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Black hole entropy in canonical quantum gravity and superstring theory
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In this paper the entropy of an eternal Schwarzschild black hole is studied in the limit of an infinite
black hole mass. The problem is addressed from the point of view of both canonical quantum gravity
and superstring theory. The entropy per unit area of a free scalar field propagating in a fixed black hole
background is shown to be quadratically divergent near the horizon. It is shown that such quantum
corrections to the entropy per unit area are equivalent to the quantum corrections to the gravitational
coupling. Unlike field theory, superstring theory provides a set of identifiable configurations which give
rise to the classical contribution to the entropy per unit area. These configurations can be understood as
open superstrings with both ends attached to the horizon. The entropy per unit area is shown to be finite
to all orders in superstring perturbation theory. The importance of these conclusions to the resolution of
the problem of black hole information loss is reiterated.

PACS number(s): 04.70.Dy, 04.60.Ds, 11.25.Mj, 97.60.Lf

I. INTRODUCTION

In conventional statistical mechanics, the entropy of a
system originates in the counting of quantum states
which are macroscopically indistinguishable. The
Bekenstein-Hawking entropy associated with a black hole
of mass M&&Mp&,„,k has never been explained as a
consequence of such state counting. In fact, as will be
shown, in the theory of quantum fields propagating in a
fixed black hole background, the entropy stored in quanta
near the horizon is divergent. In other words, an infinite
number of macroscopically indistinguishable states of the
quantum field exist arbitrarily close to the horizon. This
is in obvious contradiction with the finiteness of the
Bekenstein-Hawking entropy. This conflict is at the root
of the information paradoxes of Hawking. As an exam-
ple, consider a process in which information-carrying
photons are dropped into a black hole at an average rate
which compensates the Hawking evaporation. If one
studies this process in the usual approximation of quan-
tum fields in a fixed black hole background, one discovers
a contradiction. After a long while, the information
stored by photons near the horizon is much larger than
that permitted by the Bekenstein-Hawking entropy.
Thus, it is claimed that information is lost. The real
problem is that there is a conflict between the entropy
defined by state counting (which is infinite) and by black
hole thermodynamics (which is finite). In this paper it
will be shown that the entropy divergences obtained by
state counting are closely related to conventional ultra-
violet divergences of canonical quantum gravity, and
therefore that the information puzzles are part of the
problem of the nonrenormalizability of the theory.
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On the other hand, string theory is an ultraviolet finite
theory of gravity. In an earlier paper, it was speculated
by one of us that string theory resolves the puzzles
behind the Bekenstein-Hawking entropy, both by produc-
ing a finite entropy and providing an explicit counting of
states [1]. In this paper we provide strong evidence to
support these speculations. We will show that the count-
ing of string states near a horizon gives a finite entropy
which agrees with the usual Bekenstein-Hawking result
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+BH G 46

Furthermore, we will be able to identify the string
configurations which lead to this result. Thus, in string
theory there is no way to hide information in excess of
0-BH near the horizon. It must be reemitted in the radia-
tion.

We will begin by considering the entropy of an eternal
Schwarzschild black hole using canonical quantum gravi-
ty. Using the Euclidean functional integral formulation
of the partition function for canonical quantum gravity
coupled to matter, we will show that the Bekenstein-
Hawking formula (1.1) is a general result, but that the
gravitational coupling G appearing in Eq. (1.1) is the re-
normalized gravitational coupling. In particular, this
means that the divergences in the entropy due to matter
fields are the same divergences one must deal with when

trying to renormalize the theory. This shows that the
question of the finiteness of the entropy is inextricably in-
tertwined with the renormalization of the gravitationa1
coupling, and therefore cannot be understood without a
complete knowledge of the ultraviolet behavior of the
theory. We then show that in its perturbative formula-
tion, the theory of superstrings propagating iri an eternal
black hole background gives rise to a completely finite

entropy of the form (1.1), because the renormalization of
6 in superstring theory is finite. We then demonstrate
that the entropy arises from counting states of open
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strings with both ends attached to the horizon.
Even before attempting any calculations, however, a

problem arises: to perform a careful statistical mechani-
cal computation for a black hole with a temperature v,
the black hole must be in thermal equilibrium with a ra-
diation bath, and this radiation permeates all of space-
time. Therefore, one should expect a divergence, propor-
tional to the volume of space, in any extensive quantities,
such as the Helmholtz free energy. This problem can be
avoided by considering the limit of an infinitely massive
black hole, for which the Hawking-Unruh temperature is
zero. The resulting geometry outside the event horizon is
described by the Rindler metric. Beginning with the
Schwarzschild metric

server is [2]

exp( 2—err )

Pz Z

which corresponds to a thermal ensemble at the Rindler

temperature ~z =1/2~. The Rindler Hamiltonian Hz is
given in terms of the Minkowski space energy momen-
tum tensor as

Hrr = J d x ds s( Tsr } (1.7)

where the integral is evaluated on the surface T=O.

II. STATISTICAL MECHANICS OF A

SCALAR FIELD IN RINDLER SPACE
2GM 2GMg= 1 dhedh+ 1— dr@dr In statistical mechanics, the entropy of a system is

defined to be
+r 102, (1.2)

cr = —Tr[p ln(p) ], (2.1)

define new coordinates T and s by

t
4GM '

s=&8GM(r 2GM)—,

so that g may be written

(1.3)

2
$2g= —s 1+

16G M
dTdT

$2+ 1+ ds ds
16G2M2

$2
+4G M 1+ dQ2 .

16G M
(1.4)

Taking the limit M —+00, the spherical horizon surface
becomes planar, and Eq. (1.4) becomes the Rindler metric

g= sdTdT+—dseds+dx dx +dx dx . (1.5}

In order to regulate divergences corning from the infinite
area of the Rindler horizon, we shall put in an infrared
cutoffby defining x,x G[ L/2, L/2], an—d then impose
suitable boundary conditions on the fields. With this pro-
cedure, the area A of the horizon is simply L . The
quantities of interest, such as the entropy per unit area,
remain well defined in the limit L~~. In addition, the
near horizon temperature also remains finite.

