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Classical open string models in four-dimensional Minkowski spacetime
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Classical bosonic open string models in four-dimensional Minkowski spacetime are discussed. Spe-
cial attention is paid to the choice of edge conditions, which can follow consistently from the action
principle. We consider Lagrangians that can depend on second order derivatives of world sheet co-
ordinates. A revised interpretation of the variational problem for such string theories is given. We
derive a general form of a boundary term that can be added to the open string action to control
edge conditions and modify conservation laws. An extended boundary problem for minimal surfaces
is examined. Following the treatment of this model in the geometric approach, we obtain that clas-
sical open string states correspond to solutions of a complex Liouville equation. In contrast with
the Nambu-Goto case, the Liouville potential is Snite and constant at world sheet boundaries. The
phase part of the potential de6nes topological sectors of solutions.

PACS number(s): 11.25.—w

I. INTRODUCTION

There is a common conviction that in order to gain
more insight into the dynamical structure of QCD we
need most likely to use some string representation of this
theory. This is suggested by the topological nature of
1/N expansion [1], the area confinement law found in
the strong coupling lattice expansion [2], the success of
dual models in the description of Regge phenomenology,
and the existence of flux-line solutions in confining gauge
theories [3, 4]. More arguments are presented in recent
reviews [5, 6].

In spite of numerous works, there is still a state of con-
fusion about the existence of an exact, or even approxi-
mate, stringy reformulation of four-dimensional QCD at
all distance scales. Even at any specific scale, it is not ev-
ident what the adequate set of string variables and 6elds
is and how they correspond to QCD gauge fields. Refer-
ring only to a long-distance scale we usually adopt the
naive, but lucid, picture of a flux tube regime. A pair
of quarks in the confining phase is joined by a color flux
concentrated in a thin tube. If these quarks are kept
suKciently far apart, the flux tube behaves like a vibrat-
ing string. Using string variables as collective coordi-
nates, one should in principle find flux tube excitations
by some quantization of the string action. The question
of what kind of the string action should be employed to
represent the flux tube has yet to be answered. It is con-
ceivable that to the lowest order the action is just given
by the Nambu-Goto action, which decribes an infinitely
thin relativistic bosonic string with constant energy per
unit length. As is well known, we cannot be satis6ed
with this 6rst approximation because of some unaccept-
able features of the quantized Nambu-Goto string. Apart
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&om the problems with conformal anomaly outside the
critical dimension or tachyons and undesirable massless
states in quantum spectra (which are presumably less
exnbarrassing at the long-distance scale [7]), all standard
quantizations give the incorrect number of degrees of &ee-
dom if we confront it with QCD predictions [8].

Basically, there are two ways to modify the four-
dimensional Nambu-Goto action. In the 6rst approach,
keeping the conformal invariance we can place additional
fields on the world sheet [9, 10]. The conformal anomaly
can be saturated due to the contribution of new confor-
mal fields. Since we can hardly justify the assumption
that only massless degrees of &eedom are important at
the hadronic scale, so the respecting of conformal sym-
metry is here rather a compromise to make our theory
mathematically tractable. The second kind of modi6-
cation of the Nambu-Goto action, advocated in many
papers (e.g. , [11]),is to introduce new action terms rep-
resenting interactions between transverse string modes.
The fact that Regge trajectories derived directly &om
fundamental quark models [12—14] depart somewhat from
straight lines is a strong argument that vibrating string
modes cannot be considered as free. Next, some cou-
plings between these modes (short-distance interactions)
would cause preferable smooth string world sheets, lead-
ing to a well-de6ned quantum theory. Unfortunately, all
such string "self-interaction" terms involve higher order
derivatives in their Lagrangians. Theories with higher
order derivatives usually reveal embarrassing pathologi-
cal features, such as a lack of the energy bound, tachyons
already on the classical level, and unitarity violation due
to the presence of negative norm states. Presumably, it
means that one must regard any particular effective the-
ory of this type with a limited range of validity. From
the technical point of view, such theories of strings are
nonlinear and cannot be linearized by a suitable choice
of gauge. Subsequently, a string cannot be described as
an infinite set of oscillators and there is no analogue of
the Virasoro algebra. The conformal symmetry is usu-
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ally spoiled. All that makes the evaluation of physical
observables technically diKcult.

In this paper we discuss possible modifications of the
Nambu-Goto model (or any other specific bosonic string
model) by the change of boundary conditions for open
strings. This aspect is not well explored in the literature,
even though the choice of boundary conditions can be
crucial for defining relevant open string models. Let us

give some examples.
Taking the usual hadronic string picture, we assume

that quarks live only at the opposite end points of the
string and communicate through their couplings to the
string between. Then, to some extent the choice of world
sheet boundary conditions determines quark trajectories.
For instance, in the classical Nambu-Goto model they are
rather peculiar, being boosted periodic lightlike (null)
curves. Undoubtedly, the unsolved problem of how the
quark masses and quantum numbers (spin, color) couple
to the string variables partly lies in the proper specifica-
tion of string edge conditions.

