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Pair creation of extremal black holes and Kaluza-Klein monopoles
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Classical solutions describing charged dilaton black holes accelerating in a background magnetic field
have recently been found. They include the Ernst metric of the Einstein-Maxwell theory as a special
case. We study the extremal limit of these solutions in detail, both at the classical and quantum levels.
It is shown that near the event horizon the extremal solutions reduce precisely to the static extremal
black hole solutions. For a particular value of the dilaton coupling, these extremal black holes are five-
dimensional Kaluza-Klein monopoles. The Euclidean sections of these solutions can be interpreted as
instantons describing the pair creation of extremal black holes and/or Kaluza-Klein monopoles in a
magnetic field. The action of these instantons is calculated and found to agree with the Schwinger result
in the weak-field limit. For the Euclidean Ernst solution, the action for the extremal solution differs
from that of the previously discussed wormhole instanton by the Bekenstein-Hawking entropy. Howev-
er, in many cases quantum corrections become large in the vicinity of the black hole, and the precise

description of the creation process is unknown.

PACS number(s): 04.70.Dy, 04.50.+h

I. INTRODUCTION

The creation of particle-antiparticle pairs in a back-
ground field is a common feature of quantum field theory.
Schwinger [1] first studied this process for electrons and
positrons in a uniform electric field. This was extended
by Affleck and Manton [2] to the case of grand unified
theory (GUT) monopole-antimonopole production in a
background magnetic field. In general relativity, the
analogue of a monopole is a magnetically charged black
hole, and the question naturally arises as to whether
black holes can be pair produced by a background mag-
netic field. Even though black holes and monopoles are
both “solitons” in the sense of being static extended ob-
jects, there are important differences. First, the
configuration of two black holes has a different spatial to-
pology than the vacuum. So, unlike the monopole case,
one cannot continuously deform one into the other. Pair
production of black holes is necessarily a topology-
changing process. A second difference is simply that the
fundamental quantum theory is known for the case of
monopoles (Yang-Mills-Higgs theory), but we still lack a
quantum theory of gravity from which we can calculate
black hole pair-creation rates from first principles. Nev-
ertheless, the previous calculations were done in the con-
text of an instanton approximation, and it seems reason-
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able to hope that a similar approach will work for black
holes in a sum-over-histories framework for quantum
gravity.

Affleck and Manton used an approximate instanton to
estimate the pair-creation rate for GUT monopoles. As
Gibbons first realized [3], an exact instanton for the
Einstein-Maxwell theory can be obtained by analytically
continuing a solution found by Ernst almost 20 years ago
[4]. The Ernst solution describes two oppositely charged
black holes undergoing uniform acceleration in a back-
ground magnetic field.! It describes the evolution of the
black holes after their creation. Regularity of the Eu-
clidean instanton turns out to restrict the charge-to-mass
ratio of the black holes. Gibbons believed that only ex-
tremal black holes could be created. But Garfinkle and
Strominger [5] found a regular instanton for which the
black holes were slightly nonextremal. Furthermore, the
horizons of the two black holes were identified to form a
wormbhole in space.

For static charged black holes, the properties of the ex-
tremal solution are quite different from the nonextremal
one. In particular, the spatial geometry of the extremal
Reissner-Nordstrom metric resembles an infinite throat
connected to an asymptotically flat region. If extremal
black holes of this type can be pair created, one has the
intriguing possibility that an infinite volume of space
could be quantum-mechanically created in a finite time.
One of the aims of this paper is to investigate this possi-
bility. We explicitly exhibit an extremal Ernst instanton
and study its properties. We will show that as one ap-

1Ernst actually considered electric fields, but by duality, these
are equivalent to the magnetic fields we will consider here.
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proaches the horizon, the solution reduces to the ex-
tremal Reissner-Nordstrom solution with its infinite
throat.2 Furthermore, we will see that, despite the
infinite throats, the action is finite and agrees with
Schwinger’s result for weak magnetic fields. (This was
also true for the nonextremal wormhole [5].) However,
higher-order quantum corrections may become large
down the throat and modify the geometry significantly.

The situation in low-energy string theory is similar.
Extremal magnetically charged black holes have a spatial
geometry which is identical to that of the Reissner-
Nordstrom solution [7,8]. An effort was made to calcu-
late the production rate for black holes in string theory
[9] by constructing an instanton in a hybrid two- and
four-dimensional theory, which was conjectured to ap-
proximate the full theory. The resulting configuration
described nonextremal black holes with their horizons
identified to form a wormhole. Arguments have been
made that instantons corresponding to the pair creation
of extremal black holes do not exist. We will see that this
is incorrect; indeed, in the string case, the natural ana-
logue of the wormhole instanton develops an infinite
throat and becomes extremal. As in the Reissner-
Nordstrom case, this reduces to the static solution far
down the throat.

A convenient way to treat both the Einstein-Maxwell
and low-energy string theories simultaneously is to con-
sider the action

= [a%V =g [R-2V4P—e F] . (L)

For a =0, this is the standard Einstein-Maxwell theory
coupled to a massless scalar field ¢. By the no-hair
theorems, ¢ must be constant for solutions describing
static black holes. For a=1, S is part of the action
describing the low-energy dynamics of string theory. In
this case, ¢ is not constant outside a charged black hole.
For some physical questions it is more appropriate to use
the conformally rescaled metric g,,=e*’g,,, which is
called the string metric. It is with respect to this metric
that the extremal black holes have infinite throats. The
value a=V'3 is also of special interest since this corre-
sponds to standard Kaluza-Klein theory, i.e., (1.1) is
equivalent to the five-dimensional vacuum Einstein action
for geometries with a spacelike symmetry.

The equations of motion which follow from this action
are

V(e 2¢Fm)=0

V2¢+%e ~2dp2—( (1.2)

R,, =2V, ¢V é+2e *F, FF—1lg, e 299F2

I

2This can be compared to an instanton found by Brill [6]
which describes the splitting of one throat into many. The
present instanton differs in that it includes the asymptotic re-
gion and does not require that a throat be present initially.
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Recently, a solution to these equations was found (for all
values of a) which generalizes the Ernst solution [10].
These dilaton Ernst solutions describe two oppositely
charged black holes undergoing uniform acceleration in a
background magnetic field. They contain a boostlike
symmetry which allows one to analytically continue to
obtain Euclidean instantons. Regular instantons describ-
ing the pair creation of nonextremal black holes with
their horizons identified were constructed in [10] for
0<a <1 and shown not to exist for a = 1. In this paper
we will choose the parameters so that the black holes are
extremal and study the resulting instantons for all values
of a. As anticipated by Gibbons [3], for a =0 the instan-
ton is completely regular. For a=1, the string metric
corresponding to the extremal instanton is also regular,
and for a=V'3, the corresponding five-dimensional
metric is again regular.

This paper is organized as follows. We begin in Sec. II,
by describing the general features of the Lorentzian dila-
ton Ernst solution and investigate its extremal limit. In
this limit, it is shown that as one approaches the black
hole, the solution reduces exactly to the static black hole
solution. Thus, for a =0 and a =1, the classical extremal
accelerated black holes have infinite throats, just as in the
static case. In fact, we will argue that there is a sense in
which the extremal black hole is not accelerating despite
the presence of the magnetic field. However, the region
around the black hole is accelerating.

In Sec. III we study the corresponding Euclidean in-
stanton. We will show that this describes the creation of
a pair of extremal black holes for each value of a. The
throats are not identified to form a wormhole. For fixed
values of the physical charge § and magnetic field B, we
compute the exact action for both the extremal and
wormhole instantons. For weak fields, i.e., to leading or-
der in @ﬁ, the action reduces to the action found by
Schwinger, for all values of a and for both types of in-
stantons. To the next order in aﬁ we find that, for a =0,
the action of the wormhole instanton is less than that of
the extremal instanton by the Bekenstein-Hawking entro-
py A /4 of the non-extremal black holes. We do not un-
derstand the physical significance of this intriguing re-
sult, which is reminiscent of [11] in which it was found
that the action of the wormhole instanton is less than
that of an instanton-describing pair creation of GUT
monopoles by the same entropy term. This does suggest
the suppression of extremal pair creation relative to that
of wormholes, but quantum corrections can contribute at
the same order in @ﬁ. For a0, we find that the actions
of the extremal and wormhole instantons agree even to
next order in @ﬁ. This is consistent with the @ =0 result
since, in this case, the area of the horizon shrinks to zero
size in the extremal limit. (The area of the horizon in the
nearly extremal wormhole instanton is nonzero, but
higher order.)

