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Exact solutions of the string equations of motion and constraints are systematically constructed in de
Sitter spacetime using the dressing method of soliton theory. The string dynamics in de Sitter spacetime
is integrable due to the associated linear system. We start from an exact string solution q[0) and the asso-
ciated solution of the linear system 4' '(A, ), and we construct a new solution %'(k) differing from %" '(A, )

by a rational matrix in A, with at least four poles A,0, 1/XO, X0, 1/A, o. The periodicity condition for closed
strings restricts A.o to discrete values expressed in terms of Pythagorean numbers. Here we explicitly
construct solutions depending on (2+1)-spacetime coordinates, two arbitrary complex numbers (the
"polarization vector"), and two integers (n, m) which determine the string windings in the space. The
solutions are depicted in the hyperboloid coordinates q and in comoving coordinates with the cosmic
time T. Despite the fact that we have a single world sheet, our solutions describe multiple (here five)

different and independent strings; the world sheet time v turns out to be a multivalued function of T.
(This has no analogue in flat spacetime. ) One string is stable (its proper size tends to a constant for
T~ ~, and its comoving size contracts); the other strings are unstable (their proper sizes blow up for
T~ 00, while their comoving sizes tend to constants). These solutions (even the stable strings) do not os-

cillate in time. The interpretation of these solutions and their dynamics in terms of the sinh-Gordon
model is particularly enlightening.

PACS number(s): 11.25.Sq, 11.10.Lm, 98.80.Hw

I. INTRODUCTION

Since the propagation of strings in curved spacetimes
started to be systematically investigated, a variety of new
physical phenomena appeared [1,2]. These results are
relevant both for fundamental (quantum) strings and for
cosmic strings which behave essentially in a classical way.

String propagation has been investigated in nonlinear
gravitational plane waves [3] and shock waves [4], black
holes [5], conical spacetimes [6], and cosmological space-
times [1,7].

Among the cosmological backgrounds, de Sitter space-
time occupies a special place. This is on one hand
relevant for inflation and on the other hand string propa-
gation turns out to be especially interesting there [1,7).
String instability, in the sense that the string's proper
length grows indefinitely, is particularly present in de Sit-
ter spacetime. The string dynamics in a de Sitter
universe is described by a generalized sinh-Gordon model
with a potential unbounded from below [14]. The sinh-
Gordon function a(cr, r) having a clear physical meaning,
0 'e ' ",determines the string proper length. More-
over the classical string equations of motion (plus the
string constraints) turn out to be integrable in a de Sitter
universe [14,15]. More precisely, they are equivalent to a
nonlinear cr model on the Grassmannian SO(D, 1}/O(D)
with periodic boundary conditions (for closed strings}.
This o model has an associated linear system [8] and, us-

ing it, one can show the presence of an infinite number of

conserved quantities [13). In addition, the string con-
straints imply a zero energy-momentum tensor, and these
constraints are compatible with the integrability.

The so-called dressing method [8] in soliton theory al-

lows one to construct solutions of nonlinear classically in-

tegrable models using the associated linear system. In the
present paper we systematically construct string solutions
in three-dimensional de Sitter spacetime. We start from a
given exactly known solution of the string equations of
motion and constraints in de Sitter spacetime [15] and
then we "dress" it. The string solutions reported here
indeed apply to cosmic strings in de Sitter spacetime as
well. The dynamics of cosmic strings in expanding
universes has been studied in the literature for the
Friedmann-Robertson-Walker (FRW) cases (see, for ex-
ample [9,10,11]). It must be noticed that the string
behavior we found here in the de Sitter universe is essen-
tially diferent from the standard FRW where the expan-
sion factor R ( T) is a positive power of the cosmic time T.
In such FRW universes, strings always oscillate in time;
the comoving spatial string coordinates contract and the
proper string size stays constant asymptotically for
T~~ [7,11]. In the cosmic string literature this is
known as "string stretching. " We called such behavior
"stable" [7,15,11]. On the contrary, in de Sitter space-
time, as we show below, two types of asymptotic
behaviors are present: (i) the proper string size and ener-

gy grow with the expansion factor ("unstable" behavior}
or (ii) they tend to constant values ("stable" strings).
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It is important at this point to ask: What important
physics do we learn from these solutions~ We think that
the unstable string solutions in a de Sitter universe should
provide essential clues about the feasibility of inflationary
string scenarios [2,7]. These multistring solutions should

play an important role in the back-reaction problem.
Namely, they would become the source of the gravita-
tional field itself through their string energy-momentum
tensor. In addition, the string solutions in a de Sitter
universe can be applied to study the physics of cosmic
strings appearing in the inflationary stages of the
Universe.

We apply here the dressing method as follows. We
start froin the exact ring-shaped string solution q(0) [15],
and we find the explicit solution %' '(A, ) of the associated
linear system, where A, stands for the spectral parameter.
Then we propose a new solution %(A, } that differs from
4' '(A, ) by a matrix rational in A, . Notice that %(A, =O)
provides in general a new string solution. We then show
that this rational matrix must have at least four poles
A,0, 1/A, O, A,o, 1/A, o as a consequence of the symmetries of
the problem. The residues of these poles are shown to be
one-dimensional projectors. We then prove that these
projectors are formed by vectors which can also be ex-
pressed in terms of an arbitrary complex constant vector
~xo ) and the complex parameter Ao. This result holds for
arbitrary starting solutions q~o~.

Since we consider closed strings, we impose a 2n.

periodicity on the string variable o. This restricts A,o to
take discrete values that we achieved successfully to ex-
press in terms of Pythagorean numbers. In summary, our
solutions depend on two arbitrary complex numbers con-
tained in ~xp) and two integers n and m. The counting
of degrees of freedom is analogous to 2+1 Minkowski
spacetime except that left and right modes are here mixed
up in a nonlinear and precise way.

The vector ~xo) show how indicates the polarization of
the string. The integers (n, m) determine the string wind-

ing. They fix the way in which the string winds around
the origin in the spatial dimensions (here S ). Our start-
ing solution q~o~(o, r} is a stable string wound n +m
times around the origin in a de Sitter space.

