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Zero-slope limit of the compactified closed bosonic string
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We investigate, in the low-energy limit of the closed bosonic string theory, the role of the toroidal
compactification, in which the extra spatial coordinates are circular with radius R. We explicitly show

that the double limit a'~0 and R ~0, performed on the tree scattering amplitude of four massless sca-
lar particles, leads to four-dimensional amplitudes describing a diffusion due to the exchange of a scalar,
spin-1, and spin-2 particle and that it is not influenced by the compactification procedure adopted.

PACS number(s): 11.25.Mj

I. INTRODUCTION

String theories have to reproduce, at the "low-energy"
limit in which the slope a' goes to zero, the ordinary field
theories describing the fundamental interactions formu-
lated in a number of space-time dimensions coincident
with the dimensionality D of the space-time in which the
string is embedded (D =26 for the bosonic string). In or-
der to reduce this dimension to D =4 a compactification
scheme must be adopted. The aim of our work is to in-
vestigate the role of compactification in the low-energy
limit of the theory. In particular we explicitly show, on
the one hand, how, with a suitable choice of the
compactification procedure, string amplitudes reproduce,
in the above-mentioned limit, four-dimensional field

theory amplitudes and, on the other one, that the low-

energy limit is not influenced by the compactification
scheme adopted.

We will consider here the "toroidal compactification"
[1—3] of the bosonic closed string, in which 22 spatial
coordinates are compactified into circles with radius R
and the compactified space becomes a lattice which is re-
quired to be Lorentzian, self-dual, and even in order to
have consistency with the properties of the bosonic string
theory.

Constructing such a lattice yields the introduction of
Lie algebra lattices where the massless states which arise
from the toroidal compactification lie on the root lattice
and belong to the adjoint representation of the gauge
group relative to the algebra.

After having endowed the theory with the above
compactification scheme, the limit a'~0 makes all the
massive modes uncouple giving rise to a description in
terms of only massless states.

In particular we consider tree scattering amplitudes of
four massless scalar particles. We perform the double
limit a'~0 and R~0, keeping the ratio a =R/~a'
fixed; in so doing, we obtain amplitudes corresponding to
the difFusion of four scalar particles due to the exchange
of a scalar particle (A,P theory), a spin-1 particle (scalar

electrodynamics), and a spin-2 particle. In particular,
this latter amplitude is coincident with the one obtained
in the framework of linearized quantum gravity. An
analogous computation was performed in the context of
the generalized dual Virasoro model [4].

The article is organized as follows. In Sec. II we recall
some generalities about the toroidal compactification and
its connections with Lie algebra lattices; we mainly stress
the properties enjoyed by the lattice on which the closed
bosonic string theory is compactified. In Sec. III we give
the definition of compactified vertices. In particular we
write them for massless scalar particles. By using this
helpful version of vertex operators, we compute the tree
scattering amplitude of four scalar particles in the
compactified space-time, on which it is then performed
the double limit a' —+0 and R —+0.

II. TOROIDAL COMPACTIFICATION
AND LIE ALGEBRA LATTICES

The toroidal compactification consists in associating
the d internal extracoordinates of the string to d circles
having radius R, with i =1, . . . , d; this can be done by
identifying the points of the internal space as follows:

X =—X +2',
where I =1, . . . , d and

' 1/2

g n, R, e,

n; EZ being a so-called "winding number. " The vectors
e; =—(e, . . . , e; ) are linearly independent and normalized
as follows:

e--e. =2 .

The quantities i. 's can be thought as components of a
vector defined on a d-dimensional lattice A which admits
as a basis the set of vectors [Q—,'R, e,. I with i = 1, . . . , d.
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It follows that the torus on which we compactify is the
quotient space: P=

' 1/2 a'
' 1/2

pz

X (z,z)=X (z)+X (z),
with

I I

Xr (z)=xL i —
p~ lnz+i

2 n40
' 1/2a'

2

I

Xrr (z ) =xrt i —
pri lnz+ i r —.—a„z

neo n
(2)

dR
2mA"

One gets the following mode expansion for the
compactified string field X [2,3]:

' 1/2
d

pn=gm;
i=1

d

e,
' ——g n,

2
R

Ci.

lies on an even lattice I dd, after having chosen the
metric of the lattice to be of the form [(+1),( —1) ]
(Lorentzian lattice); furthermore, modular invariance
forces such a lattice to be self-dual too.

Another condition that must be imposed on the lattice
comes from the following considerations.