It is obvious that any internal symmetry of the world
sheet is necessarily broken when world sheet boundaries
are included. Conformal transformations or the full set
of all reparametrizations are examples of that. Corre-
spondingly, conformal field theories defined on surfaces
with boundaries are usually endowed with only one copy
of Virasoro algebra (instead of two, as for closed sur-
faces). Recently [10], on the same basis the chiral sym-
metry breaking mechanism has been included in hadronic
string models. This simple observation that the existence
of boundaries restricts the group of local world sheet sym-
metries indicates that physical observables can essentially
depend on fields or currents evaluated on string bound-
aries.

One of the straightforward calculations to test some
open string models against /CD expectations is to eval-

uate the static interquark potential. Asympotically at
the long-distance scale, this potential is linear and its
slope can be related to the string tension. The first
quantum corrections give a universal Coulomb term [15]
(Casimir efFect), being the function of the number of
world sheet fields and. of their boundary conditions. In an
approximation of the Hux-tube action by some conformal
string theory, one can represent the boundary conditions
by the set of relevant conformal operators inserted at
the boundaries [16]. The physical states are now con-
structed with the help of both bulk and boundary oper-
ators. The Coulomb term depends on the efFective con-
formal anomaly [17], being the total conformal anomaly
diminished by the weight of the lowest state. This weight
is sensitive to the choice of boundary operators [9].

The inQuence of world sheet boundaries on critical
string field theories has been discussed in recent papers
(see [18,19] and references therein). In the framework of
the Becchi-Rouet-Stora-Tyutin (BRST) formalism in the
critical dimension, we can consider either Neumann-type
(e.g. , standard Nambu-Goto edge equations) or Dirichlet-
type boundary conditions imposed on world sheet coor-
dinates. With Dirichlet conditions we have no physi-
cal open strings, but the closed-string theory is radically
modified, particularly the massless spectrum. Instead of

characteristic exponential fall-oK of fixed-angle scattering
amplitudes for string models at high energies, we obtain
for Dirichlet strings powerlike behavior, like for parton
models. %e see here that the special type of world sheet
boundaries, where these boundaries are mapped to single
spacetime points, implies that some pointlike structure

may appear at high energies.
In this paper we restrict ourselves to discussing open

bosonic string models defined by local Lagrangian densi-
ties that can depend on second order derivatives of world
sheet coordinates. In Sec. II we present general formu-
las suitable to perform classical analysis of such string
models. In comparison with earlier works on this sub-

ject, a difFerent interpretation of the variational prob-
lem for string actions with second order derivatives is
given. Moreover, all derived classical formulas are explic-
itly covariant with respect to reparametrization trans-
formations. In Sec. III we derive a general form of a
boundary term that can be added to the action, al-
lowed by requirements of Poincare and reparametriza-
tion invariances. Such a term can modify edge condi-
tions for open strings while bulk equations of motion
are preserved. Canonical conserved quantities are mod-
ified by some edge contributions. Section IV is devoted
to the classical analysis of the string model defined by
the Nambu-Goto action with some new boundary terms
added. It is argued that such an open string model can
be a suitable modification of the Nambu-Goto model as
far as hadronic string interpretation is concerned. We
carry out the classical analysis using the geometric ap-
proach, which is particularly convenient for our purposes.
The classical open string configurations that extremize
the extended action correspond to solutions of a complex
Liouville equation. The relevant edge conditions for a
Liouville field are derived. The edge values are con-
stant and finite there. Some preliminary discussion about
physical consequences is made. In the Appendix, the no-

tation used throughout the paper is introduced and some
basic mathematical definitions and equations of surface
theory are collected.

II. STRING LAGRANGIANS WITH SECOND
ORDER DERIVATIVES

= g'—gZ (g;X„;t7 Vt,X„), '
(2)

In this section we introduce some general formulas per-
taining to the classical analysis of string models defined

by Lagrangians which depend on second order derivatives
of a world sheet radius vector. In comparison with pre-
vious papers (e.g. , [20, 21]), all formulas presented below
are explicitly covariant with respect to the reparametriza-
tion, and especially with the correct derivation of edge
conditions for open strings.

Let us consider the general form of the bosonic string
action:

T2

d~~string
1 0

It is convenient to represent the Lagrangian density as

~string: ~string (Xy. ,a j Xpab),
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where 8 is some scalar function made up of its speci6ed
arguments. Having the string Lagrangian with second
order derivatives written down in the above form we can
much easier perform mathematical calculations and keep
the explicit reparametrization invariance in all following
steps.