Section IV contains a discussion of the effect of quan-
tum fluctuations about the classical solution. This ques-
tion is of interest in both the Lorentzian and Euclidean
contexts. Since Hawking’s discovery of black hole eva-
poration, there has been extensive discussion of quantum
fields around static black holes and of observers ac-
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celerated through the vacuum. When the black holes
themselves are accelerating, these two subjects are com-
bined in a fundamental way. By using results from these
two areas, we will argue that the back reaction may be-
come strong down the infinite throats. For the Euclidean
instanton, the quantum fluctuations appear to affect the
infinite throats as well, and may substantially alter the
production rate.

The extremal dilaton Ernst solution is of special in-
terest for a =V'3, the Kaluza-Klein case. This is studied
in detail in Sec. V. It is known that the extremal magnet-
ically charged black hole for a =V'3 is the Kaluza-Klein
monopole [12,13]. So the Lorentzian solution describes
two (oppositely charged) monopoles accelerating in a uni-
form magnetic field. The Euclidean instanton describes
pair creation of Kaluza-Klein monopoles. Even though
the four-dimensional metric describing an extremal mag-
netically charged black hole is singular, the correspond-
ing five-dimensional metric turns out to be completely
regular. So the five-dimensional instanton is also regular.
Unlike the previous cases, the quantum corrections
should remain small everywhere, so the action for the in-
stanton should give a good approximation to the pair-
creation rate. We conclude in Sec. VI with a discussion
of some open problems.

Before proceeding to the accelerated black hole solu-
tions, we briefly review the static dilaton black hole and
background magnetic-field solutions to (1.2). The black
hole is given by [7,8]

ds*=—Adt>+ A" 2dr’+ RXd 6*+sin’0d ¢?) ,

2a2/(1+a?)

o 20— 1__r;] , A,=q(1—cosh) ,
(1.3)
- (1—a?)/(1+a?)
2= (1__1 1—— ,
Id r

2a2/(1+a?)

R2:r2 [1___]
14

I
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If r, >r_, the surface r =r is the event horizon. For
a =0, the surface r=r_ is the inner Cauchy horizon;
however, for a >0, this surface is singular. The parame-
ters r , and r_ are related to the Arnowitt-Deser-Misner
(ADM) mass m and total charge g by

172
r_

2

1—a?
1+a?

ror_

14+a?

=t
2

q=

The extremal limit occurs when r,. =r_. As one ap-
proaches this extremal limit, the Hawking temperature
goes to zero when a <1, approaches a nonzero constant
when a =1, and diverges when a > 1.

The solution describing the background magnetic field
was found by Gibbons and Maeda [7] and is given by’

ds2=A2/“+“2’[—dt2+dzz+dp2]+A’2/“+“2’p2d(p2 ,

_ 2 2
e Zadz:AZa /(1+a*)

2
L A= (1.5)

2
A:1+ﬂ_
4

B?p? .

It is a generalization of Melvin’s magnetic universe [14].
The square of the Maxwell field is F2=2B?%/A*, which is
a maximum on the axis p=0 and decreases to zero at
infinity. The parameter B labels the strength of the mag-
netic field. For a >0, the dilaton is zero on the axis, but
diverges to minus infinity as p— .

II. DILATON ERNST METRICS

A. General properties

The dilaton Ernst solutions to (1.2) constructed in [10]
represent two oppositely charged dilaton black holes uni-
formly accelerating in a background magnetic field. They
generalize the Einstein-Maxwell (a =0) solutions found
by Ernst [4]. They are

dsZ:(x —y)—zAVZAMH"z){F(x)[G(y)dtZ“G_l(y)dy2]+F(y)G'1(x)dx2}+(x __y)~2A—ZA—2/(1+02)F(y)G(x)d(p2 ,
(2.1)

o—2b—, 2%, 2 0+a) EY) 2e

F(x)’ °¢ Tk,

where the functions A= A(x,y), F(§), and G(§) are given and gq is related to r . and r_ by (1.4). The constant £ in
by the expression for the gauge field is introduced so that the
Dirac string of the magnetic field of a monopole is

2 . . -
(1t+a”) confined to one axis. The constant ¢, in the solution for

1+ -—-5—qu

(14+a?)B?

A= 3 5>G(x)F(x) ,
4A4°(x—y)

FE)=(1+r_ Ag)e’/1+a’) (2.2)

3The gauge potential given here differs from that in [10] by a
gauge transformation so that 4, is regular on the axis p=0.

G(é—):(l_§2_r+AgS)(1+r_Ag)(l‘az)/(l+a2) ,
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the dilaton determines the value of the dilaton at infinity.
Although one could keep this as a free parameter, we will
fix is so that the dilaton vanishes on the axis at infinity in
agreement with (1.5). The values of both k and ¢, will be
given below.

The solution (2.1) depends on four other parameters
ry, 4,B. Defining m and q via (1.4), we can loosely think
of these parameters together with 4,B as denoting the
mass, charge, and acceleration of the black holes and the
strength of the magnetic field which is accelerating them,
respectively. We emphasize, however, that this is heuris-
tic since, for example, the mass and acceleration are not
in general precisely defined and, further, we will see that
g and B only approximate the physical charge § and mag-
netic field B in the limit 7, 4 <<1.

It is convenient to introduce the following notation.
Define £,=—1/(r_A) and let §, <&, <&, be the three
roots of the cubic in G. The functions F(£),G(£) then
take the form

F(g)::(r_ A )Zaz/(H—az)(g__g1 )Zaz/(1+a2) ,
(2.3)

G(§)= _(r+ A)Nr_A )(1~a2)/(1+a2)(§_§2)(§_§3)

x(§_§4)(§_§1)(l—az)/(1+a2) .

We restrict the range of the parameters 7, and 4 so that
ry A<2/(3V3), so that the & are all real. The limit
r. A=2/(3V'3) corresponds to £,=&;. We also restrict
the parameter 7 _ so that £, <&,.

The metric (2.1) has two Killing vectors: 9/3¢ and
d/d¢@. The surface y =¢; is singular for a >0, as can be
seen from the square of the field strength. This surface is
analogous to the singular surface (the “would-be” inner
horizon) of the dilaton black holes. The surface y =§, is
the black hole horizon, and the surface y =£; is the ac-
celeration horizon; they are both Killing horizons for
a/0t.

The coordinates (x, @) in (2.1) are angular coordinates.
To keep the signature of the metric fixed, the coordinate
x is restricted to the range &;<x <¢, in which G(x) is
positive. Because of the conformal factor (x —y) 2 in the
metric, spatial infinity is reached by fixing ¢ and letting
both y and x approach &;. Letting y —x for x7£; gives
null or timelike infinity [15]. Since y —x is infinity, the
range of the coordinate y is — 0 <y <x for ¢ =0, and
1<y <xfora>0.

The norm of the Killing vector 3/9¢ vanishes at x =§;
and x =£,, which correspond to the poles of the spheres
surrounding the black holes. The axis x =&, points along
the symmetry axis toward spatial infinity. The axis x =§,
points toward the other black hole. The coordinates we
are using only cover one region of spacetime containing
one of the black holes. The Dirac string singularities at-
tached to the monopoles will be taken to lie along the
axis x =§&,; this is accomplished by fixing the constant k
so that 4,(x =§;)=0.