The matrix multiplications involved in the computa-
tion of the final solution were done with the help of the
computer program of symbolic calculation MATHEMATI-

cA.. The resulting solution q(o, ~)=(q,q', q, q } is a
complicated combination of trigonometric functions of o
and hyperbolic functions of ~. That is, these string soli-
tonic solutions do not oscillate in time. This is a typical
feature of string instability [5,7,15]. The new feature here
is that strings (even stable solutions) do not oscillate ei-
ther for ~-+0 or for ~—++ ao. Figures 3 and 4 depict spa-
tial projections (q', q, q } of the solutions for two given
polarizations ~xo) and different windings (m, n}.

We plot in Figs. 5 —11 the solutions for significative
values of ~xo) and (m, n) in terms of the comoving coor-
dinates (T,X',X ):

T=—ln(q +q'), X'=—q, , X2=-
H q'+q' ' ~ q'+q'

T »1/H
a(o, T) = 2HT(o, 7. )

+ln(2H I [ A '(o )'] + [ A (o )']
J )

+~ (
—2HT} (1.2)

Here A '(o ) and A (o ) are the X' and X coordinates
outside the horizon. For T~+ oo these strings are at
the absolute minimum a=+ ~ of the sinh-Gordon po-
tential with infinite size. The string inside the horizon
(stable string) corresponds to the maximum of the poten-
tial, a=O. a=O is the only value in which the string can

The first feature to point out is that our solitonic solu-
tions describe multiple (here five or three) strings, as it
can be seen from the fact that for a given time T we find
several different values for z. That is, ~ is a multivalued
function of T for any fixed a (Figs. 5 and 6). Each
branch of ~ as a function of T corresponds to a different
string. This is an entirely new feature for strings in
curved spacetime, with no analog in flat spacetime where
the time coordinate can always be chosen proportional to

In flat spacetime, multiple string solutions are de-
scribed by multiple world sheets. Here, we have a single
world sheet describing several independent and simul-
taneous strings as a consequence of the coupling with the
spacetime geometry. Notice that we consider free
strings. (Interactions among the strings as splitting or
merging are not considered. ) Five is the generic number
of strings in our dressed solutions. The value five can be
related to the fact that we are dressing a one-string solu-
tion (q~o~ ) with four poles. Each pole adds here an unsta-
ble string.

In order to describe the real physical evolution, we el-
iminated numerically r=~(o, T) from the solution and
expressed the spatial comoving coordinates X' and X in
terms of T and cr.

We plot ~(cr, T) as a function of a for different fixed
values of T in Figs. 7 and 8. It is a sinusoidal-type func-
tion. In addition to the customary closed string period
2m. , another period appears which varies on ~. For small
r, v=w(o, T) has a convoluted shape while, for larger r
(here ~~ 5), it becomes a regular sinusoid. These
behaviors reflect very clearly in the evolution of the spa-
tial coordinates and shape of the string.

The evolution of the five (and three) strings simultane-
ously described by our solution as a function of T, for
positive T is shown in Figs. 9-11. One string is stable
(the fifth one). The other four are unstable. For the
stable string, (X',X ) contracts in time precisely as e
thus keeping the proper amplitude (e rX', e X ) and
proper size constant. For this stable string
(X',X ) ~ 1/H. (1/H= the horizon radius. ) For the oth-
er (unstable) strings, (X',X ) become very rapidly con-
stant in time, the proper size expanding as the Universe
itself like e . For these strings (X',X ) &1/H. These
exact solutions display remarkably the asymptotic string
behavior found in Refs. [7,14].

In terms of the sinh-Gordon description, this means
that for the strings outside the horizon the sinh-Gordon
function a(a, r) is the same as the cosmic time T up to a
function of o.. More precisely,



COMBES, DE VEGA, MIKHAILQV, AND SANCHEZ 50

stay without being pushed down by the potential to
+=+Do, and this also explains why only one stable string
appears (it is not possible to put more than one string at
the maximum of the potential without falling down).
These features are generically exhibited by our one-
soliton multistring solutions, independently of the partic-
ular initial state of the string [fixed by ~x & and (n, m)].
For particular values of ~x &, the solution describes three
strings, with symmetric shapes from T=O, for instance
like a rosette or a circle with festoons (Figs. 9—11).

The string solutions presented here trivially embed on
D-dimensional de Sitter spacetime (D ~ 3). It must be no-
ticed that they exhibit the essential physics of strings in a
D-dimensional de Sitter universe. Moreover, the con-
struction method used here works in any number of di-
mensions.

This paper is organized as follows. In Sec. II we de-
scribe the string equations in de Sitter universe and its as-
sociated linear system. Section III deals with the dress-
ing method in soliton theory, its application to this string
problem, and the systematic construction of solutions. In
Sec. IV we explicitly describe the starting background
solution q~0~(a, r) and the solution ql' '(A, ) of the associat-
ed linear system. In Sec. V, we analyze our multistring
solutions and describe their physical properties.

II. THE STRING EQUATIONS AND
THEIR ASSOCIATED LINEAR SYSTEM

The solution q & should be a periodic function of
o =rI —g, with period 2~ for closed strings.

We are going to find solutions of this equation by using
the Riemann transform method [8,16]. The most impor-
tant observation is that Eq. (2.4) can be rewritten in the
form of a chir al field model on the 6rassmanian
GD =SO(D, 1)/O(D). Indeed, any element g EGD can be
parametrized with a real vector q & of the unit pseudo-
length

g= 1 —2q &(qJ, (qJq &
=1 . (2.8)

In terms of g, the string equations (2.4)—(2.7) have the
form

2ggq Sgggq Sqggg=0

and the conformal constraints are

(2.9)

trg =0, trg =0, (2. 10)

which are equivalent to Eqs. (2.7). The fact that gEGL,
implies that g is a real matrix with the properties

g=Jg'J, g =I, trg=2, gESL(D+1,R) . (2.11)

These conditions are equivalent to the existence of the
representation (2.8).

Equation (2.9) is the compatibility condition for the
overdetermined linear system

We will consider a string propagating in D-dimensional
de Sitter spacetime. In the conformal gauge, the string
action is given by

S =
, cr w qJ "q + cr, w qJq —1

1

27TO! P

U V

I+X
where

U =g~g ~=g„g
Or in terms of the vector q &,

(2.12)

(2.13)

Here q & is a (D+ 1)-dimensional real vector and

(2.1)
U =2q& & (qJ —2q & (q&J,

V=2q, &(qJ —2q&(q„J .