To derive the classical equations of motion, we are to
evaluate the variation of the string action under the in-
finitesimal change of the world sheet. Usually, the fol-
lowing boundary conditions are assumed:

v —gV 11„=0,
where II„is given by the formula

II„=—ZV X„—„+2 s g V"X„M 88
BX~ Bg

BZ

8(V.VsX~)

(4)

For open strings, the edge conditions at cr = 0, vr must be
satis6ed:

BZ
g—II„+8 g— = 0, (6)

Ol'.

8(VgVgX&) (7)

For the sake of more convenient notation, here and
throughout the paper we define and calculate the vari-
ational derivatives of t: with the formal assumption that
g and y, V'OV'qX", and V'qVOX~ are independent
variables. Thus, all variational derivatives on the right-
hand side (RHS) of (5) are tensor objects with respect
to the reparametrization invariance. The covariance of
edge conditions becomes easy to check if we remind the
reader that in the presence of the world sheet bound-
ary any reparametrization transformation cr + o (v, o')
must satisfy

bX„(r;,cr) = hX„(~;,0) = 0, i = 1, 2 .

There is some subtle problem at this point. The
above requirements suggest the di8erent interpretation
of the variational problem in comparison with the usual
Nambu-Goto case. In (3), not only initial and final string
positions are fixed, but also the initial and final velocities
of string points. Therefore, if we consider some string at
the time wq, another string at the time w2, and some string
trajectory being a solution of Euler-Lagrange equations
which interpolates between them, the solution does not
extremize the string action unless we restrict possible de-
viations of the world sheet to those that do not change
its tangent vectors at the initial and 6nal positions. In
other words, the string instant state is specified not only
by its position, but also by its velocities. In fact, this
modi6ed interpretation is not true as the boundary con-
ditions (3) are not quite proper for the string variational
problem with second order derivatives. This point will
be clarified below.

The classical equations of motion following from (1)
can be presented in the explicitly covariant form

8(V.V&X~)

To prove the above identities for Lagrangians which in-
clude only scalar constant parameters, it is enough to no-
tice that the scalar (with respect to both reparametriza-
tion and Poincare transformations) function l: can be
composed of the "building blocks"

g, e"" (V VsX„)(V,VgX„)Xp,X g,

and refer to the trivial identities

(V VsX")X„,, = 0 .

V VgX"V,VgX„,

In general, the origin of identities (9) lies in the
reparametrization invariance of the string action (1). The
full set of all Noether identities [see (27)—(29)] following
from the reparametrization invariance of the string ac-
tion with second order derivatives has been derived in
[22].

Let us return to the problem of boundary conditions
(3) imposed on the variations of the world sheet. If we
assumed only that

bX„(~;,0) = 0, i = 1,2,
then using equations of motion (4) together with edge
conditions (6) and (7) we would obtain the following re-
sult for the variation of the string action:

S = dog —g b'X"
p 8 VpVpX&

If g = 0 or the surface is locally Hat then the following
term vanishes, or else we can choose parametrization in
such a way that the four-vectors (X„,X„',X„,X„')are
linearly independent at the point of the world sheet with

Then, we can write down the general form of
bX„asthe linear combination of these vectors:

be ——ayxp + a2X' + a3Xp + a4X'

On the other hand, the variation bX& induced by the
change of parametrization o M o + bu is given by

bX„=—X„bo.—X„'her

0 (v., 0) = 0, cr(v, vr) = n. .

It is necessary in order to preserve the condition that
the string parameter 0 belongs to the interval [0, m]. In
another case, performing the variation of the string ac-
tion we are forced to implement the variations due to
the change of the o interval, and the fact that the set of
allowed reparametrization transformations is restricted
for open strings manifests in additional Euler-Lagrange
equations.

The derivation of (4) from the standard Euler-
Lagrange variational equations is straightforward, so let
us only cite the following identities used in this deriva-
tion:
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~ ~

It means that the variations of X„in the directions of X„
and X„'are not important, because they can be removed
by the change of parametrization. In turn, if we restrict
ourselves to the "physical" variations of the world sheet,
then with the help of identities (9) we conclude that the
term (11) vanishes.