Rindler space % may be viewed as the wedge x ' ~ ~x ~

of Minkowski space. A Rindler observer at constant s
corresponds to a uniformly accelerated observer in Min-
kowski space. From the point of view of such an ob-
server, Rindler space is causally complete, because the
surfacex = —x' corresponds to T= —ao. Signals which
pass into Rindler space from the region beneath this sur-
face are viewed as initial data. Now consider a system in
the Minkowski space vacuum ~0)~. A Rindler observer,
who can sample only the Rindler wedge, must trace over
all degrees of freedom outside Rindler space. He will
therefore view the Minkowski vacuum as a mixed state.
Remarkably, the density operator for the Rindler ob-

where p is the density operator for which Eq. (2.1) is
maximized, subject to constraints. In the microcanonical
ensemble, in which the energy E of the system is held
fixed, p is given by 1/N times the projection operator for
the eigenspace corresponding to E, where N is the dimen-
sionality of this eigenspace. The entropy is cr =ln(N ), the

logarithm of the dimension of the allowed space of states,
and represents a counting of allowed states. The effect of
a more general density operator may be to weight states
differently, but the entropy can still be interpreted as the

logarithm of an effective dimension of a space of states
with non-negligible probability. For example, a system in
thermal equilibrium with a heat reservoir at temperature
v is described by the density operator

exp( PH)—
P Z

(2.2)

where p=l/r is the inverse temperature and H is the
Hamiltonian. The quantity Z is the partition function,
and is defined by

Z =Tr [exp( —PH ) ]=exp( PF), — (2.3)

S[P]=——f as[(VQ) +m P ],1
(2.5)

where the metric g is given by Eq. (1.5) and e
=Q —det(g„„)dTAdsA dx hdx is the volume form

where F is the Helmholtz free energy. It is easily shown
that the entropy (2.1) can be obtained from the
Helmholtz free energy as

~ —p22 dF
a

The Eq. (2.3) for the partition function applies to quan-
tum theories of fields propagating on a fixed Lorentzian
spacetime manifold At, described by a metric g. As long
as Af is stationary, so that thermal equilibrium is a well-
defined concept, one can select a timelike Killing vector
(8/Bx ) and calculate the partition function.

Consider now a scalar field propagating in Rindler
space A. The action describing the field is
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corresponding to g. The field equation is the usual
Klein-Gordon equation

1
(V —m )P= —— + +— +

s BT cis»s (c)x )

2+ —m /=0 . (2.6)
(c)x )

P may be expanded as

P= U(s)exp( i AT—+ik xi), (2.7)

where xi=(x,x ). Imposing periodic boundary condi-
tions in x and x requires that k=(2n/I-)(n, n ),
where (ni, ni)CZ . Defining g=+k +m, the equation
for U may be written

quantization condition is
1n(co)n~= f dx&2[E —V(x)] .

1n(gc, )

This integral can be calculated, and leads to the result

(2.13)

1+1—(ge/co)2i/1(g / )2

1 —}/ I —
( ge/co)

(2.14)

which is an implicit equation for the frequencies co. Re-
quiring that the square root be real gives the condition
co) (E. The eigenfrequencies depend on both the quan-
tum number n and the wave vector k, and are denoted by
co„(k).

The partition function for a single mode, labeled by the
quantum numbers n and k, is given by

d d
s

ds ds

(i co) U(s)=g sU(s),
s

(2.8) (2.15)

which is the modified Bessel equation of order i~ in ei-
genvalue form. The most general solution of this equa-
tion is

Since the modes are independent, the total partition func-
tion is

U = AI,„(gs )+8K; (gs ) . (2.9)
Z(P) = g Z(P; n, k) =exp[ PF(P) ]—,

n, k

(2.16)

The eigenfunctions and eigenvalues are determined by
imposing boundary conditions. The unboundedness of
I; (x) as x~00 requires A =0. To regulate the theory,
we demand that U vanish at s = c. where c is close to zero.
Then the eigenvalues are the solutions of the equation

and the Helmholtz free energy is

F(P)= ——g In [Z(P; n, k ) ) .
1

P„g (2.17)

Approximating the sums by integrals, Eq. (2.17) becomes
K;„()E)=0 . (2.10)

Note that Eq. (2.10) should be viewed as an equation for
the Rindler frequencies co. The solutions of this equation
can be approximated as follows. Define x =In(gs) and
E =

—,'co, so that Eq. (2.8) can be rewritten as a time in-

dependent Schrodinger equation
1

ln2'
1++ I —(ge/co)

1 —+I —(ge/co)'

I. dkF(P)= f, , f dao
"

ln(1 —e ~") .
p a~ (2~)2 gc dco

DifFerentiating Eq. (2.14) gives the density of levels

(2.18)

(2. 19)

+—e" U(x)=EU1 d 1

dx

for a particle of mass m =1 moving in the potential

—e " if x)1n(ge);. 2
Vx =

otherwise .

(2.11)

(2.12)

and changing the orders of integration, one obtains the
expression

F(P)= f dcoln(1 —e ~
)

A

(2~)~P cm

fX dkk ln
+(co/c) —m I+V'1 —(e/co) (k +m )

0 1 —V 1 —(e/co) (k +m )

The eigenvalues E can be approximated using the &KB
method. The turning points of the classical motion occur
when V=E, or when x H [ln(ge}, ln(co)]. The WKB

I

(2.20)

where I. = A is the area of the horizon. After perform-
ing the integration over k, Eq. (2.20) becomes

2

F(P)= f dco ln(1 —e ~ ) (rg/c. ) + I —(Em /cg)2+ ln
(2~)2P cm 2

1 —i/ I —(em /co)

1+i 1 —(em /co)
(2.21)

Expanding in powers of the field mass m, the leading
term is

t

which is integrated to yield

F(13)= f dcoco ln(1 —e ~ ),
(2n.e) P

(2.22)
m AF(P)=-

180e P'
{2.23)



50 BLACK HOLE ENTROPY IN CANONICAL QUANTUM GRAVITY. . . 2703

A
(7

360~v
(2.24)

The resulting entropy, evaluated at the Rindler tem-
perature ~it = 1/2n. , is

Xt, with topology S'XX, by defining the Euclidean
"time" coordinate 8=ix and~eriodically identifying 0
with period p. The metric on A, then has signature +4,
and is written

(3.2)g = —
good 8 d 8+g;.dx 'g dx 1 .