J =diag( —1, 1, . . . , 1), (2.2)

A,(0,7) is a Lagrange multiplier that enforces the con-
straint

(qJq & =1, (2.3)

q~„&+q&(qqJq„&=0, (2.4)

and g, g are light cone coordinates in the world sheet:

r= q +g, cr =g —
g .

We use the notation

(2.5)

and (o, r) parametrizes the string world sheet, as usual.
Extremizing the action Eq. (2.1), and eliminating the
Lagrange multiplier, we find the equations of motion

%(A, =O)=g . (2.14)

This condition is compatible with the above equations
since the matrix function 4 at the point A, =0 satisfies the
same equations as g. Thus the problem of constructing
exact solutions of the string equations is reduced to
finding compatible solutions of the linear equations (2.12)
such that g=ql(A, =O) satisfies the constraints Eqs. (2.10)
and (2.11).

The use of overdetermined linear systems to solve non-

linear partial differential equations associated with them

goes back to Ref. [17]. (See Refs. [18]and [19]for further
references. )

In order to fix the freedom in the definition of 4' we
shall identify

Bq Bq
&= ag' "=a„ (2.6)

III. THE DRESSING METHOD IN SOLITON THEORY

(q~Jq( & =0, (q„Jq,& =0 . (2.7)

In addition, we have the string constraints (conformal
conditions)

A. The reduction group of the associated linear system

We will consider now the symmetry group (or the so-
called "reduction group" [8,16]) enjoyed by the linear
system of equations
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U
@

V
1+a (3.1)

(3.8)

(3.9)

[g+(1/A, )]&= [g+(1/A, )],U

[g+(1/A, ))„= [g+(1/A, )] .V
(3.2)

when Eqs. (2.11)hold.
It follows from the condition & qJq &

= 1 that the matrix

g =I —2q & & qJ anticommutes with U and V:

gU+ Ug=0, gV+ Vg=0 .

This implies that the matrix function g+(1/A, ) satisfies
the same equation as %(A, ):

(3.10)

We assume that the constant matrices 5i(A, ), 52(A, ), and
53(iL) coincide for the dressed and undressed solutions.

Suppose that the rational function 4(A, ) has a pole at
the point A,p. It follows from Eqs. (3.8) and (3.9) that it
must have poles at the points 1/A, p, A,p, 1/A, p as well and,
in addition, 4(0O )=I. Thus, the simplest (generic) possi-
ble case is

Then, it can differ from %(A, ) only on a matrix multiplier
which does not depend on g, ri:

g~P(1/A, )=%(A,)5,(A, ) . (3.3)

4'(A, ')=%(A, )52(A, ) .

In addition, by using Eq. (3.4) twice, we find

(3.4)

The vector q&, the corresponding matrix g, and the
currents U, V are real. Therefore 4'(A, ') is a solution of
Eqs. (2.12) as well, and we have

(3.11)

where A, B are matrix functions of (g, il) to be deter-
mined below. This simplest case will be called the one
soliton solution from now on. We choose this name since
in the context of nonlinear integrable equations in an
infinite space interval (the sine-Gordon equation, for in-
stance), this minimal pole structure (the minimal number
of poles compatible with the symmetry group) in A, gen-
erates the one soliton so-lution (see for example [18]).

Here we have taken into account Eqs. (3.9) and (3.8).
It follows from Eq. (3.10) that

52(A, )52(A, )=I . (3.5)

The fact that g ESO(3, 1) yields JU J= —U,
JV J= —V and implies that [J%'(A, )J] ' obeys the same
equation (2.12) as %(A, ):

(3.6)

The transformations (3.3), (3.4), and (3.6) generate a
finite group which is called the reduction group of the
problem and which guarantees that the properties (2.11)
hold for g =%(A, =0).

(3.12)

where the dagger denotes Hermitian conjugation of a ma-
trix. The condition Q(A, ) =4(A, )4 '(A, )=I can be im-
posed in the following way: the right hand side [Q(A, )] is
a rational function of A, which takes the value I at the
point A, = ~, then Q(A, } will be identically I if it does not
have any singularity on the Riemann sphere of A, . Dou-
ble poles would vanish, if and only if,

B. Rational dressing AJA '=0 BJB'=0 (3.13)

e(iL}=e(A,)ql' '(A, ) . (3.7)

Suppose we know a particular solution g(p)(ri, g) of the
string equations (2.4). We shall denote by U+~(ri, g),
V(p) ( ii, g) its corresponding currents (2.13), and by
Wp'(A, , ii, g} the corresponding compatible solution of the
overdetermined system (2.12). We assume that 4' ' as
well as U~o] and V~0& are explicitly known.

To construct a new solution g we assume that the cor-
responding 4 function differs from 4' ' on a rational ma-
trix multiplier 4(A, , ri, g }:

(3.14)

The constraints (3.13) imply

&x; ~
J~x. & =0 for all pairs i,j, (3.15)

which means that the vectors x; & are null and mutually
pseudo-orthogonal. Therefore, since pseudo-orthogonal
null vectors are proportional, we have

Thus the matrices A, B are degenerated and we can write
them as a sum of bivectors

We assume that N(iL) is rational in A, , but, of course it
might have a complex dependence in g', ri. The dressing
method consists of finding a matrix 4(A, ) such that %(A, )
given by Eqs. (3.7) satisfies the linear system (3.1) and the
symmetry conditions (3.3)—(3.6). Then, once 4(A, } is
known, the string solution g(g, g') follows from Eq. (2.14).

It follows from (2.14), (3.3), and (3.7) that @ should
obey the symmetries

x, &=cx&

and without loss of generality, we take

A =a&&xJ, B=b&&yJ .

Now the constraints (3.13) read

&xJx &=0, &yJy &=0.