Therefore, there are two ways to define properly the
variational problem for string action functionals which
depend on second order derivatives. One way is to as-
sume boundary conditions (10) together with the addi-

tional requirements that the variations Sx„in the direc-

tions of X„andX„vanish, which in light of (13) means
that the choice of the parametrization of the world sheet
is locally fixed at boundary points v. = r, . Another way
is to take only the boundary conditions (10), as in the
Nambu-Goto case, and together with relevant equations
of motion and edge conditions we obtain additional equa-
tions

08
g

&(& & X )

——0 for w = ri ~ w2 ~ (14)

which have no dynamical content and impose only
some boundary constraints on the choice of world sheet
parametrization. Recapitulating, the interpretation of
the variational problem for string actions with second or-
der derivatives is the same as in the usual Nambu-Goto
case. To derive the classical dynamics of strings &om
the variational principle it is just enough to consider the
boundary conditions (10), i.e., to assume that the initial
and final string positions are fixed. The appearance of
the term (11) in the action variation and resulting equa-
tions reHect only the fact that the geometrical de6nitions
of the initial and final string positions are not invariant.

One more comment on the derivation of edge condi-
tions should be made. They are an integral part of equa-
tions of motion. They arise because in the variational
problem for open string world sheets the whole bound-
ary of the world sheet is not fixed (like in an ordinary
Plateau problem for two-dimensional surfaces), but only
a part of this being composed of the initial and Bnal string
positions. The other part of the world sheet boundary,
defined by trajectories of string end points, is not axed
(the ends of open strings are free). However, we can use
another equivalent method for the derivation of edge con-
ditions. In the variational problem we can dispense with
considering the edge variations (assuming that the whole
world sheet boundary is fixed), and the edge conditions
are produced when we demand that there is no How of the
canonical Noether invariants through the string ends. In
distinction with the Nambu-Goto case, for strings with
second order derivatives it is not enough to assure only
that the canonical momentum is conserved. %'e must
check the same independently for the angular momen-
tum, because of its "spin part" induced by higher order
derivatives. The comment on the latter method of the
edge conditions derivation is relevant to the recent work
of Boisseau and Letelier [23]. They make use of the in-
ternal geometrical description of world sheets to study
models of strings with second order derivatives. In this
approach, they gain some new insight into the content of

dynamical equations. However, their formalism should
be corrected for open strings. The set of edge conditions
derived &om the conservation of total energy-momentum
should be supplemented by additional conditions asso-
ciated with the total angular momentum conservation.
In particular, it changes some results of the work [23].
For example, the prediction that the end points of the
Polyakov rigid string can travel with a speed less than
the velocity of light is not valid. Just taking into account
the missing set of edge conditions, we check again that
these velocities must be lightlike, which agrees with the
independent proof of this fact given in [22].

In the last part of this section we write down formulas
for Noether invariants. The total momentum reads

P„= do.p„,
where

O ~string g
~ O ~string ~

ax" ' ox"
,o t,oo )

M
8(V' 7' Xi)

The total angular momentum can be calculated Rom
the formula

Mpv —— do.

mdiv

0

where

~string
mdiv = gtppv) + r Xv),a

t9X'"

—Oy
08

~" a(VoV, X-j)

III. BOUNDARY TERMS FOR STRING
ACTIONS

We discuss the general string action functional with
some boundary term added:

S= d O.C "'" — d o.O Vstring CL (17)

The stationarity of this action results in some equa-
tions for the interior of the string following from l'.,~"„-„,
and the role of the second action term is to ensure a
more general set of edge conditions for an open string
case. Below, we will find the general form of this term
allowed by requirements of the locality, Poincare, and
reparametrization invariance. %'e restrict ourselves to
string Lagrangians which depend on not higher than sec-
ond order derivatives, which implies that

OV
EXP,abc

,bc

The above identities give immediately the equations
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BV' BV' BV'

OV~ OV'
=BX "BX

,00 t01

s BA„» BB
BX» ' BX"

The above equations are consistent provided that

BA„ BA„
OX OX~

(24)

and their general solution is of the form

V ="'W'X" +ap, bc (20)

where F„„is some constant antisymmetric tensor. Con-
sequently, there exists a scalar function A(X»; X„)such
that

where A' and B are some arbitrary functions which de-

pend on X„andtheir first derivatives. The translational
invariance of the action requires that

A„= I'»„X—"+
1 „BA

Inserting this result in {23) and {24), after some
straightforward steps we get the general form of V:

B(BV)
BX»

(BV &

(BX») (21) B A+ I" X-"X"+e A'X» +Bn
t

BsA»

s (BA„„BA„
(BX" ' BXv )

(22)

Comparing (22) with (20) we obtain

BA» BA.
„

BXv BX (23)

therefore, there exists the function A„(X„;X„)such
that

(26)

where new arbitrary functions A'„and B depend now
only on the first derivatives of X„.The first term on the
RHS of (26) can be omitted, as it does not contribute to
BV.