By analyzing the lattice I d d it turns out that the right
and the left components of the bivector P can be written
as

where

x' = -x'+ Q',1 a'
2 2

1/2a' d

pr =pm; a

x =—x — Q
r & I
R 2 2

Q being the operator canonically conjugate to I. , here
introduced in order to define completely independent left
and right sectors [3];furthermore,

I I LI

(9)

Equations (8) and (9) can be generalized by adding a
constant background antisymmetric tensor field 8; to the
usual action of the bosonic string: this operation is neces-
sary to get more general and larger gauge groups [2,3].
Taking into account this generalization we can rewrite
the components of the bivector P as

The following commutation relations hold:

1/2a' d

pri=g m;

T

&a' «r 1
d R

with all the other commutators vanishing. The
compactification of the internal spatial coordinates im-

plies that also the momenta p 's, representing the transla-
tion operators of those coordinates, lie on a d-
dimensional lattice that is the dual of the lattice A and it
is denoted by (A )'. i.e.,

mr i/2 y
' e«r

1R;
(3)

I I

L —1=0 = p +Pf —1.0 4 4 L

Equations (4) and (5) can be rewritten as
r I

m = (pri +pr )+N +N —2,

(5)

I

N —N= (pr —
pr~) . (7)

From here it is possible to observe that the bivector

the vector e,
* being the dual of e;. A basis on such a lat-

tice is given by the vectors [(&2/R, )e; ]. In this
compactification scheme, in which we consider R, =R
Vi =1, . . . , d, the constraint conditions of the bosonic
closed string become

CX 2 O,'I —1=0 m = p +%—10 4 4 R

d—g B;,n,

1/2a' d I da «r+1 ~ R
p. =Km; R; +—2X' ~—, e

i=1 i=1 a'

fhe basis vectors in I ~ are evidently (&a'/R)e, ' and
the dual ones are (R /&a')e;.

In the double limit a'~0 and R ~0, pz and pR will be
well-defined quantities only if the ratio a =R/&a' is
kept fixed [5]; in particular we choose a =1 [1]. This
choice leads to a rational lattice.

In conclusion, the lattice on which the theory is
compacti5ed xnust be Lorentzian, self-dual, even, and ra-
tional.

It is known that a large class of such lattices can be
constructed in R ' considering the set of all vectors of
the form (u&, uz) so that u, and uz belong to the same

conjugacy class of a semisiinple Lie algebra of rank d [3].
By evaluating the double limit R =v'a'~0 on the

equations (6) and (7) one has that the only particles with
finite masses which survive are massless particles for
which the norm of the components of P is null or equal
to 2. In particular, these latter are by definition lattice
roots. Roots include in any case those of the Lie algebra
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used in constructing the lattice, but in some cases there

may be additional norm 2 vectors in the other conjugacy
classes.

We are going to compactify on a lattice where all the
norm 2 vectors belong to the root lattice of a simply laced
Lie algebra. On this kind of lattices the scalar product
between the vectors, which survive after performing the
double limit, takes integer values. This will greatly sim-

plify our computation.
A possible lattice satisfying the above requirements is

I d d
=I d (3) I d with I d

=E~|3)E8 E6,' however, there ex-
ists a large class of Lorentzian, self-dual, even, and ra-
tional lattices that well suit our problem.

III. COMPACTIFIED VERTICES AND
LOW-ENERGY LIMIT OF SCATTERING AMPLITUDES

We are going to consider scattering amplitudes involv-
ing scalar particles. These come from the levels reported
in Table I, together with the corresponding norms of pR
and pL.

In order to compute those scattering amplitudes, we
are going to consider a compactified version of the vertex
operators V&(z, z) providing the amplitude for the emis-
sion of a state P in the string spectrum.

Compactified vertices can be obtained from the ordi-
nary ones through simple correspondences; for example,
the compactified vertex relative to the scalar particles be-
longing to the level N =N=O is the naive version of the
compactified tachyon vertex:

V (I k I . —4 . ik.X(z,z) ' R' n)z)P, R, L, ,Z, Z)=.8 ' e 8

where X"(z,z ) is the usual string field, with
p=1, . . . , 26—d; XR and XL, with I =1, . . . , d are the
field defined in (2). The state corresponding to Vo is
defined, as usual, through the limit

lim Vo( k, k)t, kL, z, z )
~
vacuum ) .

z, z~p

Conformal invariance requires Vp to be a conformal
field with dimensions 6=6= 1; since the following
operator product expansion holds between Vo and the
stress energy tensor,

T(z)V~(w, w)=

one has

k +k2= 4
R

1 a.+
Z W

I

(k +k2)
4

Vo(w, w},
(z —w)

with a similar relation holding for the antiholomorphic
sector. This shows again that for massless scalar parti-
cles one has k =0 and k„=kL =4/a'.