(3.16}

(3.17)
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In addition, by requiring the residues of Q(A, ) to vanish
at the points A,o, I/A, {i, A,o, I/A, {i,we get

AJ+JA'+ AJ,+,+
XP XP XP XQ AP Xp

BJ A J B'J
XQ Xp ArP XQ Xp AQ

a ) = [(~ —1)x")(y'Jy )
6

+2(1+i~ )y" )(x'Jy )

+2(1—~ )y)(x*Jy*)],

b ) = [(~ —1)y')(x'Jx )
~6

(3.18}

A*J+JA + A*J
ge —I ye g ge g

—1

0 0 0 0 0 0

BJ AJ
z*—z '

0 0 0 0 0 0

A' BBJ+JBt+BJ + +
0 0 0 0 0 0

AJ BJ A'J
A{i Ao Ao XQ Xo AQ

—4a. (1—ii ) (x'Jy" )(xJy ) . (3.20)

At the moment we have satisfied the reduction con-
straints (3.9) and (3.10) completely, but the constraint Eq.
(3.8) has not yet been imposed. One can prove without
loss of generality, that Eq. (3.8) is verified, when the vec-
tors x ),y ), satisfy

+2~ (1+~ )x * ) (y*Jx )

+2' (1—ii }x)(x*Jy')], (3.19)

where 5 is the scalar function

S=(1—~')'(x'Jx ) & y*Jy & +4~'(1+~')'& x' Jy& (y'Jx &

B*J+JB~+B*J A B'
0 0 0 0

A'

0 0

y ) = il {o'(0)x ) . (3.21)

Assembling Eqs. (3.16) and Eqs. (3.18)—(3.21) all to-
gether one can find 4 [Eq. (3.11)] as a function of
x&, X,X,:

A*J
ge —1 g

—1

0 0 0 0 0 0

Later on we shall demonstrate that the periodicity con-
dition on cr can be satisfied only in the case where all
poles (A,o, i,{'i,k,o ', A,{'i ') of 4(A, ) are purely imaginary
[see Eqs. (4.9), (4.18), and (4.20)]. From now on, we shall
denote Ao=iir, a FR. Substituting the bivectorial repre-
sentation (3.16) in the above equations and by separating
bivectors we get the system of vector equations with
respect to a ),b ):

4= C(iA, , A.
o,

x) ) . (3.22}

4(1—a )g=g{, [(1—~ }(Fg{)+g{ )F}(x'Jx)

+2(1+ii')(~'F —g{o)Fg{o))(x'Jg{o)x)

2( 1 K )R [(eK H +g{oiHg{oi)( x Jg{o{x ) ] I

(3.23)

Now, we are interested in the value of this function at
A, =O, since it gives a new solution g=4(0)g{o{.One can
check that

)
i(xJy ),

&

i&x*Jx & „)i&y'Jx)
)

x+x

„&i&x'Jy')
&

i&x'Jx &

)
i(x'Jy &,)

K+K 2& K K

&

i (xJy , »i (y'Jy », i (x*Jy )
)

K+K 2K K K„)i(x Jy*)
) i(y Jy) ) i(y Jx)

K+K 2K fc—K

= —y*) .

By bivectorial separations we mean the following trick:
suppose we have an equation of the form

p ) (X+X ) (p=0 where p ),X ) are vectors and p )%0.
Then the only solution of this equation is X)=0 and the
matrix equation is reduced to a vector one.

One can solve this system of linear equations and ex-
press the vectors a ),b ) in terms of x ),y ):

where

F=Re(x')(xJ), H=x)(xJ .

Thus, we have parametrized the new solution g by a
real number ii and a complex vector x ) of zero pseudo-
length. Since g satisfies the conditions (2.11), it has the
form of Eq. (2.8) and the corresponding vector q ) can be
found by projecting Eq. (2.8) on an arbitrary constant
vector p ). [For instance, (1,0,0,0).] We find, in this way,

p gp (3.24)
i/2(&pJp &

—&pJgp &)

Now, to construct a solution q ) of the string equations
(2.4) and (2.7), one needs only to determine the depen-
dence of x ) and v on the variables g, vi.

C. Evolution ofx ) and rein pand vi

Now the problem is to find the evolution of x ) and ~ in

g and vi. It follows from Eqs. (2.12) and (3.7) that
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1 1
4~+ 4U(o) = U4,

1 1+ 4 V(o)= VC
1+1,

(3.25)

(3.26}

where U, V are still undetermined functions of g, g which
do not depend on A, . Let us rewrite Eqs. (3.25) and (3.26)
in the form

A, G [A,O, A,O
', A,o, A,0 '], but the RHS has only one pole at

A, = l. Thus to fit Eq. (3.27), we have to set the residues at
Ao, Ao ', A,o, and A,o

' equal to zero. In fact, it is
sufficient to require the vanishing of the residue at A,o
only. All other residues will vanish due to the action of
the reduction group. The condition

(3.29)

U(o) ~ U (3.27)
yields

~0) i V
1+A, 1+A,

(3.28) A 8 — JA'=0U(o)
(3.30)

Consider the left-hand side (LHS) of (3.27}. It is a ration-
al function of A, with a pole at A, = 1 and at

and

8 8

(3.31)

Both equations will be satisfied if

U(o)
a — x &=0. (3.32)

and the corresponding solution of the chiral model

g=%„(g,g A, =O) will satisfy all the reduction conditions

Eqs. (3.3), (3.4), and (3.6).

Thus, the simultaneous solution of Eqs. (3.30) and (3.31)
1s

IV. THE CHOICE OF THE BACKGROUND SOLUTION

res~i 4 —8„+ 4 =0 .V(0)
(3.34)

(3.33)

where xo ) is any complex constant vector of zero pseu-

dolength, and A,o turns out not to depend on rl, g.
Moreover, the solution (3.33) of Eq. (3.29) is also a

solution of the equation

Let us now construct explicit solutions by applying the
above procedure. To begin with we shall consider a
three-dimensional de Sitter spacetime (D= 3).

As a background starting solution we choose for sim-
plicity the solution q~o~(o, ~) found in Ref. [15]. This
solution corresponds to the trivial a=O solution of the
sinh-Gordon equation and it is given by

Finally, the g, g dependence of the vector x ) is given

by Eq. (3.33). Together with Eq. (3.23) it gives the one-
soliton solution.