As discussed in [10], to ensure that the metric is free of
conical singularities at both poles, x =&;,£,, we must im-
pose the condition
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G:(§3)A(§4)2/(1+a2)= _GI(§4)A(§3)2/(1+02) ’

where* A(£;)=A(x=¢;). It will be convenient to define

(2.4)

LEAI/(1+a2)(§3) . (2.5)

When (2.4) is satisfied, the spheres are regular as long as
@ has a period

_ 4mL’
G'(&)
The condition (2.4) can be readily understood in the limit

r A <<1, which implies r _ 4 <<1. In this case one has
the expansions

(2.6)

§2=_r+A+r+A+"' s
r . A
£,=—1— +2 + , Q.71
ri A
=1—
&4 > T

Substituting the expressions (2.2) and (2.3) into (2.4) and
expanding to leading order in 7, 4 gives Newton’s law:

mA=qB , (2.8)

where we have used (1.4) to replace . with m,q. This is
true for all a. More generally, the condition (2.4) reduces
the number of free parameters for the solution to three by
relating the acceleration to the magnetic field, mass, and
charge.

The appearance of Newton’s law strongly suggests a
regime in which the solution closely approximates a point
particle moving in the Melvin background. Indeed, the
point particle limit is given by r . 4 <<, since this corre-
sponds to a black hole small on the scale set by the mag-
netic field. In this limit, and taking |r, Ay|<<1, one
finds that G(£)~1—&%F(£)=~1 and the solution (2.1)
reduces to the form

2/(1+a?) 2 2
dszz—l}z—-—z (1—y?)dt?— d 2+—dx—2
A% (x—y) 1—y 1—x
—2/(1+a?) 1—x? 2
+A a md(p , (2.9
with
(1+a*)B?* 1—x?
i (2.10)
The coordinate transformation
1—x?2 2—1
2 2 _ Y
= s = , (2.11)
P Gyrar * ayra?

41t follows from (2.2) that when x is equal to a root of G(x),
A(x,y) is independent of y. So A(£;) are constants.
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simplifies this to
dszzAZ/”*“z’[~§2dt2+d§2+dp2]+A‘2/"*“z’pqupz ,
(2.12)

with A given in (1.5). The dilaton and gauge fields are
likewise found to be

- ad Bp®
Adg=e "9\

where k has been chosen so that A is regular on the axis
p=0.

Equations (2.12) and (2.13) give the dilaton Melvin
solution (1.5), expressed in Rindler coordinates, up to the
arbitrary shift of the asymptotic value of the dilaton.
The standard form follows using the coordinate transfor-
mation 7=¢sinht,z=¢ cosht. Thus the coordinate ¢ in
the dilaton Ernst solution is the analogue of Rindler time.
The subleading terms in (2.12) become important when
y=—1/r, A, which, for small r, 4, corresponds to
p=0,~1/A—the trajectory of the black hole. The
asymptotic limit (2.12) is obtained at a distance of order
r, from the black hole, as expected. These features are
illustrated in Fig. 1.

The relation to Melvin is not restricted to the point-
particle limit; even away from this limit, (2.1) becomes

— —2a¢ 2 2
Zad)ze OAZG /l+a ,

, e (2.13)

FIG. 1. The z,7 plane of the dilaton Ernst solution, in the
limit » . A <<1. The dotted lines indicate a region of size ~r
surrounding the black hole at y ~§,; inside this region the
geometry is approximately that of the black hole. The black
hole moves on a trajectory with acceleration A4, and the ac-
celeration horizon is given by y =§&;. The coordinates used in
(2.1) cover only the unshaded part of the figure.
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Melvin at large spacelike distances. This corresponds to
x,y—&;. One way to show that the metric (2.1) ap-
proaches (1.5) asymptotically was given in [10]. A some-
what simpler approach is to change coordinates from
(x,y,t,9) to (p,&,m,P) using
_AF(&LE 2

G'(&)A* (p*+*)
_ 4F(§3 )L2 gz

X &3

H

—y= , (2.14)
53 y Gl(§3)A2 (p2+§2)2
27 2L%
r= . = .
G'(£;) G'(g) Y

Note that 1, are related to ¢, by a simple rescaling and
that @ has period 27 due to (2.6). For large p?+¢&?, the
dilaton Ernst metric reduces to

ds? AT 2R+ d 2 +dp?)

+7\—2/(1+a2)p2d¢2 ’ (2.15)
where
2
A= 1+—lt" B,
e 2 (2.16)
pr— B°G'(&3)
4L3+a2

Again we recover the dilaton Melvin metric in Rindler
coordinates.

The asymptotic form of the dilaton and gauge potential
are

o —2a6_, y2a*R2a%/(1+ah), " 2% ,

s (2.17)
A_—L _azea%g% .

¢ 2A

This is equivalent to the standard background magnetic-
field solution (1.5), provided we choose

e"P=L" (2.18)
We will take the constant ¢, to be fixed at this value in
the remainder of the paper. We can now see that the
physical magnetic field is B given by (2.16). Using (2.7),
we note that in the limit r, 4 <<1,B~B.

The physical charge of the black hole is defined by
g=1/4m f F, where the integral is over any two-sphere
surrounding the black hole. For the dilaton Ernst solu-
tion (2.1), one obtains

L(3+a2)/2(§4_§3)
G E) 1 +(1+adgBE, /2]

q (2.19)

In the weak-field limit », 4 <<1,§ =~gq. Using (2.16), the

product of the physical charge and magnetic field is
qB(£,—§3)

B= ) 2.20
? 2[1+(1+a*)gqBE,/2] 2.20

This will be useful shortly.
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B. The limit £, =§&,: accelerating extremal black holes

Since y =¢&, is the event horizon and y =§, is an inner
horizon (@ =0) or singularity (a >0), it follows that the
extremal limit of the dilaton Ernst solutions is given by
choosing the parameter r _ so that £;=§£,. Recalling the
regularity condition (2.4), it follows that the extremal
solutions are described by two parameters which we can
take to be the physical charge and magnetic field. In this
section we will show that as y — &, the extremal solutions
become spherically symmetric and approach the static
black hole solutions (1.3) with »_ =r_. This surprising
result has a number of consequences which we will dis-
cuss.

Since the derivation involves considerable algebra, we
will simply indicate the main steps involved. The first
step is to show that with £, =¢&,, one can divide the condi-
J

ds2—+ds0 —_ _(r+r_ )a2/(1+az)(§4_§2)(§3_§2)(y —§2)2/(1+"2)dt2+

X

2 2
dy2 (y_§2)2a /(14+a*) dx2
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tion for no nodal singularities (2.4) by £,— &, to obtain
1+(1 +a2)Bq§2+%( 14+a2)?

X B2 U Erks+E,E,—E:£,)=0. (2.21)

Taking the limit y — &, and using this equation, the func-
tion A in (2.1) becomes

A—alx—§,), (2.22)
where
2
2
a=(1+a%)Bqg+ ﬂi—;ﬂ (E+E) . (223)

One can then show that the dilaton Ernst metric (2.1)
tends to

2/<1+a2)r<3a2—1)/(1+a2)

4/(1+a?)
A r,

(E4—E)(E3— &)y — &)1 %)

where we have used the coordinate @ introduced in
(2.14).

At this stage it is not obvious that the x,® part of the
metric (2.24) corresponds to the round two-sphere, but
the coordinate change

c=1 EitE— §4— &3+ (54, +&3—28,)cos6
7 |53 54 cosO+(E,+E,—2E,)/(£,— &)

, (2.25)

puts it in the standard form, with polar coordinates 6, .
The final step consists of introducing a new variable

2 2_ 2 2 2
a2/(l+a )r(_Ba 1)/(1+a )(_é—z)Za /(1+a*)

?L = 5 , (2.26)
A4/ 1ta ’r+(§4—§2)(§3—§2)
and new coordinates
v =Vrr (B E)E &) —agy) ey
s (2.27)
=_*
y= , & -
In the limit y — &,, these coordinates simplify (2.24) to
2/(1+a?) —2/(1+a?)
m3=—-1——1’ mﬂ+[r—iF' dar?
2a2/(1+a?)
+#2 [1—-— do? . (2.28)

The behavior of the other fields can also be worked out in
the limit y —§,. One obtains

(x =&,

4(x —§3)(§4—x ) d~2
(x —&3)(84—x) (E,— &) ’
(2.24)
f
A¢——>Q(1—cos0) ,
(2.29)
206 , % 2a2/(1+a?)
e~ 2ab_, o, %P0 _ 2a2/(1+a?) |q __+
e ( a§2) 1 . .
where
? a
a: ‘/lj—_aze %o __agz)—az/(H-az) . (2.30)

This agrees with the extremal static dilaton black hole
[given by (1.3) with 7, =r_] in the limit r —r_ .5 Using
(2.22) with x =§;,, (2.3) and (1.4), one can show that §
agrees with (2.19) when the black hole is extremal &, =§,.