The entropy of the P field diverges quadratically with the
cutoff e. This divergence is proportional to the area of
the horizon, however, and only the numerical coefficient
depends on the cutoff procedure. The nature of this
divergent entropy can be understood in terms of the
infinite gravitational redshift between the horizon and
infinity. Any field mode with finite frequency at the hor-
izon must have vanishing frequency at infinity. There-
fore, the dimension of the space of states with arbitrarily
small energy is infinite. The regulator s is an ultraviolet
regulator, which has the effect of cutting off the sum over
states. The result (2.24} agrees with the entropy of a sca-
lar field propagating outside a finite mass black hole as
calculated by 't Hooft [3].

Because the thermal density operator in Rindler space
can be obtained from the Minkowski vacuum by tracing
over the degrees of freedom outside the Rindler wedge,
the above calculation is related to the calculation per-
formed by Srednicki [4]. Srednicki calculated the entro-

py resulting from tracing over the degrees of freedom of a
scalar field contained within a spherical cavity when the
field is in the Minkowski vacuum state. In the limit of a
large sphere, the entropy per unit area calculated in [4]
should agree with that in Rindler space. The result (2.24)
is in qualitative agreement with the results in [4], al-
though the numerical coefficient of the quadratically
divergent entropy is substantially different. This can be
attributed to the sensitive dependence of quadratic diver-
gences on the regulator method.

The partition function for fields P propagating on JM, can
be expressed as a functional integral

z(p) =Wfn[y]e '(~}-, (3.3)

where A is a normalization factor and I is the action of
the theory on the Euclidean manifold. This method of
calculation, while derived from the Hamiltonian formula-
tion of the quantum field theory, has the advantage of be-

ing generally covariant. The formalism is extendable to
include stationary as well as static spacetimes.

For the theory of canonical quantum gravity, in which
the metric is one of the fields to be integrated over, the
generalization of Eq. (3.3) is taken to dePne the partition
function [5]. The partition function is formally written as

Z(P) =Wf n[g] fn[$]exp( —I[g,g]}, (3.4)

where the space 9' of Euclidean metrics is restricted by
boundary conditions, such as the total energy contained
in spacetime and behavior at infinity. The Euclidean ac-
tion functional I appearing in the integral is

I[g,p] =IEH[g ]+Iy[p,g ], (3.5)

where IEH is the Euclidean Einstein-Hilbert action,

1
IEH[g 16 G

(3.6)egR +2 eI E

and I& is the action of the "matter" (nongravitational)
fields P. The bare gravitational coupling is explicitly
denoted by Go.

The usual method of calculation of the partition func-
tion (3.4) is to find a manifold A with metric g which is a
stationary point of the classical action and satisfies the
boundary conditions. Then, writing an arbitrary metric g
as g =g+f, one quantizes the fluctuations f and P in the
background metric g. The action (3.6} can be expanded
in powers off as

III. THE BEKENSTEIN-HAWKING ENTROPY
AND THE RENORMALIZATION OF 6

The divergent entropy of the scalar field obtained in
Sec. II is certainly nonsensical, and an obvious flaw in the
calculation is that the back reaction of the gravitational
field has been neglected. Since field states with arbitrarily
high energy were included in the partition function, one
should expect modifications to the background geometry.
The argument may be raised, therefore, that a calculation
which includes this back reaction may very well lead to a
finite entropy. In what follows this is addressed. We will
calculate the entropy of an infinitely massive, eternal
Schwarzschild black hole by (formally) evaluating the
functional integral of Euclidean canonical quantum grav-
ity. We find that the question of the finiteness of the en-
tropy can be answered only by understanding the renor-
malization of the gravitational coupling G.

For completeness, we begin by formulating the func-
tional integral representation of the partition function. If
a spacetime manifold JK is static, there exist coordinates
[x"} such that the metric may be written

I[g,k]=I[i+f,N]

IEH[g ]+Iy[p,g]+ f eg f5I
g

(3.7)
$g

and the partition funciton (3.4) can be written

Z(P)=e ~ =exp( —IEH[g])Z' (3.8)

where

Z'=~ f&[f]f&[/] exp[ —(I[g+f,P]—I«[g])] .

(3.9)

To study the partition function for gravitational and

g=goodx dx +g,--dx dx~, (3.1)

where g„is independent of x,i,j H [1,2, 3], and Afhas,
the topology IXX. Next, define the Euclidean manifold
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matter fields propagating outside an infinitely massive,
eternal black hole, the stationary point to expand around
is a Euclidean continuation % of Rindler space, with the
metric

g =s d Og d 0+ds g ds +dx dx +dx (3dx (3.10)

The Euclidean "time" coordinate 0 is periodic with
period P, and we again restrict x,x E[ L/—2,L/2] to
regulate divergences due to the horizon area A. Now
consider a subspace of constant x and x'. This subspace
has the geometry of a cone with angle deficit (2m. —P),
and consequently has a conical singularity at the origin
s=0 proportional to (2n —P}. However, s=0 corre-
sponds to the event horizon of the black hole, which has
no curvature singularity in the Lorentzian geometry. Im-
posing the condition that this singularity be absent leads
to the result that the correct Euclidean continuation has
/=2m. . (This is one method of deriving the Hawking-
Unruh temperature, because even for a finite mass black
hole, the Rindler space approximation becomes arbitrari-
ly good as one gets close to the horizon. ) Indeed, only if
P=2m will the metric be a stationary point of the Eu-
clidean action (3.6}.