The wave function %(g, gA, ) corresponding to the
one-soliton solution [let us denote it by qi, (ri, g; A, ) ] can be
regarded as a function of A, , A,o, 4' '( g, g, A, ), and xo ) [see
Eqs. (3.7) and (3.22)]:

%,(g, g;A, }=@(A,, AO, JV' '(g, g;Ao}Jxo) }40(g,gA, } .

sinh~

cosh7 1

coso
sm&

cosh1

sinh~

sino

coso'

(4.1)

(3.35}

The wave function corresponding to a n-soliton solution
can be obtained recursively through the relation

%„(g,g A )=@{A,, A,„,,J%„,(q, g;A,„,}Jx„i ) )

cosh~ sinhv

sinh~ 1 cosh'.
—sino ' ~0& v Z

—cosob

coscr —sino.

(4.2)

X%„,(g, g;A, ), (3.36} For this solution, we have
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V(o)g =0(o)gg =&(0)~ &(0)gg =0(o) ~

~(o)~=q(o), »(o), =q(o)~

(&(o)gJ&(o)q) = 1 &&(o)J«o) & =1

(b(())Jb(()) ) =1, other (.J ) =0,
(0) &(o)g)(&(o)J 2&(o) )(&(o)5J ~

0 p 0
0 0 —1

0 p 0
—1 0 0

:-(g,g), (4.7)

and:-(g, r)) satisfies the following equations with constant
coefficients:

where J is given by Eq. (2.3). Let us define

Q(k &)=(&(o)g &(o)~ &(o) b(o)) (4.3)

0 0 0 —1

0 0 p 0

LM o o o

0 —1 0 0

(4.8)

and

U(o)Q =(0~29(o)~29(o)g~o) ~

V(o) Q = (2&(o» 0 2q(o» 0)

then we find by direct calculation that

—1 0 0
0 0 0
0 1 0
0 0 1

The solution will be defined on the Riemann surface I
which covers twice the complex plane A, :

2='
P =1+ (4.9)

p
exp(pri+p, 'g)

The points A, =+1 are the branching points of I .
The fundamental set of solutions of Eq. (4.7) and (4.8)

is given by

Q JU(o)Q =

0 0 0 0
0 0 —2 0
0 2 0 0
0 0 0 0

r exI ( —pn —p
p

(4.10)

0 0 —2 0
0 0 0 0

(o)Q= 2O O O

0 0 0 0
LP

lP
exp(i p7) ip'(—),

0 0 0
0 0 —1

Q'JQ&= o 1 o

1 0 0

0
0
0

exp( i pri+i p—'()

(4.11)

0 0 —1 0
0 0 0 —1

Q'Q~=
1 o o o

0 1 0 0
It will be convenient to use the following linear com-

binations of the above solutions:

%e have to solve two compatible equations for +:

+(0) (0) +(p) +(0) (0)

1+a
Let us make the gauge transformation

(4.4)

:-(p,g, ri) =A(p)II(p, (,ri),
where

A(p) =diag(p ',p, 1, 1),

(4.12)

(4.13)

then

+ "=Q(g, ri):-(g, q),

Q JQ, :-+Q JQ:-„=

JU(o)
Q JQ~" +Q J:-~=

(4.5)

II(p, g, g)= 1

v'2

ancl

coshy
coshy
sinhy

—sinhy

—sinhy
—sinhy
—coshy
coshy

—cosO —sinO
—cosO —sinO

(4.14)

sinO —cosO
—sinO cosO
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11'=Pe+ —4.
p p

Thus, 4' '(p, g, g) as expressed by

q"'(p, g, rt) =Q(g, ri)&(p)ll(p, g, rt)

(4.15)

(4.16)

(p —p'—}+ (p+—p '»
2 2

and trigonometric functions with the argument

(4.17)

2
—(p+p, ')+ —(p —p ') .

2

The solution to the O.-periodicity condition requires to
have

p =exp[ia] (4.18)

with real a and cosa and sina to be rational numbers.
The general solution is given by the Pythagorean num-
bers:

m n . 2mn
cosa=, sina =— m, n =integers .

m +n m +n
(4.19)

That is,

is the solution of the system (4.4) satisfying the constraint
(2.14) for the solution q~o~. That is

4' '(p = l, g, rt) =I—
2~q, , ) (q, , ~

J .

We want solutions periodic in 0 with period 2m. We
see from Eqs. (4.12)—(4.16) that we have hyperbolic func-
tions on the argument

These string solutions depend on one complex parameter

p that depends on two integers n and m [see Eq. (4.20)],
and one complex null vector xo), that is, three complex
independent numbers. Only two independent complex
components remain in fact since g (g, rt) is homogeneous
in xo). As can be seen in Eq. (3.23), the change
xo ) ~cxo ) where c is a complex number, leaves the solu-
tion invariant. The dependence on xo) is precisely like
what happens for strings in D-dimensional Minkowski
spacetime, in which the solution depends on 2(D —2)
complex coeScients. They account for the (D —2)-
transverse degrees of freedom and for the two helicity
modes (right and left movers). Here, we are in three
spacetime dimensions, and so we obtain two complex
coefficients corresponding to the transverse degrees of
freedom.

It can be noticed, that the linear system (3.1} satisfied
by 4(rt, (,A, ) is invariant under conformal transforma-
tions on g, ri. Thus the dressing transformations do not
generate conformal modes but only physical (transverse)
modes.

The vector xo) describes the polarization of the string;
the integers M, n associated with the tr periodicity, label
the string modes. In Minkowski spacetime, only one in-
teger labels the right modes and another one labels the
left modes. Here, we obtain two independent integers for
each mode. Notice that our modes combine left and
right movers in a nonlinear and precise way.

The resulting solution q(tr, r)=(q, q', q, q ) is a com-
plicated combination of trigonometric functions of cr and
hyperbolic functions of r. From Eqs. (4.17)-(4.20), we
see that we have trigonometric functions on the argu-
ments,

m +inp= . , m, n =integers .
m —in' (4.20)

2mn m n
CT and cr

m +n m +n

o~o(m +n ), r~r(m +n ), (4.21)

We get in this way solutions with period 2m (m +n ) in
0.. Upon rescaling,

and hyperbolic functions on the arguments,

2mn m —nr and r
m +n m +n

(5.1)

we set the period to 2m. Notice that now the background
solution q~o~(o, r) will be wound (m +n ) times around
the origin in de Sitter space.