The fact that the extremal dilaton Ernst solution ap-
proaches the static black hole as y — £, has several conse-
quences. First, all the geometric properties of the ex-
tremal static solutions near the horizon carry over im-
mediately to the accelerated case. In particular, for
a=0, a constant-¢ slice of the solution has an infinitely
long throat. For a =1, the string metric ds’=e2%ds? also
has an infinite throat in which the solution takes the form

SEquations (2.28) and (2.29) are exactly the extremal static
solution except for a constant shift in the dilaton.
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of the linear dilaton vacuum. For a=V 3, the four-
metric, dilaton, and gauge field together make up the
five-dimensional metric of the Kaluza-Klein monopole
(see Sec. V).

A second consequence is that there is a sense in which
the extremal black holes are not accelerating. For a =0,
this is suggested by the fact that the event horizon is ex-
actly spherical. But a more convincing argument comes
from examining the acceleration of a family of observers
near the horizon whose four-velocities are proportional
to d/0t. For the static black hole, the acceleration of
these observers approaches the finite limit 1/q as they ap-
proach the horizon. (This is related to the fact that the
surface gravity vanishes for extremal black holes and is in
contrast to the nonextremal case in which the accelera-
tion diverges.) If one computes the acceleration of these
observers for the Ernst solution, one again finds that it
approaches 1/q as y —§&, independent of direction. Al-
though this particular argument cannot be extended to
a >0 since the acceleration (in the Einstein metric) now
diverges for the static extremal solution near the horizon,
other arguments can be made. For example, when a =1
in the string metric the acceleration of these observers
tends to zero down the throat. In addition, when ¢ =V'3,
y=¢&, is a regular origin in the five-dimensional Kaluza-
Klein solution, and one can show that its worldline is a
geodesic.

Even though the black hole itself is not accelerating,
the region around the black hole is. This is clear from
the relation between the solution and the dilaton Melvin
solution in accelerating coordinates discussed in the pre-
vious subsection. In terms of the infinite throats, one
might say that the mouth of the throat is accelerating
while the region down the throat is not.

A final comment concerns the physical charge and
magnetic field. Consider the product @ﬁ. This is small in
the weak-field limit, which corresponds to £, being large
and negative. What happens when, instead, £, ap-
proaches £5? The two roots £, and £; can approach each
other only if &,, £&——V'3, and &,—V'3/2. Using this
Eq. (2.20), and the no-strut condition (2.21), one can show

1
1+a?
Thus there is an upper bound on the product of the
charge and magnetic field. Roughly speaking, since the
size of an extremal black hole is ~g and the width of the
Melvin flux tube is ~1/(BV'1+a?), one of the conse-
quences of (2.31) is that the black holes are moving in flux
tubes wider than themselves. The limit £,—&; corre-
sponds to the event horizon approaching the acceleration
horizon. Since we have assumed the black holes are ex-
tremal, §,=¢§,, this corresponds to a “triple point” where
three roots coincide. If one relaxes the condition §,=§,,
it appears that the bound on @ﬁ is even lower, which is
consistent with the fact that the event horizon is larger
than the charge and hits the acceleration horizon at a
smaller value of §. What happens if one takes a charged
black hole and turns up the magnetic field larger than the
bound (2.31)? It would appear that this situation is no
longer described by the class of solutions (2.1). The ques-
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tion of what happens physically is currently under inves-
tigation.

III. DILATON ERNST INSTANTONS

Euclideanizing (2.1) by setting 7=it, we find that
another condition must be imposed on the parameters in
order to obtain a regular solution. Two distinct ways
that this may be achieved were discussed in [10] and are
reviewed in the first subsection below. These include the
wormhole instantons. There is a third way which leads
to the extremal instantons and is described in the second
subsection. The calculation of the action for the
wormhole and extremal instantons is given in the third
subsection.

A. Wormbhole instantons

In the Lorentzian solutions, the vector d/9¢ is timelike
only for £, <y <§&;. In [10] the restriction &, <&, was
made so that the Einstein metric had a regular horizon
for @ >0. In this case, one must impose a condition on
the parameters in order to eliminate conical singularities
in the Euclidean solution at both the black hole (y =§,)
and acceleration (y =£;) horizons with a single choice of
the period of 7. This is equivalent to demanding that the
Hawking temperature of the black hole horizon equal the
Unruh temperature of the acceleration horizon.

In terms of the metric function G (y) appearing in (2.1),
the period of 7 is taken to be

47

AT e

(3.1)

and the constraint is
G'(§2)2_61(§3) s (3.2)

yielding

£~ £ '(1~a2)/r1+a2>

§3—§

(§4—86)(&3—8,)

== 5)E—8) . (B3

With &, <&, there are two ways to satisfy this condition
and correspondingly two types of instantons. The first
one exists when £,7&; and only for 0=a <1. It has to-
pology S2XS2—{pt} and is interpreted as describing the
creation of two oppositely charged dilaton black holes
joined by a wormhole. These “wormhole” instantons
generalize the Einstein-Maxwell instanton discussed in
[5]. The reason these instantons only exist for 0<a <1
can be understood by recalling the thermodynamic
behavior of the dilaton black holes as extremality is ap-
proached: the Hawking temperature, as defined from the
period of 7 in the Euclidean section, goes to zero for
0<a <1, approaches a constant for a =1, and diverges
for a > 1. Thus, for small magnetic fields and hence ac-
celerations, we expect to be able to match the resultant
Unruh temperature and the black hole temperature by a
small perturbation of the black hole away from extremali-
ty only for0<a < 1.
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The second class of instantons we mention only for
completeness since their interpretation is obscure. They
are defined by §£,=§;, which is equivalent to
r. A=2/(3V3), and have topology S?XR2 They are
related to the upper limit on @B given by (2.31). Note
that for these instantons one does not have to impose the
condition (2.4) for regularity.

B. Extremal instantons

The wormbhole-type instantons discussed above were
made regular by the condition that the temperatures of
the black hole and acceleration horizons should be equal.
Gibbons [3] pointed out (for a =0) that there is another
way that the temperatures of the black hole and accelera-
tion horizons can be equal: that is, if the black hole is ex-
tremal. This might seem strange since extremal dilaton
black holes have zero temperature in the sense that the
Euclidean time coordinate need not be periodically
identified to obtain a regular geometry. But, of course,
we can periodically identify the Euclidean time and with
any period we like (just as for flat space). In particular,
we can choose the period forced on us by having to elimi-
nate a conical singularity elsewhere in the spacetime.

For a =0, the extremal condition §;,=§, does indeed
lead to a smooth instanton. The coordinate y lies be-
tween &, and &; in the Euclidean section, and we must
choose the period of 7 to be again given by (3.1) in order
that there be no conical singularities at the acceleration
horizon y =£;. We saw in Sec. II B that the Lorentzian
solution near the back hole is just that of an extremal
black hole. The same holds for the Euclidean solution.
The horizon y =§, is infinitely far away (in every direc-
tion, since every direction is now spacelike) and gives no
restriction on the period of 7. Thus we have obtained a
regular geometry with internal infinities down the throats
of the extremal black holes. The length of the
y =constant circles tends to zero as y —§,, as shown in
Fig. 2, but the curvature remains bounded. Each point
in Fig. 2 corresponds to a two-sphere, whose area ap-
proaches a constant near the event horizon and becomes
large near the acceleration horizon. The figure is slightly
misleading in the vicinity of the acceleration horizon,
since the point corresponding to infinity (x =y =§,) must
be removed. The topology is R2XS*—{pt}, and the
7=0, A7/2 zero-momentum slice is a spatial slice of a
Melvin Universe with two infinite tubes attached. The
latter is illustrated in Fig. 3.