The next step is to assure that the string action bound-
ary term in (17) defined with the general functional V
of the form (26) is reparametrization invariant. For
this purpose, it is convenient to use the Noether the-
orem for strings with second order derivatives, namely,
that the string action functional is invariant under the
reparametrization transformations if and only if the La-
grangian satisfies the set of identities [22]

~string X~BX"
,ab

Bowstring» Bowstring» Bowstring
BX» Xs+ BX» X~+ BX»

tCL
t CLOf ,ca

(28)

Bowstring 1 Bowstring Bg Bowstring B Bowstring 2 Bowstring
BX» " BX" BX" ' ' BX" ' BX"

,00 ) (,01 ) (,11 )
(29)

where fixed indices a, b, c can take values 0 or 1 while
the summation over d is assumed. Substituting (26) into
the above equations we end up with some final general
solution for V, which leads to the following general form
of the Lagrangian density:

Bnv = 2irxg gA+ Pg g—N+ Z,„t, —

where a and P are some dimensionless constants, and
stands for boundary Lagrangians which include

Poincare vector or tensor constants, i.e., describe some
open systems with external fields. For such Lagrangians
we have infinitely many possibilities; let us only give some
examples:

F„„XX~,

g-gA»b, X»,

~»V"X,—g'i7

( /1+ (T„g~r "~X )')".etc.

The first term can be interpreted as the coupling of the
charged string end points with the external electromag-
netic field [30].

There are present only two string self-interaction terms
in (30). The relevant coeKcients B in (26) for these
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terms vanish, and the coefIicients A„canbe calculated
from the equations

(31)

Note that the scalar density requirement on 6 V does
not imply that V behaves like a vector density under
the reparametrization transformations. The considered
two self-interaction terms exemplify the case.

Let us summarize the results of this section. We proved
that the generic local term which can be added to any
specific string action to modify edge conditions for open
strings, provided that bulk equations of motion are pre-
served, has the form (30). We have obtained this con-
clusion considering only Poincare and reparametrization
invariance, and restricting ourselves to local Lagrangians
with not higher than second derivatives. We did not pre-
sume that this term should be polynomial or analytical
in fields and no "power-counting" arguments for renor-
malizability of the quantized theory were applied. Thus,
our result derived from a small set of very fundamental
assumptions has a general significance.

Remarkably, the only two self-interaction terms dis-

played on the RHS of (30) are polynomial and well known
in literature. In Euclidean four-dimensional space, they
are topological and related to Euler characteristics and
the numbers of self-intersections of two-dimensional sur-
faces.

elusion of the term that weights world sheets according
to the number of self-intersections could assure the ex-
istence of a "smooth" phase of surfaces. In other works

[25—27], this term has been used to reproduce an effect
of @CD 0 vacua in string models. The exact correspon-
dence between the moduli space of the maps associated
with a surface theory and the moduli space of the in-
stanton sector of @CD (or any other Yang-Mills theory)
has been elaborated in [28]. Exact instanton solutions
in the string model with the self-intersection term have
been considered in [29]. Finally, in paper [27] it is argued
that this term is necessary for the /CD string also with
respect to having quark spins included. Below, we will

see on the classical level that the Minkowski version of
the self-intersection term induces the topological sectors
of solutions, which could correspond to the degenerated
vacuum.

Equations of motion following from (32) are the same
as in the usual Nambu-Goto theory,

AX„=0, (34)

—PBp (t„„V'7'pX") = 0, (35)

but supplementary edge equations for string end points
o = 0, vr are now affected by additional terms, and have
the more general form

(
py' —grt7'X„—asap

~

VpViX„~
)

IV. MINIMAL OPEN STRING MODELS
VpV'pX„—Pt„„V'V'pX"= 0 . (36)

In this section we examine the string action functional
for minimal timelike surface models, defined by the La-
grangian

Cstring = pg —g —
2 erg gR —pg g—N—(32)

The first terra is the Nambu-Goto Lagrangian; p stands
for the string tension. The parameters n and P are di-

mensionless. Let us also introduce an angle parameter
9 F [

—7r, vr] defined as

0 ptan —=—
2 o.'

According to the discussion in the previous section, the
Lagrangian (32) defines the most general model for free
open strings, in which world sheets represent minimal
timelike surfaces of zero mean curvature.