V. THE SOLITON-STRING SOLUTIONS
AND THEIR PROPERTIES

We have now all the elements to obtain the explicit ex-
pression for the solution ~q(71, $)) of the string Eqs.
(2.4)—(2.7). The explicit expression for the solution
4" '(ri, g;po} given by Eq. (4.16) can be directly obtained
by computing the indicated matrix multiplication;
Q(rt, g) is given by Eqs. (4.1)—(4.3); A(p, ) and II(p, g, rt)
are given by Eqs. (4.14}. This was done with the help of
the computer program of symbolic calculation
MATH EMATICA.

By projecting 4' '(g, g;po) thus obtained on a constant
and complex null vector ~xo ), we have directly the vector
~x ). The matrix g(g, g) is obtained from Eq. (3.23) also
using MATHEMATICA. Finally, the explicit solution
~q(g, g')) is obtained by inserting g(g', g) in Eq. (3.24). ~ CK( CT ~ 7 )— (5.2)

That is, these string-solitonic solutions, do not oscillate in
time. This is a typical feature of string unstability [5,7]
which is present for strings in inflationary type back-
grounds, i.e., accelerated expanding like de Sitter, and in
black holes. The new feature here is that the string does
not oscillate in time, neither for r~O nor for r~ 2 00. It
can be noticed that in decelerated expanding back-
grounds, as it is the case in the standard FRW expansion,
string instability does not occur and the string behavior is
oscillating in r [7]. This was recently confirmed for all
values of r, in the FRW universe, where explicit string
solutions has been found [11]. The nonoscillatory
behavior in time can be understood from the fact that the
string motion in de Sitter spacetime reduces to a sinh-
Gordon equation with negative potential [14]. In D=3,
this is precisely the standard sinh-Gordon equation,
whose potential unbounded from below (see Fig. 1) is re-
sponsible for the instability. By defining
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determines the potential

Veff
—2 cosh+ (5.7)

FIG. 1. Effective potential corresponding to the sinh-Gordon
model.

the string equations (2.4) and string constraints (2.7) in de
Sitter spacetime can be reduced to tine sinh-Gordon
equation

a„—a —e +e =0. (5.3)

Therefore, in order to find a solution in D=3 de Sitter
spacetime, one can start from a cr-periodic solution of the
sinh-Gordon equation (5.3} and insert it in the string
equations (2.4):

[8,—8 —e ' ']q(o, r)=0. (5.4)

ds = dq. dq = e ' "(do dr ) . —1 1

H2 2+2

The energy density of the sinh-Gordon model here,
'1 2

1 Ba Ba
2 Br 8&7

—2 cosha(cr, r),

(5.5}

(5.6)

Then, one must solve the linear equation (5.4) in q (o, r)
and impose the constraints (2.3) and (2.7). This is actual-
ly an alternative method to the dressing method, to ob-
tain string solutions in de Sitter spacetime. (See Fig. 2).

The function e ' "has a clear physical interpretation,
as it determines the proper string size. The invariant in-

terval between two points on the string, computed with
the spacetime metric, is given by

This potential has absolute minima at a=+ ~ and
a= —oo. As the time r evolves, a(o. ,r) generically ap-
proach one of these infinite minima. The first minimum
corresponds to an infinitely large string whereas the
second one describes a collapsed configuration. That is,
the string in de Sitter spacetime will tend generically ei-
ther to infiate (when a~+ 00 ) or to collapse to a point
(when a~ —~ ).

The background string solution q~o~(cr, r) given by Eq.
(4.1) corresponds to the sinh-Gordon solution a =0. This
means a string with Pnite constant proper size (equal to
1/H). In the sinh-Gordon model this corresponds to a
particle at the maximum of the potential V,z= —2 and
with zero velocity.

Let us recall that for a given time qo, the de Sitter
space is a sphere S with radius R =(1/H)+1+qo.
For the background solution q~o&(o, ~) given by Eq. (4.1},
we have R(r)=(1/H)+1+ —,'sinh r. As the de Sitter
universe expands for ~~~, the string size e ' "=1
remains here constant. This solution is probably unstable
under small perturbations.

It must be noticed that the integers (m, n) of the soli-
tonic solutions (4.19) have the meaning of string winding.
They label the different ways in which the string winds in
the spatial compact dimensions (here S ). Notice that
our string solutions do not oscillate in time in spite of the
fact that we are in a Lorentzian signature spacetime.
(The dependence on r is hyperbolic. )

In Figs. 3 and 4 we plot the one-soliton solutions
Iq(o', r)) =(q,q', q, q ) found here. They show the
three-dimensional spatial projections (q ',q, q ) as a
function of cr, for a given polarization vector x ),
different values of rn, n, and two differents values of v.
Figures 3(a) and 3(b} show the same solution
[n=2,m = l, x ) =(1,—1,0. 1,0.1i)] for two different
values of r. Figures 4(a) and 4(b) show the evolution for a
higher winding number (n=5}, and polarization vector
x ) = ( 1, —1, l, i).

For comparison, let us recall, that in D=2 spacetime
dimensions, in which the string motion reduces to the
Liouville equation, the exact general solution is a string
wound n times around the de Sitter space and evolving
with it. The string covers n times de Sitter space which is
here a circle S '. This solution is given by [14]

I I 1

l
I

l

cosno
q = —eotn~, q =

S111n7

0&a ~2m, 0&v+~/n .

Sinn 0
smn 7

(5.8}

(5.9)

The invariant interval between two points of the string

ds = (do. —dr )
1

0 sin n~
(5.10)

I ( I I I l

FIG. 2. Function HT(v. , o ), for fixed o.=0.41, for the n=1
string solution in (1+1)-dimensional de Sitter spacetime.

exhibits the typical feature of string instability: in the
asymptotic regions ~~0+ and ~~a/n, the proper string
1ength blows up. %e also see that the string does not
have "enough time" to oscillate in one expansion time of
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q =sinhHT+ exp(HT)[(X') +(X ) ],
2

(5.11)

the Universe: the oscillation period of the string coin-
cides with the expansion tiine of the Universe. When the
string accomplishes one osci11ation, the Universe has end-

~ ~

In order to analyze the exact solutions Iq(o, ~) ), it is
convenient to use the coordinates (T X' X ) in this
(2+ I)-dimensional de Sitter spacetime:

2
q =H exp(HT)X', q =Hexp(HT)X (5.13)

That is,

—~ &TX',X &+ ao .