The extremal case §;=§, also gives well-defined instan-

acceleration
horizon

FIG. 2. The (y,7) section of the extremal Euclidean ¢ =0
solution.
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\ \ !

FIG. 3. The spatial slice 7=0,A7/2 through the instanton
solution of Fig. 2. The geometry corresponds to an asymptoti-
cally Melvin region with two extremal throats attached. The
solution may be continued to Lorentzian signature along this
slice.

tons for 0<a <1. Although the Einstein metric has a
singularity, the so-called “total” metric (7],
dsy =e»/%ds?, which is the same as the string metric for
a=1, is perfectly regular. We saw in Sec. II B that the
metric close to the singularity is that of the extremal
black hole. In the total metric this looks like

—4/(1+a?)

dr?

st —dt’?+ [1———

2Aa2—1)/(1+a?)

1—— dQ?.

(3.4)

+72

For 0<a <1, the total metric is geodesically complete
and the spatial sections have the form of two asymptotic
regions joined by a wormhole—one region being flat, the
other having a deficit solid angle. Hence the correspond-
ing extremal instantons are regular. For a=1, the
geometry of the string metric is that of an infinitely long
throat of constant radius, and thus the ¢ =1 extremal in-
stanton looks very much like that of the a =0 extremal
instanton described above (see Fig. 4): the topology is the
same, R2XS?—{pt}, and the major difference is that the
proper radius of y = constant circles in the (y,7) section
tends to a finite limit as y —§&,. The 7=0, A7/2 slice
resembles the one shown in Fig. 3.

For a > 1, both the Einstein metric and the total metric
have a naked singularity in the extremal limit. It has
been argued in [16], however, that these “black holes”
should be interpreted as elementary particles. The ex-
tremal instantons can then be interpreted as pair creating
such objects. For a =V'3, the instanton can also be un-

| \ \\ .

R K » acceleration

Ly - horizon
. P Si———

-«— event
horizon

FIG. 4. The (y,7) section of the Euclidean @ =1 solution in
the string metric.
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derstood as describing the creation of a Kaluza-Klein
monopole-antimonopole pair (see Sec. V).

Finally, we discuss how these different classes of in-
stantons fit together in parameter space. The parameters
of both the extremal and the wormhole-type instantons
are restricted by the no-nodal singularities condition
(2.4). The wormhole instantons are further restricted by
(3.3), and this condition is plotted in Fig. 5 for various
values of a. The extremal instantons satisfy £, =¢&,, and
this is also plotted in the figure. Note that in the limit
a — 1 the wormhole instantons approach the extremal in-
stantons. It is also clear from the figure that for
r+ A <<1 the constraint for both types of instantons is
r,=r_. The figure also includes the other class of in-
stantons we discussed when &,=§&;, or equivalently
r. A=2/3V73.

C. The action

To leading semiclassical order, the pair production rate

o -5
of nonextremal or extremal black holes is given by e ¢
where Sy is the Euclidean action of the corresponding in-

r.A
1
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éqzéz
a=0.85
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33

FIG. 5. Plot in parameter space of the wormhole-type instan-
tons for various a (dashed lines), the extremal-type instantons,
£,=£,, and the curve £,=£; (r + A=2/3V'3) (solid lines).
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stanton solutions. The Euclidean action including
boundary terms is given by

s 4y 24, 2ap2

= léﬂfdx g [—R+2(Vé)+e 29F2]
L[ axvik, (3.5)
T Jav

where £ is the induced three-metric and K is the trace of
the extrinsic curvature of the boundary. Taking the trace
of the metric equation of motion (1.2) yields R =2(V¢)?,
so the first two terms in the action cancel. The dilaton
equation of motion shows that the third term is a total
derivative. Thus the action of any solution can be recast
as a boundary term
1 —~

SE:"gfan%\/he ‘W“’Vu(ed’/"n“) , (3.6)
where n" is a unit outward-pointing normal to the
boundary. Note that for a =0 (3.6) is still well defined for
our solutions (2.1), since lim, _,¢¢ /a is finite.

For both the wormhole and extremal instantons there
is a boundary at infinity, x =y = &3, which contributes an
infinite amount to the action. However, the action of the
background magnetic-field solution is itself infinite. In
the appendix we show how the infinite background con-
tribution is subtracted to obtain the physical result. For
the extremal instantons, there is also an additional
boundary down the throats of the black holes, i.e., at
y=E&,. The contribution to the action from this bound-
ary vanishes.

Leaving the details of the calculations to the appendix,
we quote the result here. The action is finite for both
types of instantons and is given by

2A(§4)(§3—Q
A(£3)(E4—E3)

Notice that the result is finite for the extremal instantons
despite the infinite throats for 0<a <1 and despite the
fact that there are singularities in both the Einstein and
the total metric for @ > 1. The action can be expressed in
terms of the physical charge § and magnetic field B by ex-
panding out in the parameter @B The action for the
wormhole-type instantons is

Sp=2nq (3.7)

1

= _1__1._ ’azo’
9B 2

SEZ‘TT@Z

(3.8)
1 1

(1+a?)gB 2

, O<ax<l1,

SEZW@Z

while the action for the extremal type instantons for all a
is given by
(3.9)

1 1
S — 2 +_+ R
5= (1+a¥B 2 l

where dots denote higher order terms which may be frac-
tional powers of 63. To leading order, these all give the
Schwinger result, mm /@B after using the relation be-
tween the mass and charge of extremal black holes,
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(1+a>m?=g¢%

To next-to-leading order for a =0, the action of the ex-
tremal instanton is greater than the action of the
wormhole instanton by ‘nﬁ2=%A, where A is the area of
the horizon of an extremal black hole of charge §. In
fact, to this order it could also be the area of the horizon
of the wormhole instanton. This difference is precisely
the Bekenstein-Hawking entropy. For 0<a <1, the
difference is zero to this order, which is consistent with
the difference being the area of the horizon of the ex-
tremal instanton, since that vanishes for @ >0. The area
of the horizon in the wormhole instanton is nonzero, but
higher order in @ﬁ

In [11] a comparison was made between the wormhole
action for @ =0 and the action of an instanton describing
the creation of a monopole-antimonopole pair. It was
found that the action of the monopole instanton was
greater than that of the wormhole instanton by the black
hole entropy. Our result thus suggests that, at least for
a =0, the extremal black holes behave more like elemen-
tary particles than nonextremal ones. However, these
conclusions neglect quantum corrections, to which we
now turn.

IV. QUANTUM CONSIDERATIONS

Until now, investigation of the solutions has been car-
ried out on the classical level. In this section we will dis-
cuss quantum corrections, and see that they have impor-
tant effects. Let us begin with some qualitative observa-
tions. First consider the Lorentzian solutions with gen-
eral m and g, and note that an observer traveling on a
trajectory a fixed distance from the black hole will be ac-
celerated® and therefore would observe acceleration radi-
ation if carrying a detector. This suggests that we should
describe the black hole as being in contact with this ap-
proximately thermal radiation. If so, then the black hole
would be expected to absorb energy, and the solution
would then not be static. However, the black hole can
also emit Hawking radiation, and therefore achieve a
time-independent equilibrium state where the emission
and absorption rates match. We have already seen evi-
dence of this in the wormhole-type Euclidean solutions:
for a regular solution, the periodic identification required
for regularity at the acceleration horizon had to match
that required at the black hole horizon. This corresponds
to matching the Unruh and Hawking temperatures, and
thus putting the black hole in equilibrium. There result-
ed a condition determining the mass of the black hole in
terms of its charge and the magnetic field. We will inves-
tigate whether similar statements apply to the extremal
case.