Nevertheless, in order to obtain the entropy by means
of Eq. (2.4), one must know the partition function for P
slightly different from 2m, so one must consider the
geometries containing conical singularities. Indeed, it is
shown in [6] that the entropy is conjugate to the deficit
angle. A Euclidean continuation of Rindler space with
period P will be denoted %&. It would seem that these
geometries fail to be stationary points of the functional
integral. Note, however, that the derivative with respect
to P appearing in Eq. (2.4) is a partial derivative. Thus,
all other thermodynamic variables must be held fixed, in-

cluding the horizon area A. The condition that A

remain fixed must be implemented in the functional in-

tegral. This can be achieved by means of a Lagrange
multiplier. The effect of this multiplier is to insert an en-

ergy density along the surface s =0, which is analogous
to a cosmic string. The solution to the classical equations
of motion will therefore have a conical singularity at
s=0. Thus the Euclidean continuations for P%2m are
stationary points of the Euclidean functional integral sub-

ject to the constraint of constant horizon area.
Consider now the factor exp( —IEH[g]) in Eq. (3.8),

which gives the contribution to the entropy from the
classical geometry. The effect of the curvature singulari-

ty is that

e R=2A 2m-
.Ãp &

Thus the Einstein-Hilbert action is

[ ]
(2' P) A pFEH g

8 G

(3.1 1)

(3.12)

From Eq. (3.12) one obtains the Bekenstein-Hawking for-
mula for the entropy per unit area:

cr 1
(3.13)

46O

Note, however, that this entropy does not have any obvi-

ous origin in the counting of quantum states, since it
arises simply from the classical action of the conical
Rindler background.

To proceed, we must (formally) calculate the functional
integral Z' in Eq. (3.8). The actual quantization of the
theory defined by Eq. (3.8) is a tricky subject, but we shall
find that we do not need more than the most basic of re-
sults. First note from Eq. (3.7) that, neglecting the fiuc-
tuations f,Z' reduces to the partition function for matter
fields propagating in the Rindler background. For the
case of a single free scalar field, this was calculated in Sec.
II. From the point of view of the Euclidean functional
integral, the computation in Sec. II is equivalent to con-
sidering the free matter field on a fixed Rindler back-
ground %& with conical deficit 2m —P. The functional in-

tegral can be represented in terms of first quantized parti-
cle paths, according to a standard prescription. In higher
orders of perturbation theory, the paths branch to form
Feynman diagrams. However, the only diagrams which
can contribute to the entropy are those which intersect or
encircle the horizon at s =0. To see why, consider first
the lowest order diagrams, which are simple closed
curves. A single loop with fixed "center of mass" which
does not intersect or encircle s=0 is insensitive to the
deficit angle. Summing over all such loops leads to an in-

tegration of the center of mass of each loop over all angu-
lar positions, and the result is proportional to P. Accord-
ingly, it will give no contribution to the entropy. A loop
which encircles the singularity represents a real particle
propagating outside the black hole, and this state certain-
ly contributes positively to the entropy. The divergence
in Eq. (2.24) is evidently due to very small loops which
encircle s =0. It is for this reason that the entropy is lo-
calized near the horizon. The point is that calculating
the partition function by evaluating the Euclidean func-
tional integral on a conical background provides a unified

way of obtaining the entropy due to both the classica1
geometry and the quantum corrections. However, thus
far only the quantum corrections have a clear interpreta-
tion in terms of the counting of states.

Integrating out all the matter fields and tree level grav-
itons gives a contribution proportional to 1/E . Includ-

ing this term, the entropy per unit area is

0 1 1 C+
A 4 6, 90~~'

(3.14)

'Here and henceforth we drop the caret over the background

metric g.

where C is a constant which depends on the matter con-
tent of the theory. As we shall see in what follows, the
same quadratic divergence enters into the renormaliza-
tion of the gravitational coupling in the effective action.

We now proceed to prove this statement. After in-

tegrating out the matter fields and fluctuations of the
metric, Z' has the form Z'=exp( —W'), where on gen-
eral grounds 8" must be a diffeomorphism-invariant
functional of the background metric' g. 8 ' will contain
all possible covariant terms, and may be expanded in
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powers of the Riemann tensor and its derivatives as

W'[g]= f e — aR+Q(R)1
(3.15)

o(P)= + g [b„+P(n+1)b„+i](2m—P)" .PA
8mGg

(3.22)

+a.1

0
(3.16)

The next ate~ is to evaluate Eq. (3.15) for Euclidean
Rindler space R. To regulate the curvature singularity at
the origin, define R =(2m —P)f, where f is a smooth
function supported only on an e neighborhood of the ori-
gin. The condition that (3.11) be satisfied means that f
must satisfy

f e f=2A. (3.17)
%p

We also require that the scale of variation off is indepen-
dent of the conical angle, so that derivatives of f do not
introduce additional dependence on P. Now consider the
possible types of terms that can appear in Q.

(1) Any local or nonlocal term with n ~ 2 powers of the
Riemann tensor R &„„willbe proportional to (2m —P}".
This includes terms with arbitrary numbers of derivative
operators acting on R &„.Their contribution to 8"may
be represented as

—g b„(2n. P)", —
71 =2

(3.18)

where the b„areconstants.
(2) Now consider terms linear in R &„„,with arbitrary

derivatives acting on them. For example, consider

I=f esVR. (3.19)
m

Since R is now a smooth function, by use of Stokes'
theorem Eq. (3.19) can be rewritten as an integral over
the boundary of%:

I=f eon"V R, (3.20)P

where n is a unit vector normal to Ni,'. But R vanishes
outside a small neighborhood of the origin, so the in-
tegral I vanishes. It is obvious that all such terms will
vanish after integration by parts.

Because of the rapid falloff of the Green functions in
four dimensions, nonlocal terms proportional to one
power of R„&will not appear, and the above list covers
all possible terms. Thus, using the condition (3.11), the
full Helmholtz free energy PF'=SEH[g]+ W'[g] can be
written

Here a is a constant and Q contains all other induced co-
variant terms. We neglect a possible renormalization of
the cosmological constant. The effect of a is to renormal-
ize the value of the gravitational coupling in the effective
action from Go to Gz, given by

Setting @=2~, Eq. (3.22) reduces to the Bekenstein-
Hawking entropy (1.1},but with the renorinalized gravi-
tational coupling Gz given by Eq. (3.16).