Both new terms displayed on the RHS of (32) can be
relevant for the definition of the hadronic string action.
The first boundary term is related to Euler characteristics
in its Euclidean version. The genus factors that appear
in the Polyakov quantum sum over surfaces [24] can be
interpreted as a result of adding such a term to the string
action. On the other hand, we will show in this section
that this self-interaction term acts like a "mass" term and
prevents string ends from propagating with lightlike ve-
locities. It may help to couple consistently quark masses
to hadronic strings. The relevance of the second bound-
ary term in (32) to the @CD string has been also pointed
out in many papers. Polyakov [11]suggested that the in-

We will investigate the string dynamical problem given
by the system of equations (34)—(36). The best way is
to use the geometrical approach [31,30], i.e. , to express
the content of these equations in terms of world sheet
curvature coefIicients. Then, the differential equations
transform into algebraic ones. Equation (34) says that
the mean curvature is zero at any point of the world
sheet: namely,

g Kb —0. (37)

Edge conditions (35) and (36) can be integrated with
respect to world sheet time w and, after projections onto
tangent and normal planes, respectively, they yield

Kpp + Pe'~Kp~ = 0,

Kp, —Pe"Kp = n)',
g

(Q g BJ Kpi:0
where m' are arbitrary functions satisfying

DptU = t9pG) —E' cdpQJ = 0

(40)

(41)

Let us choose one of the string end points, specified by
o. = 0 or o = vr. We have here seven linear algebraic equa-
tions for local values of six curvature coefBcients K'b, so
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we can easily find that the solution exists only if the fol-
lowing condition is satisfied:

(X 4 X): (Kpp + Kpi) (Kpp + Kpi) = —q~

(50)
nip'io' = p(a + p ) . 42

One can introduce new variables (we follow here [30]):
From (41) follows that the expression ur'io' is time inde-
pendent, which fact is compatible with the relation (42).
Next, we see that the classical solutions exist only for the
positive sign of a:

n &0. (43)

It is also interesting to note that the classical model de-
fined by the action composed only of the Nambu-Goto
and "self-interaction" terms (p, P g 0; a = 0) is inconsis-
tent.

If the relation (42) is satisfied, then the edge values of
the curvature cofficients are easily calculable from (37)—
(40): namely,

g—g=e ~, /=a+ —n

(51)

e~(P —P") = 2e ~q+q cosQ,

n~ + idp = k(ny + idi),

(52)

(53)

1 1 2 2
Kpp k Kpy: p+ cos ol+ Kpp + Kpy: p+ sin Q+

In the geometrical approach, the role of dynamical equa-
tions plays Gauss-Peterson-Codazzi-Ricci equations (see
Appendix), being the embedding conditions for the world
sheet embedded in enveloping Minkowski spacetime. Re-
ferring to (A2) —(A4), one can evaluate

pggll&i2 uil'
K'

pp 2+ p2
(44) ~p' —~, = e4'q+—q sing. (54)

g(n~*+—pv' gg" e*'~—')
01 n2+ p2

(45)

2ng gg '—io'+ p[l + (g gg ')']e"—io'

2PV = ——sent .
n + p

Using the above results one can check that the La-
grangian density (32) vanishes at the string end points,
that is a general feature of bosonic open string models.

Now, let us turn into the investigation of classical solu-
tions, satisfying equations of motion together with perti-
nent edge conditions. As usual we choose the conformal
gauge

One can verify that the formulas (44)—(46) are covari-
ant with respect to both the world sheet reparametriza-
tion and local orthogonal rotation transformations. The
scalar functions R and N take the following constant val-
ues at the boundary of the world sheet:

V p' —n' = ——cos 8,
2 na +P n

P —P" = 2e~q+q cosQ, (55)

Peterson-Codazzi equations (53) allow us to eliminate
torsion coefficients. Two other equations have a nice ge-
ometrical interpretation. Gauss equation (52) relates the
internal curvature scalar R [LHS of (52)] to the scalar
built of the external curvature coefficients [RHS of (52)].
The internal curvature scalar is built of the connections
I'&„introduced for the tangent local frame bundle with
defined reparametrization transformations. Thus, Gauss
equation (52) describes an immersion of the tangent bun-
dle. Similarly, the LHS of Ricci equation (54) is a scalar
expression built of the connections e'~u defined on the
orthogonal local frame bundle, endowed with local SO(2)
transformations. Looking at the RHS of (54) (up to a
constant it is equal to the scalar N), we can the inter-
pret the Ricci equation as the immersion of the orthogo-
nal bundle. We see that Gauss and Ricci equations cou-
ple "internal" with "external" geometry, describing im-
mersions of tangent and orthogonal two-dimensional lo-
cal kame bundles in four-dimensional Minkowski space-
time. Remarkably, both scalars R and N constructed
&om disposable connections and displayed in the immer-
sion equations have been used in (32).

After eliminating the extrinsic torsion, the Gauss and
Ricci equations read

X +X' =XX'=0, (47) g —@"= 2e~q+q sing . (56)

which makes Eq. (34) linear and the general solution
reads

The above equations can be written as one equation on
a complex function 4 = P +if (see [30]):

X„(7., o.) = XL,„(~+ o.) + Xg„(~—o ) .