2 3
0 i i & e ~2T=—ln(q +q ), X =—

H Hq+q
(5.14)

q'=coshHT — exp(HT)[(X') +(X ) ], 5.12
2 0.5

O

(aj
~ I \ ~ I ~ ~

O
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l

O
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—1 0 1

qi
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O
I
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—0.5
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0 0.5

g' O I I ~
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~ I
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~ I ~ ~

~ I ~ a
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IA
O

I ~

~ I

-0.5 0.5 I I ~ a ~ I ~ ~ I
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q1

FIG. 3. Evolution of the string in (o,r) variables. The three
(q' q ) (q', q'), and (q', q') are shown for n=2,

m=1, and v=0. 1 and 2 for Ix ) =(1,—1,0. 1,0. 1i).

qi

FIG. 4. Same as Fig. 3 for n =5, ~=0.5,3.85 and
Ix ) =(1,—1,i, 1).
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O
I

1
~

[
1

O

I

I P / w ~ t I

if

FIG. 5. Plot of the function
HT(~), for two values of o, for
n =4, ~x ) ={1+i,0 6.+0 4i. ,0 3.
+0.5i,0.77+0.79i). The func-
tion r(T) is multivalued, reveal-

ing the presence of five strings.

The cosmic time T and the conformal time g are related
by

g= ——e, —00 &g~O,1 —HT (5.15)

in terms of which the line element takes the form

d$2 dT2+e 2Hr[(dX1)2+(dX2)2]

[—

(dry�)

+ (dX ') + (dX2)'] .1

0 g
(5.16)

rr+r =f+ (o '+r')

We now analyze the properties and new features exhibit-
ed by these solutions.

First of all, let us analyze the cosmic time coordinate
T=T(o, r). We have studied T as a function of r for
different fixed values of 0. and vice versa. These functions
have been obtained numerically for a wide family of solu-
tions labeled by different values of the parameters n, m
and ~x ). We report here only two significant cases,
which show the generic features, irrespective of the par-
ticular values of these parameters.

Figure 5 shows T as a function of ~ for the values of cr

indicated in the picture. We depict T for n=4, m=1,
and a generic ~x ) =(1+i,0 6+0 4i., 0 3+0. .5i, 0. .77
+0.79i).

In Fig. 6 we depict T as a function of ~ for the solution
with n =4, m = 1, and ~x ) = (1,—l, i, 1). We see that our
solution in the generic case describes actuallygve strings,
as it can be seen from the fact that for a given value of T
we find five different values of v. That is, ~ is a mul-
tivalued function of T for any fixed cr This is. an entirely
new feature for strings in curved spacetime. It has no
analogy in Bat spacetime where the time coordinate obeys

[8,—r) ]T=O, and, therefore, using the conformal trans-
formations

allows to choose the light-cone gauge, in which T (or a
null-like combination of it) is proportional to r In.
curved spacetime, this is not possible in general. Only in
some geometries like shock waves or gravitational plane
waves, the light-cone choice is possible for all r [2]. In
asymptotically Qat spacetimes this choice is only possible
asymptotically [5]. When r is a univalued function of the
time coordinate, the solution of the string equations de-
scribes only one string. This is the case in geometries
where the light-cone choice of gauge is possible for all r.
In spacetimes, as de Sitter, where ~ is a multivalued func-
tion of the time coordinate, the solution of the string
equations of motion and constraints describe a multi-
string configuration. That is, each branch of ~ as a func-
tion of T corresponds to a different string.

This multiple number of strings arises as a consequence
of the string dynamics in curved spacetimes, that is, from
the coupling of the string with the spacetime geometry.
Notice that here we have just free string equations of
motion in curved spacetime. That is, interactions be-
tween the strings themselves, like splitting and merging,
are not considered. We find that the geometry deter-
mines the simultaneous existence of several strings. They
do not interact directly between them since they do not
intersect. All the interaction is through the spacetime
geometry. Notice that such phenomenon does not ap-
pear in D=2 [Eq. (5.9)], where time is a monotonic and
periodic function of ~. This solution describes only one
string in one period: 0(r~nln For other .periods we

get identical copies of the same string. This is not the
case of the (2+1)-dimensional solutions displayed in Figs.
5 —11. They describe five or three different strings. Five
is the generic number of strings in our dressed solutions.
This value five can be related to the fact that we are
dressing a one-string solution (qio~) with four poles.
Each pole adds here an unstable string.

Figures 7 and 8 show the function r =r(o. , T) as a func-

o
I

Y' ' I

O

l

FIG. 6. Same as Fig. 5,
for n =4, ~x ) =(1,—l, i, 1}. Be-
cause of a degeneracy, there are
now only three strings.

2 4
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0 50 100

tion of cr, the different values of T are indicated in the
pictures, for the above solutions (i.e., polarization vectors
~x } and windings (n, m) the same as above). The func-
tion r=r(o, T) being periodic in cr, it is plotted only for
one period (2n) of o. We see that in addition to the
period 2m, another period in o appears which depends on

HT=2

0
(b)

50 100

I
I I I I

I

FIG. 7. r=r(cr, T) for fixed T for n =4, ~x }=(1,—l,i, l).
Three values of HT are displayed, corresponding to HT=O (full

line), l (dots), and 2 (dashed line). For each HT, three curves
are plotted, which correspond to the three strings. They are or-
dered with ~ increasing.

r=r(o, T) is a sinusoidal-type function. It is more
convoluted for small values of ~~~ in the neighborhood of
v=0 where several maxima and minima appear. As soon
as the neighborhood of r=0 is left, 7.=r(o, T) becomes
very fast a regular sinusoidal-type function of o. with a
fixed period much smaller than 2m. [In all solutions stud-
ied here, r=r(o, T) reaches this asymptotic form for
r-5.] The meaning of these small and large r behaviors
will become more clear in connection with the evolution
of the spatial coordinates and shape of the string. The
small r behaviors are connected with the different (and
complicated) ways in which the string winds at the begin-
ning of its evolution, while the v~ 00 uniform behavior is
connected with the asymptotic configuration which is
"frozen" in comoving coordinates. The large r behavior
turns to be ~-independent in comoving coordinates.