Thus we arrive at the conclusion that for the case of
canonical quantum gravity coupled to matter fields, the
expression (1.1)for the Bekenstein Haw-king entropy of the
ftelds propagating outside a black hole is a general result,
but the gravitational coupling appearing in Eq. (1.1) is the
renormalized gravitational coupling Gs given by Eq.
(3.16). Comparing Eqs. (3.16) and (3.14), we see that the
divergences in the entropy are the same divergences
which renormalize the gravitational coupling. In particu-
lar, this means that the question of the finiteness of the
entropy of the black hole is inextricably intertwined with
the renormalization of the theory. Canonical quantum
gravity is nonrenormalizable, and it is often the case that
the only consistent quantum field theory that can be ob-
tained from a nonrenormalizable theory is a free field
theory. If this is the case with canonical quantum gravi-
ty, then Gz =0, and the entropy diverges.

IV. TWO-DIMENSIONAL MODELS

Because of the large amount of attention that has re-
cently been focused on two-dimensional toy models of
black holes, it is of interest to examine how quantum
corrections affect the entropy of a two-dimensional black
hole. In the following it will be shown that in the two-
dimensional model proposed by Callan, Giddings, Har-
vey, and Strominger (CGHS} [7], the divergence in the
entropy of scalar fields moving in a black hole back-
ground is not the same as the divergence which renormal-
izes the gravitational coupling. Instead, it provides an
infinite zero point entropy, which corresponds to an
infinitely degenerate ground state and probably a theory
which loses information.

The CGHS model is defined by the action functional

S--= ': ~ "R+4V '+4'-'
(4.1)

where g, P, and f are the metric, dilaton, and matter
fields, respectively, and A, is a cosmological constant
which defines a length scale for the theory. The classical
theory defined by the action (4.1) has eternal black
hole solutions. Defining light cone coordinates x *
and choosing the line element to have the form
ds = —e ~dx +dx, these solutions are given by

PF= —g b„(2nP)", .—
n=1

(3.21)
e 2&=e 2&= —Z2x+xM

(4 2)

where b1 = A /8m. G+ comes only from the Einstein-
Hilbert term. The entropy is therefore

where M is the black hole mass. The future horizon is
the curve x =0.

The CCsHS theory can be viewed as an effective action
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for radial modes of near extreme, magnetically charged
black holes in four-dimensional dilaton gravity [7). Using
this correspondence, the are,"-; of the black hole is defined
to be k e ~ evaluated at the horizon, or A =MR

As for any nonextreme black hole, the behavior of the
geometry near the horizon is closely approximated by
Rindler space. Taking the limit M —+ ~, a calculation of
the entropy of the scalar field f may be performed using
techniques analogous to those used in Sec. II. Because of
the bad infrared behavior of scalar fields in two dimen-
sions, in addition to the horizon cutoff c. one must also in-
troduce an infrared cutoff I. The entropy is found to be

1 l0.=—ln
6 c

(4.3)

Note that this entropy is not proportional to the horizon
area. Instead, it represents an infinite additive constant
to the entropy. Indeed, it can be seen that the entropy of
the f field cannot be proportional to the area because of
the way f couples to the dilaton. From the point of view
of the four-dimensional theory, the result (4.3) occurs be-
cause the truncation of all but the spherically symmetric
modes is a violent reduction of the number of degrees of
freedom of the theory.

The origin of this entropy can also be understood by
examining the effective action obtained after integrating
out the f field. This action is given by the original action
(4.1) plus a Liouville action, which can be written using
the above metric as

12m f d x[p —ln(1/s)](V) [p —ln(l/s)]
(4.4)

Note that the p field only appears in the combination

p —in(l/s). The first term in Eq. (4.4) is the familiar
correction to the classical action, and is responsible for
the Hawking radiation from the two-dimensional black
hole. The second term is proportional to the Euler class,
and is the term which gives rise to the divergent entropy
of the scalar field. Indeed, being careful with factors of m.

which enter into definitions of energy in the theory, the
entropy (4.3) can be read off from the second term in Eq.
(4.4). It should be pointed out that the first term in the
action (4.1) gives rise to the classical contribution to the
entropy, and as with the four-dimensional black hole,
there is no obvious counting of states associated with this
entropy.

Since the integrated curvature is a topological invari-
ant, the second term in the effective action (4.4) plays no
part in the dynamics of the theory, and is usually ig-
nored. Moreover, its contribution to the entropy is as an
additive constant, which has no thermodynamic
significance. However, the presence of this term does
have information theoretic significance. Because of this
infinite additive constant, there is no mechanism to
prevent the black hole from accumulating an arbitrarily
large amount of information near the horizon. It is
therefore highly plausible that information is, in fact, lost
in two-dimensional theories, or that black hole remnants

exist in these theories, which amounts to the same thing.
Nevertheless, we have seen that a truncation to only
spherically symmetric modes does great violence to a
four-dimensional theory —the entire renormalization
structure is profoundly changed. For this reason, we
conclude that two-dimensional theories do not possess
enough degrees of freedom to be viable models of four-
dimensional gravity.

V. SUPERSTRINGS AND BLACK HOLE ENTROPY

Having learned in Sec. III that the question of black
hole entropy is related to the ultraviolet divergence struc-
ture of our theory of quantum gravity, the next step is to
look for theories for which this divergence structure can
be understood. A natural candidate for examination is
the theory of superstrings propagating in a background
spac ctime.

There are two essential points we will establish in the
remainder of this paper. The first point is that in string
theory, unlike canonical quantum gravity, the entire en-

tropy per unit area of a horizon can be attributed to
identifiable quantum states. In other words, superstring
theory is an "induced" theory of the gravitational
effective action, in which all the terms in the action arise
from integrations over Quctuations in the presence of a
background geometry. This is true even for the "classi-
cal" or tree graph action, which is generated by integra-
tion over genus zero surfaces. Computing these fluctua-
tions in a conical background requires a definition of the
string theory "off shell. " Such off shell continuations in-

troduce ambiguities and divergences into the world sheet
sigma model. It will be shown, however, that the entropy
is entirely independent of these ambiguities.

