limit. The OPE’s of the new current algebra one ob-
tains this way are given by (2.4) and the additional ones

ek
SS ~ ifij Fy —an;
i~j _ _ 2
z—w (z—w)
ek (B4)
ifij"Sk
T1S~——-
z—w

We see that the current generators S; although they have
a different index structure are very similar to the P,’s and
that the constant ¥ drops out completely. The corre-
sponding energy momentum tensor and the associated
central charge are

T

- :P2—S2+2FT: _ B+gs+2gy F2.
2a 2a2 -

. (BS)
c¢=dim(G)+2dim(H) .

The OPE’s in (B4) define the quadratic form
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Py T; 5 F;

P,|a/Bnys O 0 0
Q=T 0 i 0 a/Bn; | »

S; 0 0 —a/Bn;; 0

F, 0 a/Bnij 0 0

(B6)

which by construction shares all three properties that are necessary if it is to be used to write down a WZW action (it is
symmetric, a group invariant and invertible). Sparing the details we will give the final expression for such an action. In

the parametrization where

g:eib'Seineithx (B7)
the WZW action, whose symmetry current algebra is given in (2.4) and (B4), reads
_ a 2 X AT a_ hpi X
S(g)=pBIy(h, H—Efzd z[da-da —db-3b +(23v; +m;,da b;;0b’)R},dx"] , (B8)

where b;;=fy;b*. Similarly to (2.18) the action (B8) de-
scribes string backgrounds in dim(G)-+2 dim(H) space-
time dimensions with dim(H) null Killing vectors associ-
ated with the coordinates v’. The coordinates b’ and a®
enter the action in a similar way although they have a
different index structure. If H is Abelian the theory be-
comes equivalent to Gf®@ R4™ ) Tt is better to analyti-
cally continue S; —iS;. In that case and for G, H compact
groups (a,B>0) the signature of the spacetime of (BS)
has dim(G)+dim(H) positive and dim(H) negative en-
tries.

APPENDIX C: PLANE WAVE SOLUTIONS

Let us, in (2.18), consider the case of G =SO(d +2)
and H =SO(2). In this case there is only one timelike
coordinate. Also to agree with widely accepted conven-
tions in the literature we use the symbol u for the single
parameter in A, €SO(2). The invariant subgroup SO(d)
after the contraction gives rise to d (d —1)/2 decoupled
free fields in the action (2.18) which we shall ignore.
After a shifting in v, to absorb the du du term, and a re-
scaling we obtain the action

S=%fzdzz[28v5u +aa;5a;+eaﬁaaga;3§u] , (C1)

where a,f=1,2 and i =1,2,...,d and as usual summa-
tion over repeated indices is implied. Of course for d =1
this is the result of [31] and the corresponding CFT is the
current algebra for E§. Also notice that (C1) is not the
action for just the direct product of d E§ models. A
straightforward extension of the change of variables used
in [31]

ai=x{+x}cosu , ai=x}sinu ,

- (C2)

v—v+1xix}sinu ,
gives the final form of the action

S=£f d?z[20vdu +dx | dx} +0x50x}

2w Vs

+2cosudxidx’] . (C3)

f

This belongs to a class of plane wave-type exact string
solutions with a covariantly constant null Killing vector
that have been discussed extensively in the literature (see
for instance [67,68]). However, what is important here is
that there is also a CFT description for (C3) given by the
current algebra for SO*(d +2)§p(,), where the star im-
plies that we neglect the d(d —1)/2 free decoupled
fields, as we have already stated. For completeness we
give the corresponding OPE’s [cf. (2.4)]

i€ gP!
R
2w (z=w) (C4)
. idle  F 548
Pipj~—L
zZ—w (z—w)

and the Virasoro algebra stress tensor and central charge:

T=1(PLPL+2JF —dF?):, c=2d+1). (C5)

Finally, let us note that we may replace the trigonometric
function cosu in the last term in (C3) by sinu for some of
the x/’s (an arbitrary number of them). This can be
achieved by performing, for these x'’s, the transforma-
tion
i
1 1 1 1
x1—>x1+~si—n—; , X3— —Xx,cotu ,

- (C6)
v—v+1ixix; cotu .

Moreover we can replace the action (C3) by the more
general (and still conformal) one
S=—/3—f d?z[20vdu +3x x| +3x}dx}
27 Js 19X 20%;
+2cos(c;u+d;)dxdx5], (ex)!
where ¢;,d;, i=1,2,...,d are arbitrary constants and

where summation over all repeated indices is, as usual,
implied.
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