Let us analyze now the spatial coordinates X'(cr, r) and
X (o, r) of this solution. Figures 9 and 10 show the time
evolution of the three or Pve strings simultaneously de-
scribed by this solution. In order to describe the real
physical evolution, we eliminated r =r(o, T) from
the solution and expressed X'(o, r) =X'(o, T) an. d
X (o,~)=X (o, T) in terms of T. This was done numeri-
cally. Figure 10 shows the comoving coordinates
(X',X ) for different times HT. We see that for the fifth
string, (X',X ) collapse precisely as the inverse of the ex-
pansion factor e, while the other four strings keep
(X',X ) constant in time (in Fig. 9, it is the third string
that collapses). That is, the first string keep its proper
size constant while the proper size of the other four
strings expand like e . These exact solutions display re-
markably the string behavior found asymptotically and
approximately in Refs. [7]. In summary, when (X',X2)
are smaller or equal than 1/H (the horizon radius), they
contract to a point keeping the proper amplitudes
(e X', e X ) and proper size constant. When (X',X )

are larger than 1/H, they become very fast constant in
time, the proper size expanding with the universe itself as
e (string instability).

In terms of the sinh-Gordon description [see Eqs. (5.2)
and (5.3) and Fig. 1], this means that for strings outside
the horizon, the sinh-Gordon function a(cr, r) for most of
the history is the same as the cosmic time T up to a func-
tion of cr We find, co.mbining Eqs. (5.11}-(5.13) with Eq.
(5.14),

T» 1/H
a(cr, r) = 2HT(o,r}'

+lnt2H [(A '(o )')2+(A ~(a )')~]]

+o (
2HT)— (5.17)

50 100

FICx. 8. Same as Fig. 7 for n =4, x }
=(1+i,0.6+0.4i,0.3+0.5i,0.77+0.79i). (a) The five curves
corresponding to the five strings at HT=2. (b) The five curves
for three values of HT: HT=O (full line), 1 (dots), and 2 (dashed
line).

Here A '(a } and A (o ) are the X' and X coordinates
outside the horizon. For T~ ~ the string is at the abso-
lute minimum a=+ Do of the sinh-Gordon potential and
possess an infinite size.

The string inside the horizon corresponds to the max-
imum of the potential, a=0. This is the stable string
with contracting coordinates (X',X ) and constant prop-
er size, appearing in all the multistring solutions found



2766 COMBES, DE VEGA, MIKHAILOV, AND SANCHEZ 50

here. The value a=O is the only one in which the string
can stay without being pushed down by the potential to
+(x). This also explains why only one stable string ap-
pears: it is not possible to put more than one string at the
maximum of the potential without falling down. The
starting zero soliton solution a=O we have dressed is a
particular and very simple stable string.

For degenerate choices of Ix ), the number of strings
reduces to three (see Fig. 6). For large positive T two of
the strings (strings 1 and 2) are of the unstable type and
one (string 3) is of stable type. In addition, strings 1 and
2 become identical in the in6nite T limit. In Fig. 9, we

plot this solution for negative T. %e see that string 2 is
stable for T~ —~ (it has constant invariant size in such
limit), whereas the invariant sizes of strings 1 and 3 col-
lapse in this limit. In addition, there is an intermediate
regime for

I TI ~ 3 where the comoving size of the strings
decreases by a factor of about 10.

The features above described are generically exhibited

by our one-soliton multistring solutions independently of

the particular initial state of the string. IFixed by the
values Ix ) and (n, m). ]

It is interesting to see how the shape of the string be-
comes more symmetric for special values of Ix ). For in-

stance, a rosette shape or a circle with many festoons are
clearly shown by Figs. 9—11. They correspond to

I
x ) = (1,—l,i, 1) with n =4,6, respectively. These par-

ticularly symmetric vectors Ix ) yield also degenerate
solutions, in the sense that they contain only three
different strings instead of Ave, as it happens in the gener-
ic case.

%e also see that for the symmetric initial conditions
for the string state Ix ), the function v =r(cr, T) becomes
a perfectly symmetric periodic sinusoidal inside the
period 2n, for all values of r (including small IrI), and
the additional very small period is practically the same
for all Ir I.

The number of string windings and festoons is related
to the frequencies in Eq. (4.19) and expressed in terms of
( n, m ). The cr dependence is characterized by the fre-

~ ~ f ~ [ ~ ~ ~ ~

. HT=
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FIG. 9. Evolution as a func-
tion of cosmic time HT of the
three strings, in the comoving
coordinates (X',X'), for n =4,
Ix )=(1,—l,i, l). The comov-

ing size of string (1) stays con-
stant for HT & —3, then de-

creases around HT=O, and stays
constant again after HT= 1.
The invariant size of string (2) is
constant for negative HT, then
grows as the expansion factor
for HT&1, and becomes identi-
cal to string (1). The string (3)
has a constant comoving size for
HT & —3, then collapses as
e for positive HT.
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For m=1, the highest available frequency is the sum

0,+Q2=(n +2n —1)/(n +1). This highest frequency
determines the small period in r =r(tJ, T) as a function of
0 for fixed large ~. That is,

n +1
n +2n —1

In addition,

Qi+Aq =n +2n —1 for odd n,
00

O, i+A~ =(n +2n —1)/2 for even n
0,0

gives the number of festoons in the strings at a given T
(see Figs. 7—11).

Strings propagating in de Sitter spacetime enjoy as con-
served quantities those associated with the O(3, 1) rota-
tions on the hyperboloid (2.3). They can be written as

L= "d- q q-q q J=—' "d- U+V .
0 2 0

In order to compute L it is convenient to relate U and V

with U~o~ and VIo~ using Eqs. (3.27) and (3.28) and the
asymptotic behavior of 4(A, ) for A, ~ ~ [see Eq. (3.11)]:

~(~)=I+ C "'& +O
A2

where C (g, g) is a matrix. We then find

U+ V U(o)+ Vto~+2C(ri, g)cr .

Since C ( rl, g) is a periodic function of a,

I. =1-[o]

for all solutions considered here. We recall [15] that only

Lo, does not vanish for q~o~, taking the value [see Eq.
(4.21)]

L,o
= Lo, =—(n +m )n .
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