A quantitative study could be made by canonically
quantizing fluctuations of the fields about the solutions
and computing the Bogoliubov coefficients. Such a calcu-

6This is, of course, in addition to the usual acceleration needed
to avoid falling into the black hole were it static.
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lation has recently been done for the case of charged
black holes in de Sitter space [17]. If the quantum state
at J~ is the Melvin analogue of the Minkowski vacuum,
then these calculations should yield the above statement
that the black hole is bathed in acceleration radiation.
This is not in contradiction to our previous observation
that the extremal black holes have zero proper accelera-
tion. To see this, consider quanta of fixed frequency sent
toward the black hole from infinity at two different times.
The surroundings of the black hole at the two different
times at which these quanta reach the black hole are re-
lated by a boost. Therefore in the instantaneous rest
frame of the black hole the quanta will have different fre-
quencies. Thus, in general, there is a time-dependent red-
shift or blueshift between infinity and the black hole re-
sulting from the acceleration. In describing measure-
ments made by observers near the black hole, one will en-
counter a corresponding Bogoliubov transformation simi-
lar to that for flat space modes in an accelerated frame,
along with extra blueshift factors to account for the grav-
itational field of the black hole. This Bogoliubov trans-
formation will describe the thermal flux of acceleration
radiation into the black hole and could, in principle, be
used to determine the quantum stress tensor.

In performing these calculations the forms of the
effective potentials for fluctuations about the black holes
are also crucial. In particular, note that the behavior of
fluctuations about the extremal black holes [16,18] de-
pend critically on the value of a. For a <1, there are po-
tential barriers outside the black hole, but these vanish at
the horizon and thus permit fluctuations there. However,
for a=1, a barrier develops: all modes have a nonzero
mass gap. This is even more pronounced in the case
a >1, where the potentials grow as the horizon is ap-
proached. This suggests that fluctuations are effectively
suppressed.

A detailed treatment of these perturbations and of
their quantum effects is rather involved and will be left
for future work. We will instead make two
simplifications of the problem that we believe preserve
the essential features. First, rather than considering the
general perturbation of the graviton, Maxwell, and dila-
ton fields we will just consider perturbations of a free
spectator field f, with the action

=1 — 2
S=—- [axvV=g(vf2. (4.1)
We expect the dynamics of this field to be similar to that
of a general perturbation.’

It should be noted that it is sometimes appropriate to
extend the action (1.1) by explicitly adding other fields
that do not have effective potential barriers. An example
is at a=1, where one finds from string theory massless

"In a theory explicitly including N such fields, rigorous
justification for neglecting the gravitational and electromagnetic
fluctuations can be given in the large N limit.
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modes with couplings of the form [19,18]
=L e 020 =5 (w2
= 2fdxe V=g (Vf)?. (4.2)

The extra coupling to the dilaton effectively removes the
mass gap.

The second simplification is to work only in the s-wave
sector of the theory. This assumption can be justified in a
controlled approximation [19] for the a =1 near-extremal
solutions with matter described by (4.2). The reason for
this is that in the long throat of the @ =1 solution, the po-
tential for the nonspherical modes is constant and of or-
der 1/q% This gives an effective mass gap, and if we con-
sider excitations below this energy, we can ignore these
higher modes. In the case of the a <1 throats it is less
clear that such an approximation is strictly justified, since
then the potential is not constant and vanishes down the
throat. Nonetheless, we expect that treatment of the s-

J

(ry—r_)?
44°

a=0: ds’=—

a=1: ds2=—tanhz(x—xh)dt2+8q2dx2, e=

which correspond to the near-extremal Ernst solutions
far down the throat, up to exponentially small correc-
tions from effectively massive modes. In the extremal
limits, x, ——c and $0~—>oo (for details, see [18]) and
these take the form

2x
a=0: ds’=—%— 5 dt’+q%dx?, e P=gq,
4.5)

a=1: dsz‘—‘-dt2—|~8qzdx2 , ¢=—x .

To the actions (4.3), must be added the reduced matter
actions,
1 —_—
Sp=—5 JdxV=g V7, 4.6)
which arise from (4.1) in the case a =0 (where the small
variations in D are neglected) and (4.2) in the case a =1.
(Here f has been rescaled by a g-dependent constant.)
By working with the two-dimensional theory, we can
compute the expectation value of the quantum stress ten-

sor using the connection with the conformal anomaly
[20,19]. Transforming to conformal coordinates,

ds’=e®(—dt*+dy*)=—e*dotdo ™, 4.7)
this takes the form
- 1
T/ _=— EaJra‘p ,
1
T == 5[84p3sp—8%p+is (0], (4.8)

T/ = *%[a_pa_p—az_p‘Ft_(U*)] ,
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wave modes should give us a reasonable picture of the
role of quantum effects.

For illustration, we will focus on the cases ¢ =0 and
a=1. In both of these there is a two-dimensional
effective action describing the throat region of the black
hole. The gravitational part of these actions take the
form

So=7 [dxV =g (e PIR+2AVD V] +2-2g%}
] @.3)

where, in the former, e ~? is the radius of the two-sphere
cross section of the throat, and, in the latter, g is the
two-dimensional reduction of the total (or string) metric.
These have two-dimensional black hole solutions of the
form

1

2
S =4 [a%xv =g [e7 |R+4(V$)+—
177 4 24°

sinhz(x—xh )dt2+q2a'x2 S e‘D=q s

24,

cosh?(x —x,,) ’

f

where ¢, and ¢_ are to be determined by the boundary
conditions. The leading quantum corrections to the solu-
tions can be found by including these on the right-hand
side of Einstein’s equations. If we are looking for static
solutions, we should demand that ¢+, =t_ =t is a con-
stant.

The boundary conditions of the two-dimensional
theory are to be determined by matching correctly onto
the four-dimensional theory in the region where the
throat matches onto the asymptotic region. One obvious
possibility is that the boundary conditions be chosen so
that the two-dimensional quantum state is the vacuum
annihilated by the positive frequency modes in the time
variable 7. This implies t,=0. However, this is not a
physically realizable state. To see this, note that in the
context of the full four-dimensional theory, the state is
that annihilated by the positive frequency modes defined
with respect to the Killing vector. Asymptotically, this
Killing vector corresponds to the boost symmetry of
(2.15), and thus the state tends to a Rindler-like vacuum
at infinity. As seen by an observer at rest with respect to
the magnetic field, this vacuum has infinite stress tensor,
and thus becomes singular on the acceleration horizon.

A more appropriate state at J  is the vacuum as
defined by an observer stationary with respect to the
asymptotic Melvin solution. From our earlier arguments,
this state will not appear to be vacuum for an observer
near the horizon. There will be particles arising from the
nontrivial Bogoliubov transformation, and a flux of ac-
celeration radiation is expected in the vicinity of the
black hole. This corresponds to t,70; in general, one
would expect ¢, to be proportional to the acceleration of
the black hole. To determine the actual value of t, re-
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quires knowing the details of the matching, and this is
difficult. We can, however, see that #;, will have a major
effect on the solution. Consider, for example, a=1. In
this case the string metric of the classical solution is per-
fectly regular, and tends to a product of the linear dilaton
vacuum and the round two-sphere down the throat.
However, the equations of motion from (4.3) and (4.6),
with the quantum corrections (4.8), have been investigat-
ed both numerically and analytically in [21-23]. There it
was found that for general ¢, the static solutions have
singular horizons. These result from a nonvanishing
stress tensor penetrating into the region where the theory
is effectively strongly coupled. The exception to this is
when the ingoing flux ¢, matches the outgoing flux due
to Hawking radiation. This could happen only at a large
definite acceleration with r , A4 of order 1.

The story for a =0 is similar. The static equations
were investigated in [24]. There it was found that the
equations are singular for all z,. However, for t,=0, the
singularity is mild and quantum-corrected solutions were
found. In contrast, at t,70, more serious singularities
arise. This can be readily confirmed by writing the static
equations in coordinates regular at the horizon, similar to
the discussion in [21].

The preceding arguments are also expected to general-
ize to 0<a <1. However, note that they do not apply to
a > 1, as in this case the growing potentials mean that the
action (4.6) is not a good approximation near the
horizon —fluctuations are effectively suppressed in this
region.