These considerations suggest to introduce a general
vertex, which is nothing but a linear combination of the
vertices relative to the massless scalar particles intro-
duced in Table I:

V =. )k X~zz)[ ' &' & '+g.g X ( }][ '"I I. +g.g g (
—

))

where g and g are polarization vectors defined in the compactified space.
By using the version (10) of the vertex operators it is straightforward to compute the tree scattering amplitude of four

scalar particles in D dimensions, by using the operatorial formalism of the ¹tring vertex [6] (see Fig. 1):
(a'/2)k3 k4+n34 (a'/2)k& k3+n23 (a /) 3 4'+n34 (a'/2)k& k3+n&3A =No dzdzz 1 —z

where Np is a suitable normalization constant dictated by
unitarity and given explicitly by

2Np= —
gD

2

with gz being the D-dimensional coupling constant
[8—10], related to the 26-dimensional one and to the
cornpactification radius by

g =g (2m.R )

Furthermore,

a'
n, = kR,- kR. ,

these operations make the sum of all the terms involving
g and g null.

Equation (11}can be considered as a generalization of
the dual Virasoro amplitude; its dependence on the lattice
is entirely contained in the variables n; . These are
characterized by taking integer values, as we have previ-
ously seen as a consequence of our choice of the lattice.
On the other hand, conservation laws of the ending
numbers and the compactified momenta [7] imply the
constraints

TABLE I. Levels providing scalar particles and correspond-
ing norms of the right p& and left pL momenta.

a'
n,-.= kl, -kL - .

Equation (11}has been obtained by performing an aver-
age on the polarizations and a sum on all the possible
values of the Lie algebra roots is understood; both of

N 2
Pz

4/a'
4/a'

0
0

2
PL,

4/a'
0

4/a'
0
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A «„(s,t, u ) =Non.

I

I — s +n23+1

aI S —n 3

1

- t +n34+1

aI t —
n34

FIG. 1. Labeling of the four interacting scalar particles.

aI ——u+n +113

aI —u —
n13

(15)

from which

13+n23+n34 = —2

and

I I

1.e.,

—2~n ~2.
1J

(12)

(13)

Equation (15) corresponds to Eq. (14) in which the vari-
ables n; and n; are interchanged.

The amplitude (14) has poles compatible with the mass
formula (4). Analogously the amplitude (15) has poles
consistent with the constraint (5).

We are now interested in performing the limit a'~0 of
the scattering amplitudes (14) [or, equivalently, of (15)].
Taking into account the possible values of the variables
n;. and by using the analytic properties of the I function,
it is straightforward to obtain the following result in the
limit a' —+0:

A(AP )+ A(AP )+ A(sPin ()+ A(sPin 2)
tree $»Q tree tree tree tree

Analogously —2 ~ n; ~ 2. Furthermore, since the lattice
can be chosen in such a way that the vectors ltR, are
roots of the Lie algebra used in constructing the lattice,
the scalar product between two of them must be integer.

By using standard techniques it is possible to write Eq.
(11) in the form

with

g (A(II( ) 2
tree D

= —2 g —+—+-(g 3) 4 2 1 1 1
tree i D

(16)

A««(s, t, u)=Non.I — s+n +1a
4 23

a'
I $ n23

(spjrl 1) 2 2 Q +t + $ +Q + s +t
tree D

= g (18)

I — t+n +1
a'
4 34

I
(spjg 2) 2

a 2 tQ + SQ + St

4 gD (19)

aI t —
n34

I

I — u +n13+1

aI u —n13

(14)

Equation (14) holds if at least two of the differences
n, - —n,-- are non-negative. Otherwise, one gets

Equations (17), (18), and (19) represent amplitudes of
scalars interacting through the exchange, respectively, of
a scalar (A.P theory, with A, =2(4/a')gd ), spin-1 ("scalar
electrodynamics" ), and spin-2 particle (quantum gravity).
The constant value (16) can be interpreted as a tree dia-
gram of an "effective" A,P theory, coming from a tree di-
agram of a A.P theory on which the double limit pro-
duces an ultralocal limit of the propagator.

By comparing the amplitude (19) with the analogous
one computed in quantum gravity, we can obtain a rela-
tionship between the string coupling constant gD and the
gravitational coupling constant G~ in D =4 dimensions:
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16mG~
84=

Q

This expression coincides with the one already known in
literature [10].

In conclusion we have explicitly shown that
compactification of the closed bosonic string theory
reproduces only in the double limit u' —+0 and R ~0, at
the tree level, the ordinary field theories. We would like
here to stress that in our work specifying the lattice has
resulted to be unnecessary: hence, at least at this level,
compactification does not inhuence the low-energy limit.
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