Let us denote

XL ———iq+, X~ ———4q, qg = qg(r + o),2 1 2 2 1 2

(48) 4 —4" = 2q+q e

The gauge choice (47) leaves the residual symmetry

~ + o m h~(r + o.),

(57)

Accordingly,

q~ & 0. (49)
where h~ are arbitrary monotonic functions. Taking

T

hp(r) = d~'qp(r'),
TQ
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(hg are monotonical due to q~ ) 0), Eq. (57) rewritten
in the new variables (58) takes the standard form of the
Liouville equation:

Then,

, (1+
I f I', f + f, i(f —f) 1 —

I fI') (67)

e —C" =2e~. (59)

qy ——1. (60)

Later, we will show that this gauge choice is also allowed
when edge conditions for world sheets with boundaries
are taken into account. Here, let us note that if we

restrict ourselves to reparametrization transformations
which preserve world sheet boundaries (8), which means
that

h+(r) = h (r) = h+(r —2vr) + 2vr,

then the gauge choice (60) is possible provided that

As has been proved, the classical Nambu-Goto dy-
namics (minimal surface problem) reduces to a complex
Liouville equation (59). The functions q~ are arbitrary
and their choice saturates the gauge &eedom associ-
ated with the reparametrization invariance. Unlike other
gauge theories, in the minimal string model the gauge
can be completely fixed without breaking the Lorentz
invariance. Obviously, the simplest gauge choice comple-
mentary to (47) is

1
XR =, (1+ lgl', g+ g, ~(g —g), 1 —lgl') .

4 gl
(68)

As it could be expected, the modular transformations

(63) coincide with Lorentz transformations of X„.The
integration of Gauss-Weingarten equations gives also re-
sults for n'„variables: namely (here B~ = Bo + Bi),

0+ e~XI.„e'— —0 e~X~„e'+

So far we have proved that the Nambu-Goto equations
together with the complete Poincare-invariant gauge-
fixing conditions (47) and (60) are equivalent to the prob-
lem defined by a complex Liouville equation (without any
additional constraints). To examine the open string case,
let us proceed with the derivation of boundary conditions
for the Liouville complex field 4 equivalent to edge condi-
tions (35) and (36) for X„following from the Lagrangian
(32). It is straightforward to convince ourselves that the
edge conditions, see (44)—(46), are satisfied if and only if

q+ (r ) = q (r ) = q+ (r + 2m. ) .

Assuming (60), the general solution of (57) reads

(61)
q+ for o. = O, vr, (69)

(62) Q=a —Omod2m for o =O, x,

where f and g are arbitrary complex functions (not neces-
sarily single valued, only 4 should be single valued). The
function 4 is left invariant when f and g are changed by
modular transformation:

af+b ag+b
g M ad —bc = 1.

cf +d cg+d (63)

k =l =a =ka=la=0, kl = —aa=2. (64)

It is helpful to know how to translate a given solution 4 of
the Liouville equation into the explicit radius-vector rep-
resentation of the string world sheet X„(r,0). In order
to achieve it we need to integrate the Gauss-Weingarten
equation (Al). For this purpose, it is convenient to in-

troduce the reference system composed of two real k„,t„
and one complex a„null vectors:

g'=0 for cr =O, vr,

q+(r) = q (r) q+(r-+ 2~) = q+(r) (72)

We see that the edge equations (72) are exactly the same
as the conditions (61). It means that the gauge choice

(60) is allowed for open strings as well.
Summarizing, the classical open string equations fol-

lowing from the Lagrangian (32) are equivalent [in con-

formal gauge (47) supplemented by complementary con-
ditions (60)] to the complex Liouville equation

C —e" = 2e', (73)

with constant Dirichlet boundary conditions for the real
part P = Re@,

As a result of the integration of the Gauss-Weingarten
equations we obtain (function arguments are omitted)

for 0 =O, m, (74)

XL,„=,(lfl k„—fa„—fa„+l„), (65)

and periodic boundary conditions for the imaginary part

@ =ImO,

v/r = n —8 mod 2m, g' = 0 for 0 = 0, 7r . (75)

XR~ =, (lgl'4 —ga, —ga~+ l~)
4I

I
I

P P P P (66)

In particular, we can choose

k„=(1,0, 0, 1), l„=(1,0, 0, —1), a„=(0, 1, i, 0) .

We have evaluated the general form of boundary con-
ditions which can follow consistently from the string ac-
tion for isolated open strings with no higher than second
derivatives. In this paper we do not develop the thor-
oughgoing analysis of classical string states. We restrict
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ourselves to indicate that some essential differences ap-
pear while we are comparing the above-defined extended
boundary problem for minimal world sheets with the or-
dinary Nambu-Goto case.