We therefore conclude that for 0<a <1, or for a=1
with matter given by (4.2), quantum corrections become
large and the semiclassical approximation fails near the
black hole. The detailed construction of the fully
quantum-mechanical solutions is therefore unknown and
may depend on new physics. There should certainly exist
some sensible solutions that closely resemble the classical
solutions away from this region—one certainly hopes to
be able to give a physical description of the equilibrium
state of a charged black hole in a background electromag-
netic field. It could be that the physical equilibrium solu-
tions correspond to the Lorentzian version of the subex-
tremal instantons of [5,11,10], or it could be that there
are different physical solutions corresponding to the
quantum-corrected extremal black holes of this paper.
Note that although our arguments have been made with
the f fields, we expect this instability to quantum correc-
tions to persist with more general perturbations for a < 1.
However, for a =1 without the fields in (4.2), this argu-
ment no longer applies.

Similar considerations apply to the Euclidean solu-
tions. Indeed, the Euclidean solutions should be time-
symmetric on the slice of constant Euclidean time along
which we cut them to match to the Lorentzian solutions.
As before, the role of quantum corrections can be in-
ferred from the one-loop action of the matter field f. As
in the Lorentzian case, the stress tensor for minimally
coupled s-wave matter can be explicitly computed in con-
formal gauge, and the result is the analytic continuation
of (4.8). Here one again expects ¢, to be nonzero when
the four-dimensional and two-dimensional solutions are
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matched. This has the unfortunate consequence of yield-
ing large corrections to the equations of motion in the vi-
cinity of the horizon—the back reaction becomes strong
and the semiclassical approximation breaks down. This
means that, without leaving the semiclassical approxima-
tion, the structure of the pair-produced objects cannot be
determined near the horizon. It is plausible that once
quantum corrections are included for a <1, the corre-
sponding geometry is similar to the black holes connected
by Wheeler wormholes of [5,11,10], except in the immedi-
ate vicinity of the horizon. Furthermore, the rate cannot
be calculated and may depend on new physics and, in
particular, on the existence of fundamental charge in the
theory.® It is, however, reasonable to expect this produc-
tion rate to be nonzero. One reason for believing this is
that the objects we are considering are clearly in a
different  topological class from wormholes—the
geometries are not connected through the throat—and it
seems unlikely that the production rate would be zero in
this sector. This belief is reinforced in the case a =3
where, as we will describe, there is no infinite throat, the
fluctuations do not make large contributions, and the Eu-
clidean solution describes pair production of Kaluza-
Klein monopoles. It is plausible that this type of produc-
tion extends toa <1.

It is also worth commenting on the issue of production
rates for Reissner-Nordstrom black holes. If information
is not lost in black hole formation and evaporation and it
does not escape in Hawking radiation, this implies that a
Reissner-Nordstrom black hole has an infinite number of
states,” and naive effective-field-theory reasoning would
then imply an infinite production rate. A possible resolu-
tion to this was suggested in [25], building on ideas in
[27,9]: although Reissner-Nordstrom black holes do have
infinite states, not all such states are produced by the Eu-
clidean instantons. Reference [25] argued this for the
case where the black holes are connected by a wormhole,
although similar reasoning applies here as well. The
basic point is that fluctuations of the infinite number of
states near the black hole lead to a large quantum stress
tensor and therefore a large back reaction. Indeed, when
computing the amplitude for any process involving black
holes, contributions of these states are summarized in the
functional integral over fields in the black hole back-
ground; for example; in the case of f states,

[Df ST 4.9)

When continued to Euclidean signature, this expression
might at first sight be expected to include an overall
infinite factor counting these states. However, as dis-

8This is in contrast to the case of Wheeler wormholes, where
quantum corrections are not necessarily large [25] and funda-
mental charge is not required.

9This has been particularly convincingly argued in [26], using
semiclassical techniques.
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cussed above, the quantum stress tensor derived from this
functional integral becomes large near the horizon, pre-
cisely because of these infinite states, and this signals a
breakdown of the semiclassical approximation. Although
this means that the rate cannot be calculated to find
whether it is finite or infinite, it is also an indicator that
the naive effective-field-theory logic is breaking down.
The nontrivial dynamical role of this functional integral
is in contrast with a rate of the form

F ~N€ _Sinstanton , (4‘ 10)

that one would expect from an instanton that produced
N — oo states with comparable amplitudes. The failure
to obtain a naively infinite rate of the form (4.10) can be
viewed as a strong suggestion that a correct quantum cal-
culation would in fact yield a finite answer, resolving the
problem of infinite pair production. Whether such a re-
sult can be obtained in a type of effective theory [28] or
lies entirely outside the domain of effective theory
remains to be seen.

V. THE KALUZA-KLEIN CASE

As we have remarked several times, the value a =V 3is
of special interest since, in this case, the action S is
equivalent to Kaluza-Klein theory. In other words, if
(g#v, A#, ¢) is an extremum of S with a =V3, then one
can construct a five-dimensional solution of the vacuum
Einstein equations by

ds2=e‘4¢/‘/3(de+2A#dx“)2+e2¢/‘/3gwdx“dxV .
(5.1

Since the fields do not depend on the fifth coordinate x5,
this solution always has at least one translational symme-
try. In this section we will explore the five-dimensional
vacuum spacetimes associated with the dilaton Ernst
solutions (2.1) in both the Lorentzian and Euclidean con-
texts.

We begin with the static magnetically charged black
hole (1.3). Setting @ =V'3 and substituting the fields into
(5.1) yields the five-dimensional metric [29]

1——

[dxs+2q(1—cosf)dp]?

+r? (5.2)

¥ _
1——Jd92.
r

This spacetime has a horizon at r =r, and a singularity
at r=r_. In the extremal limit, » , =r_, the metric be-
comes
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dr?

ds’=—dt’+
y 1—r /r

r
1__+

+ [dxs+2q(1—cosf)dp]?

74
1__
-

+r? do?. (5.3)

The horizon is no longer present. There appears to be a
singularity at r=r_, but if we set p=2r1/2(r—r )2
then near r =r, the metric takes the form

ds?=—di*+dp*+ £ {[d - 2
P {[dy+(1—cosO)dp]

+d6*+sin’0d¢?] , (5.4)
where we have set 1y=x5/2q and used the fact (1.4) that
4g>=r%. If ¢ is periodic with period 4, then the quan-
tity in brackets is just the metric on a three-sphere of ra-
dius two, expressed in terms of Euler angles. So the solu-
tion (5.3) is globally regular and free of singularities pro-
vided x5 has period 8mq. It is the Kaluza-Klein mono-
pole [12,13]. At large r it asymptotically approaches the
product of S! and four-dimensional Minkowski space.
Globally, it is the product of time and the Taub-
Newman-Unti-Tamburino (-NUT) instanton. Its topolo-
gy is simply R °.

Next, we turn to the background magnetic-field solu-
tion (1.5). Setting a=V'3 and substituting into (5.1)
yields

2
2 2
+p4e

Bp’dg
A A

ds’=—dt’+dz*>+dp’+A |dxs+

(5.5

where A=1+B?%p%. This metric is actually flat. It can be
simplified to

ds’=—dt’+dz*+dp’+dxi+pHdp+Bdxs)? .  (5.6)
How can a flat five-dimensional space produce nontrivial
four-dimensional fields? The point is that one is reducing
to four dimensions not along the trivial translation in the
fifth direction, but rather along a linear combination of
that translation and a rotation [10]. This is why ¢ is
shifted in (5.6). The result is not, in general, globally
equivalent to the standard Kaluza-Klein vacuum. For al-
most all values of B, even though the metric on the two-
dimensional torus of constant ¢, z, and p70 in (5.6) is flat,
it is globally inequivalent to the metric with B =0. Only
if the period of Bxs is an integer multiple of 27 are the
metrics equivalent. In this case one can start with (glo-
bally) the same five-dimensional spacetime, and reduce to
obtain either the magnetic field or the trivial four-
dimensional solution. However, in general, the five-
dimensional flat space (5.6) is identified in a way which is
different from the Kaluza-Klein vacuum.