The second important point to establish is that string
theory is also ultraviolet finite, and therefore leads to a
finite entropy per unit area. This follows from the fact
that the renormalization of the string coupling constant ~
(in units of the string tension) is finite order by order in

perturbation theory.
In the present state of development of string theory, it

is not possible to begin with a Hamiltonian, solve for the
eigenvalues, and compute the partition function using Eq.
(2.3). Therefore, we must make an ansatz that the
definition (3.3) of the partition function holds in string
theory, by which we mean that the logarithm of the parti-
tion function is given in terms of a sum of string Feyn-
man graphs in the appropriate Euclidean continuation of
the spacetime manifold. This ansatz is supported by re-
sults in [8].

Using this ansatz, we will show how superstring theory
resolves the puzzles behind the Bekenstein-Hawking en-

tropy. We show that the contribution to the entropy per
unit area from genus zero string graphs is the leading-
order classical term in the Bekenstein-Hawking formula.
This classical term thus has a manifest origin in the
counting of quantum states. Next we find that the
Bekenstein-Hawking result holds to a11 orders in super-
string perturbation theory, and that the renormalized
gravitational coupling appearing in the formula is finite

The starting point for our discussion is the two-
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Z" = ', fn[e] fn[g] fn[X]

X f2)[%]exp( I[X—, V;e,y)), (5.1)

where X& and 4 are the bosonic and fermionic coordi-

dimensional supersymmetric sigma model describing the
propagation of superstrings in a background spacetime
metric g. The generating functional for the two-
dimensional superconformal field theory on a world sheet
of genus n is

(n —1)

nates of the superstring, respectively, e is the world sheet
zweibein, and y is the gravitino. Kp is the bare string cou-

pling, and 9 denotes the symmetry group of the two di-
mensional action I, which includes diffeomorphisms, su-
perconformal transformations, and an on shell local su-

persymmetry. The first step is to gauge fix the world
sheet zweibein to e=e e and the gravitino to y=pi, ,
where e is a fiducial zweibein, p are the two dimensional
Dirac matrices, and A, is a Grassmann variable. This in-
troduces repararnetrization ghosts b, c, P, and y, and Eq.
(5.1) becomes

A, , X %,c, , y

Vol 0 (5.2}

Here T„denotes the group of superconformal transfor-
mations, F„is a fundamental region for the integration
over the 2m„supermoduli ~, and 0 denotes the addition-
al subgroup of symmetries which remains after the gauge
fixing. 0 is generated by the conformal Killing vectors
and spinors. We imagine regulating the two-dimensional
field theory by replacing the world sheet by a finite lat-
tice. The volume of the group 0 is then also naturally re-
gulated [9,10].

In order to cancel the integrals over A and A, against
Vol(T }, the theory must actually be superconformally
invariant. For strings propagating in Bat D dimensional
Euclidean space with no background fields, the condition
for superconformal invariance is that the dimension take
the value D=10. For a general supersymmetric sigma
model, the conditions for superconformal invariance are
more complicated, and in addition to the condition
D =10, the spacetime fields must satisfy the equations of
motion of a spacetime action. The superconformal in-
variance conditions imply the vanishing of the P func-
tions for the two-dimensional quantum field theory, so
the theory is ultraviolet finite.

To study the statistical mechanics of superstrings near
massive, eternal black holes, we shall be interested in cal-
culating the Z'"' for superstrings propagating in Euclide-
an Rindler space. In order to calculate the entropy, how-
ever, a small conical singularity must be introduced, and
the resulting space violates the conditions for supercon-
formal invariance of the theory. Therefore, a prescrip-
tion must be followed for calculating the off shell generat-
ing functionals, and we will continue to use (5.2) as our
definition of Z'"'. It will be found, however, that the en-
tropy is independent of the prescription used.

Consider first the case of genus zero. After integrating
over the world sheet fields and dividing out the volume of
II, Eq. (5.2) for Z~P' takes the form

fr[A, X]
Z' '=ap F(g;E,A, A, }, (5.3)

Vol T„
where F is a generally covariant functional of the back-
ground metric g, and also depends on the world sheet re-
gulator parameter c, and the superconformal parameters

A and A, . The basic structure of F can be determined by
quite general arguments. To begin with, for a fixed value
of the regulator, Fmay be expanded as a sum of integrals
of powers of the Riemann tensor and its derivatives. To
see why, we return to our regulation of the string theory
in which the world sheet is replaced by a finite lattice of
points. Then the bosonic part of the functional integral
becomes a product of ordinary coupled Gaussian in-
tegrals. Because of the exponential damping, the in-
tegrand tends to zero quickly when the integration vari-
ables are distantly separated. In particular, the image of
the worldsheet in the target spacetime will have an extent
of order l -1 (n1/e, }. Thus, for a fixed value of the regu-
lator, there is no way to introduce any nonlocal behavior
with extent larger than O(l ) into the generating function-
al, and a series expansion of the type described above will
be possible. It should also be pointed out that the quanti-
ty Z' ' is not the effective action for string theory as
defined by Tseytlin in [10],but is simply related to it, as is
demonstrated in the Appendix.

The coemcients of the terms in the expansion of F will
depend on c,, A, and A, , and will in general diverge as c
goes to zero. This is one of the diSculties involved in
defining string theory off shell. It is shown in the Appen-
dix, however, that the coefficient of the term f e R is in-

dependent of e, A, and A, . For this term the integral over
the superconformal parameters simply cancels Vol(T ),
and so Z' ' can be written

fr[A, ~]
Z = —go p ++go g gpss 54

Vol T„
where Q contains all the other terms in F.

Although it is apparent that a unique definition of the
off shell amplitude does not exist, it is obvious that the
first term in Eq. (5.4) governs the low-energy scattering of
gravitons, and that its coeScient can be related in the
usual way to the bare gravitational coupling.