First, let us consider the case P = 0 (8 = 0). The
lowest state solution of the Nambu-Goto model that
corresponds to the stationary (soliton) solution for the
Liouville field represents the rotating rigid rod:

1 71 'I 7rX„=—Ar, cos (Ar) sin A n ——~, sin (Ar) sin A 0 ——,0
A2 2) 2 (76)

It is also a solution of our extended boundary problem
(73)—(75), but now the string end points are no longer
forced to travel with lightlike velocities. The parameter
A is subject to the equation (for Nambu-Goto configura-
tions A = 1)

The induced metric is g g ——X X„g,its determinant g
(g ( 0). Christoffel coefficients I'b„covariant derivative
V', and raising and lowering indices [denoted by lower
case roman letters (a, b, c, ...)] are defined with respect
to the induced metric. The Riemann-Ghristoifel tensor
R b,d is also defined as usual:

cos (Am/2)
(77) Rab d = ~cf bda ~dl bca + 1 b f ad f bdf ace

For P g 0 (8 g 0), there are no solitonic solutions of
the Liouville equation. The imaginary part of the Liou-
ville Beld g, that is an angle variable [see definition (51)],
cannot be trivial (i.e., to be constant everywhere on the
string). The mapping e'@: [0, m] -+ Si provides us with
some topological winding number, classifying possible so-
lutions.

At the end of this section we will comment on the
possible extension of string action (32) by adding the
rigidity term [11]

and the internal curvature scalar R is introduced together
with the relation

R',~
—2g~gR .

At any point of the world sheet two orthonormal vec-
tors n'„(i= 1, 2) can be introduced:

l:„.s
——rg g(b,X„)— (78) Epvpo X X 'A tP = +1—g

Obviously, the extended boundary problem for rigid
strings is much more complicated. However, it is nice
to note that all classical open string solutions defined by
the system (73)—(75) are still exact solutions when the ex-
tended boundary problem is formulated with the rigidity
action term taken into account. Moreover, all these so-
lutions carry the same energy and angular momentum in
both models (the rigidity term does not infiuence conser-
vation laws for this class of solutions). Presumably, these
are the only open rigid string solutions around which a
sensible semiclassical quantization can be performed.

ACKNOWLEDGMENT

This work was supported in part by the KBN under
Grant No. 2 P302 049 05.

APPENDIX

In the appendix we introduce notation and gather
mathematical equations of surface theory used through-
out this paper. The string world sheet is denoted by
X„(0') = X„(r,o) (o E [O, vr]), its derivatives either
by X~ (a = 0, 1) or by the dot and the prime for the
derivatives over r and o parameters, respectively. The
following causality conditions are imposed on the world
sheet:

X') 0,X, ) 0,X"(0.

The last condition fixes the orientation of the local
kame. There is still some arbitrariness in a choice of
orthonormal vectors n'„;namely, one can perform a lo-
cal SO(2) rotation in a normal plane (M stands for the
rotation matrix about the angle P):

n'„m M" (P)n'„,P = P(r, a),

m(u +8/.
This freedom can be considered as a local symmetry of

the system described in the geometric approach. There-
fore, for practical purposes it is convenient to use the
"double-covariant" derivative D, i.e., the derivative co-
variant with respect to both reparametrization change
and local orthogonal rotation. This derivative is defined
with the he}p of respective connections I"& and 6'~ cu .

The projection operator onto the normal plane is de-
noted by G„„:

abG„=g„„—g X„X„g,
and antisymmetric tensor t„„is introduced as usual:

t„= E X„X„g,t""=
2

e""~ tpg—g

Let us also define the covariant tensor N ~g as

N b d = t""(V' VbX„)V',V'dX„

and the scalar function N together with the relation
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Naeb ——v' —g Gab N .

The external curvature K'& and torsion ~ coeKcients
are defined with Gauss-Weingarten equations (in paren-
theses we give their form in "double-covariant" notation):

Rar„~——K*&K&, —K*,K&& (Gauss equations),

+aKg +bK g: e (KaKr MgKa~)

(A2)

X„., = r:,X„,+ K.',n„(D.D'X„=K.*'n'„),
(Peterson-Codazzi equations), (A3)

(Al)
8 orb —Br,ur = e' g' K', Kz& (Ricci equations) . (A4)

Instead of using radius vector coordinates we can rep-
resent the surface (up to Poincare transformations) by
induced metric and external curvature and torsion coef-
ficients, which satisfy the identities (being the compati-
bility conditions for Gauss-Weingarten equations)

All of the above equations are covariant with respect to
both reparametrization change and local orthonormal ro-
tation. The Peterson-Codazzi equations and Ricci equa-
tions in "double-covariant" notation have the form

D K~ =DbK

[D,Db]K,'~ ———g—g c,c's NKs~ .
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