The genus zero generating functional Z' ' has been
written down for a ten-dimensional background metric,
but we want to study four-dimensional physics, so we
must introduce a coxnpactification scheme. For simplici-
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ty, we will consider a target space '7 which is a product
manifold At XE, where At is a four-dimensional manifold
coordinated by [x'];, (which will eventually be
identified with four-dimensional Euclidean Rin dier
space), and E is a (D —4)-dimensional compact manifold
coordinated by jx'j; ~ and having no intrinsic curva-

ture. The metric on "T is block diagonal, decomposing
in«a metric g' ' on At and a metric g' ' on E. &'sim-
ple choice for Il: is the product manifold (S')D 4, with
x'E[0,L,. ] for i E [5, . . . , D], and g . '=5; . The L;
are taken to be on the order of &a'. The genus zero gen-
erating functional can now be written

z [0)— ye[~, ~]I e (4)R + e (4)Q(g; s~ A, A, ) (5.5)

where the bare four-dimensional gravitational coupling is

K
60=

16' 6 (D 4}x g

(5.6}

All that is left now is to specify the four-dimensional
manifold At and the background metric. For our pur-
poses, the manifold At is taken to be Euclidean Rindler
space T7&, which has an angle deficit (2m. —P), and metric
g' ' given by Eq. (3.10). From here the argument
proceeds exactly as in Sec. III, where we found that the
entropy per unit area at P=2m depended only on the
coefficient of the integral of R, and we obtain the result
that the entropy per unit area obtained from genus zero
string graphs is given by the Bekenstein-Hawking formu-
la

0. 1

A 46O
(5.7)

It should by now be apparent that this result does not de-
pend on the exact definition of off' shell superstring gen-
erating functionals, because changes in the prescription
for off' shell functionals can only influence the result
through the terms which depend on the regulator or the
superconformal parameters. These terms all give contri-
butions to the entropy which vanish when one sets
P=2m.

Assuming that superstring theory can be written in a
Hamiltonian formulation, it is surprising that the entropy
we have obtained is well defined only for the Rindler tem-
perature rz =1/2m. For ordinary systems, one can cal-
culate Tr(exp( PH })for any v—alue of P. A sinular situa-
tion occurs, however, when one tries to calculate the
thermodynamics of a sufficiently large gravitating system.
Here one is foiled by the fact that the long range gravita-
tional field leads to the Jeans instability, and the thermal
ensemble is not well defined. To see the connection with
the above calculation, notice that the world sheet ultra-
violet regulator c acts as a spacetime infrared regulator.
For example, a string graph will have an extent of order
[in(1/s)]'~, as mentioned previously. The above results
suggest that an infrared instability also occurs in our cal-
culation, and that the regulator c, controls it, allowing
one to perform statistical mechanical calculations at an
arbitrary temperature. The thermodynamics of the sys-
tern, and in particular the entropy, will therefore depend
on this infrared regulator. The entropy can be made well
defined by taking away the regulator only for P= 2'.

VI. STRING STATES ON THE HORIZON
AND THE FINITENESS OF THE ENTROPY

The important thing to note about the result (5.7) is
that in superstring theory the leading-order, classical
contribution to the Bekenstein-Hawking entropy arises
explicitly from an integration over string configurations,
namely, those described by genus zero string graphs. It is

precisely because of its origin in the counting of string
states that the entropy is independent of the exact off'

shell prescription used —the entropy is an "on shell

quantity. " The nature of the states contributing to the
entropy (5.7}will now be determined.

The bosonic part of a general genus zero superstring
graph is a continuous map from S into the target space
A&XK, as shown in Figs. 1 and 2. Just as in the case of
the first quantized particle paths described in Sec. III, not
all such graphs can contribute to the entropy. Only the
graphs which intersect the conical singularity at s =0 can
contribute. This can be understood as follows. Consider
deleting the subspace s =0, so that the resulting Euclide-
an manifold has topology S ' X 1R XEC. Since S is simply
connected and the mapping is continuous, the action of a
graph cannot depend on P. Summing over all string

graphs involves an integration over the angular location
of a given graph, and thus will be proportional to P. This

P dependence will be canceled when one obtains the
Helmholtz free energy from the generating functional.

FIG. 1. A genus zero string graph which does not contribute
to the entropy. All other directions besides s, 8, and x are

suppressed.
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FIG. 2. A genus zero string graph which does contribute to
the entropy.

On difFerentiating Fwith respect to P, the sum vanishes.
An example of a genus zero graph which does contrib-

ute to the entropy is given in Fig. 2. To understand what
state this corresponds to, we consider a slice of constant
Euclidean time, shown in Fig. 3. It is apparent that the
states we are counting are closed superstrings which lie
partially behind the horizon. An observer outside the
black hole describes these states as open superstrings
with both ends frozen to the horizon, but which are free
to interact with each other and with superstrings propa-
gating outside the black hole. Thus we have proved our
first point, that the classical contribution to the
Bekenstein-Hawking entropy arises from counting
identifiable states of superstrings frozen to the horizon.

Now consider contributions from higher genus graphs.
After performing the functional integrals over the super-
string coordinates and the ghosts, each Z'"' can be ex-
pressed in a form similar to Eq. (5.5). Using the now fa-
miliar arguments of Secs. III and V, the only terms we
are interested in are the integrals of the scalar curvature,
which are superconformally invariant, so we drop the
rest. Denote the genus n contribution as

(6.1)

gravitational coupling to its renormalized value G„.It is
well known that the integrals over the world sheet moduli
are the analogues of the integrals over Feynman-
Schwinger parameters in quantum field theory. In field
theory, these integrals lead to divergences, such as those
which lead to infinities in the entropy. It is also well
known that in superstring theory the dangerous regions
of moduli space are eliminated, and the coefficients a„are
finite [11]. Thus the renormalized coupling constant is
finite. We therefore arrive at our second conclusion, that
the entropy per unit area of a horizon is jfnite to all or-
ders in superstring perturbation theory, and is given by

o 1

46~
(6.2)

where Gz is the finite renormalized value of the four-
dimensional gravitational coupling.

As an aside, for certain superstring theories the renor-
malization of the gravitational coupling is in fact zero.
This is the case when, after compactifying the theory
down to four dimensions, the theory exhibits an N =4 su-

persymmetry. If the supersymmetry is broken to some
lower N, then the renormalization of the gravitational
coupling is finite but nonzero [12].

As with the genus zero case, only certain higher genus
graphs contribute to the entropy. By an argument simi-
lar to the above, one can easily see that the only graphs
which contribute to the entropy must encircle or inter-
sect the conical singularity at s=0. Examples of such
genus one graphs are given in Figs. 4 and 5. Figure 4 de-
picts a closed superstring which remains outside the
black hole for all time. Such graphs represent states in
which the entire string remains outside the horizon. Fig-
ure 5 describes a process in which an open string emits
and reabsorbs a closed string.

Now an interesting puzzle arises. Consider the fact
that in N=4, D=4 compactifications of superstring
theory (as well as ordinary N=4, D=4 supergravity
theories) the higher-loop corrections to the gravitational
coupling vanish. By our result in Sec. V (Sec. III), this

The efFect of the coefficients a„is to renormalize the bare
iiX

X3

Q)
D
g$

K
b
N

~~
b

= S

e=o

FIG. 3. A slice of constant Euclidean time showing an open
string with both ends attached to the horizon.

FIG. 4. A genus one string graph which contributes positive-
ly to the entropy.
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e=o

FIG. 5. A genus one string graph describing a coupling be-
tween strings on the horizon and strings outside the horizon.

implies that the corrections to the entropy vanish as well.
The fact that the gravitational coupling is not renormal-
ized can be attributed to a cancellation between fermionic
and bosonic degrees of freedom in Feynman graphs.
However, if one performs an ordinary statistical mechan-
ical calculation of the entropy that counts physical states,
then these states, whether bosonic or fermionic, always
contribute positively to the entropy. The question is,
from the point of view of the statistical mechanical calcu-
lation, where do the necessary negative contributions to
the entropy come from?

In superstring theory, the resolution of this puzzle
comes from genus one graphs which intersect the horizon
as in Fig. 5. These graphs do not represent the contribu-
tion of either open strings attached to the horizon, or
closed strings outside the horizon. They describe pro-
cesses which couple the open and closed string sectors.
In other words, these graphs describe an interaction be-
tween the degrees of freedom outside the horizon and
those that make up the horizon. These graphs do not
have to contribute positively to the entropy, and in fact
must provide the negative contributions to the entropy
which cancel the positive contributions from the closed
string graphs shown in Fig. 4.

VII. CONCLUSIONS

Let us now take stock of what has been learned. In
Sec. II it was shown that quantum fields propagating in a
fixed four-dimensional Rindler space background have an
entropy per unit area which diverges near the horizon.
This divergence is due to an infinitely large number of
states having arbitrarily small energy. In Sec. III it was
shown that this divergence is the same divergence which
renormalizes the gravitational coupling in the e6'ective
action of canonical quantum gravity. For this reason, the
divergence in the entropy cannot be understood without
an understanding of the ultraviolet behavior of the
theory. In Sec. IV, two-dimensional toy models of black
holes were examined, and it was found that the matter
fields in the theory contribute an infinite additive con-
stant to the entropy. It is therefore reasonable to expect
that these models do in fact exhibit information loss. It

was argued, however, that these models do not possess
enough degrees of freedom to be good models of four-
dimensional black holes.

In the last two sections we showed how superstring
theory, in its perturbative formulation, resolves the puz-
zles of the Bekenstein-Hawking entropy. The leading-
order classical contribution to the entropy per unit area
was shown to arise from superstrings which lie partially
behind the horizon, and which act like open strings with
both ends attached to the horizon. This result gives a
new physical picture of a black hole —that of a surface
covered with bits of string which are free to interact with
each other and strings outside the black hole. These bits
of string give rise to a microstructure on the horizon,
which can be thought of in the field theory limit as an ad-
ditional set of degrees of freedom, which one could call a
stretched horizon [13].

In addition, the entropy per unit area has been shown
to be finite to all orders in superstring perturbation
theory, and to be given by the Bekenstein-Hawking for-
mula, Eq. (6.2). This is because the renormalized gravita-
tional coupling is finite. Therefore, in superstring theory,
a black hole cannot absorb an infinite amount of informa-
tion, and must emit the information in the form of Hawk-
ing radiation.

The results obtained in this paper only apply in the
limit of infinite black hole mass. For large but finite
black hole mass M, one would in general expect correc-
tions to the black hole entropy which are of O(1/M)
compared to the Bekenstein-Hawking formula. We do
not doubt the existence of these terms, and it is our belief
that these terms will be finite in superstring theory. Nev-

ertheless, given a sufficiently large black hole, Hawking's
information problem can be formulated without mention
of these terms, so the resolution of the question of infor-
mation loss should depend only on the finiteness of the
Bekenstein-Hawking term.

It should be emphasized that the validity of our result
rests on the ansatz for the logarithm of the partition
function used in Sec. V. A true calculation of the entropy
would require an actual enumeration of states, for which
a Hamiltonian is needed. In the absence of a Hamiltoni-
an, however, the calculation above appears to be the most
viable alternative. If superstring theory is truly con-

sistent, it is reasonable to expect that the Hamiltonian
calculation will reproduce the results obtained here.
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APPENDIX

In this appendix we show that the coefficient of the
term Je R in F is independent of e, A, and A, . We will

use results obtained by Tseytlin in Ref. [10]. Define the
quantity Z' ' using Eq. (5.2) by
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f1)[AA,I.
Vol( T ) Vol(Q)

(A 1) I,z=c e —R+ 4 +—exp H

so that Z' ' is the regulated generating functional for the
two-dimensional field theory, computed in a particular
conformal gauge, and without the volume of 0 removed
from it. It is shown in [10] that Vol(Q) ~ in(e), and that
there exists a field redefinition such that

(A2)

where I,~ is the spacetime action which generates equa-
tions of motion equivalent to the superconformal invari-
ance conditions. I,tt has an expansion of the form

+a'Q(g;a', e, A, A, ) (A3)

where c is a constant and Q contains terms which are
higher order in R~„,with coefBcients that depend on
a', s, A, and A, . We can now integrate Eq. (A3) with
respect to ln(e) to obtain Z' ', and insert this quantity in

Eq. (Al). Dividing out the volume Vol(Q) ~ in(e), we see
that the coeScient of the integral of R is independent of
e, A, and A, . For this term, the integral over the super-
conformal parameters cancels Vol(T ), and we arrive at
Eq. (5.4).
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