Finally, we turn to the dilaton Ernst solution. The
five-dimensional metric is free of the fractional powers
present in the four-dimensional solution. It is most con-
veniently described in terms of functions F,G, which are
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simplified versions of the functions F,G which appeared
in the four-dimensional metric:

F(&)=(1+r_4§),
GO=[1-§—r, 48].

Substituting the solution (2.1) with a=V3 into (5.1)
yields

(5.7)

4¢0/\/3 = 24,0/\/3
AF(y) 2
ds?=2—— 2P (dxs+24,d9+ ——
g F(x) 5 L A x—y)?
] 2 2
x |Fxp | GQMC_ dy_
F(y) G(y)
= & 2
+F(p) F(ic)dx 4 G(x)dg 5.8
G(x) A
where A and 4 are given by
81/3¢0
A,=— (142Bgx)+k
?
2BA (5.9)
ym,
A=(1+2Bgx + B GEFX) ?(X)F(’Z) .
A“(x—y)

Since G is just the cubic part of G, its roots are the
same as in our earlier discussion, §,,€;,6, and
&=—1/r_A is the root of F. The nonextremal case,
£,<§&,, has a structure similar to the four-dimensional
solution. There is an acceleration horizon at y=¢;, a
black hole horizon at y =¢§,, and a singularity at y =¢§,.
The ranges of the coordinates are £;<y <x and
§:<x <§&,. In the extremal limit £§;=£, the situation is
different. One can see immediately from (5.8) that in this
case g, approaches a constant as y—§&,. In fact, we
showed in Sec. II that the extremal dilaton Ernst solution
approaches the extremal static black hole as y —§&, with a
constant shift in the dilaton. If the dilaton was not shift-
ed, we could use the relation between the extreme black
hole and the monopole to immediately conclude that the
metric (5.8) is nonsingular at y =¢§,, provided we identify
x5 with period 879 where § is the physical charge. It
turns out that the constant shift in the dilaton does not
affect this conclusion. One way to see this is to rewrite
the five-dimensional metric in the form

ds?=e/V3[(e ™ Mdx;+2e "V 4, dxH)

+g,,dxtdx"] . (5.10)

To satisfy the field equations (1.2), when a constant is
added to ¢, the gauge field must also be rescaled in such a
way that e V¥4 u is invariant. So, if we start with the
metric (5.3) with periodicity 8w¢q for x5, and add a con-
stant ¢, to ¢, then regularity requires e ¢°x5 to have
the same period 8mq. Thus x5 has period 8mge %o But
3¢y . . . .

qe %o is just the physical charge after the dilaton has
been shifted.

The solution (5.8) can thus be viewed as describing a
pair of oppositely charged Kaluza-Klein monopoles ac-
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celerating in a background magnetic field. This is not
strictly accurate, since the origin of each monopole is not
accelerating: one can show that the worldline y =§, is a
geodesic. (This is analogous to the fact that the horizon
of the extremal Ernst solution is not accelerating, which
was discussed in Sec. II B.) However, all points away
from the center are accelerating, and the monopole is not
spherically symmetric.

We showed in Sec. IT A that the dilaton Ernst solution
approaches the background magnetic field at large dis-
tances. Since the five-dimensional metric associated with
this background field is flat, we conclude that (5.8) is
asymptotically flat. We have seen that even though the
magnetic field solution is flat, it is generally not
equivalent to the standard Kaluza-Klein vacuum. It will
be globally equivalent only if the period of x5 is an in-
teger multiple of 27/B. But in (5.8) the period of x5 is
fixed by regularity at the center of the monopole to be
879. Thus (5.8) approaches the standard Kaluza-Klein
vacuum only if §B =n /4 for some integer n. However,
as discussed in Sec. II B, there is an upper limit on §B
coming from the fact that £, <&;. Setting a*=3 in Eq.
(2.31) yields @ﬁ <1. So the asymptotic region is never
equivalent to the standard Kaluza-Klein vacuum, but in-
stead includes an identification involving a rotation as
well as a translation.

Even with the nontrivial identifications at infinity, it is
interesting that (5.8) is a globally regular, nontrivial,
asymptotically flat solution of the five-dimensional vacu-
um Einstein equations. It is also dynamical in the sense
that the Killing vector d/d¢ is not asymptotically a time
translation and is spacelike in some regions. This is
difficult to achieve in four dimensions. In fact, to the best
of our knowledge, there is no analogous solution known
in that case. However, it is easier to achieve in five di-
mensions. Another solution of this type was previously
found by Witten [30]. By taking the five-dimensional
Schwarzschild solution and analytically continuing in
both ¢ and 6, he obtained

ds?=—rar+ 1= 24| g2
,
+ 1-% dx*+r?cosh’t dQ? . (5.11
r

This solution describes a bubble undergoing uniformly
accelerated expansion in spacetime. Like (5.8), it is non-
singular, dynamical, and asymptotically flat. In fact, it
has another feature in common with (5.8). Before
describing it, let us recall that the positive energy
theorem does not hold in Kaluza-Klein theory if surfaces
of different topology are allowed: there are regular initial
data with negative energy [31]. Witten’s bubble (5.11)
has zero ADM energy and can be interpreted as a possi-
ble outcome for the decay of the Kaluza-Klein vacuum.
Our solution (5.8) also has zero ADM energy. This fol-
lows from the fact that there is a boost symmetry, and a
timelike ADM energy-momentum vector would not be
invariant under such a symmetry, and corresponds to the
statement that the solution has the same energy as the
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corresponding Kaluza-Klein Melvin solution (5.6). One
can thus view (5.8) as a possible outcome for the decay of
this solution.

The corresponding instanton, obtained by replacing ¢
with i7 in (5.8), can be viewed as creating a pair of
Kaluza-Klein monopoles. The metric is positive definite
if the coordinate y is restricted to lie in the range

, =y =¢&;. The period of 7 is fixed by regularity at the
acceleration horizon y =£&;. There is no restriction on the
period coming from regularity at y =£, since the metric
approaches (5.3) in this region.

The topology of this instanton is S°—S!. To see this,
consider slicing the manifold into two pieces along
y=1(&,—§&,)/2, say. The piece that contains y =&, has to-
pology D*XS!, with the S! being the Euclidean time.
The piece containing y =£; has topology S*XD2—S!:
the D? comes from the y,7 part of the metric, and the
subtracted S'! is x =y =£;. The instanton is obtained by
gluing these pieces along their common boundary S*XS'!
by the obvious diffeomorphism. Using the fact that

§*=3(D®)=a(D*XD*)=D*XS'U 1S’XD?,

we deduce that the topology of the instanton is indeed
S3—S!. We can also show that the topology of the zero-
momentum slice 7=0,A7/2 is given by S 4—S! Consid-
er slicing this four manifold along y =(£;—¢&,)/2 as be-
fore. The piece that contains y =§, is simply two copies
of D* while the piece containing y =£; has topology
S$3XD'—S!. Gluing these along the common boundary
S3US3 gives S4—S.

The exact action for this instanton is given by (3.7)
with a>=3. Expanded in powers of @B, the result is

1 1
Sg=m@* | —=+—+ - |. (5.12)
E=7q 438 2 ]
The semiclassical pair-creation rate is thus I'=e E As

discussed in the previous section, unlike the situation for
a=0 or a =1 extremal instantons, the quantum correc-
tions should remain small and the instanton approxima-
tion should be valid. This is because fluctuations near
y=§, should be suppressed by the large potential bar-
riers, or equivalently from the regularity of the five-
dimensional solution. Indeed, for weak magnetic fields
and large charge, the curvature is small everywhere and
the quantum corrections will be small.

V1. DISCUSSION

As we have seen, the extremal limit of the dilaton
Ernst solutions found in [10] have a number of interesting
properties. These include the fact that the Lorentzian
solutions near the horizon reduce exactly to the static di-
laton black holes. Analytic continuation yields a finite
action instanton which describes the pair creation of
Kaluza-Klein monopoles when a =V'3, or extremal black
holes for 0<a <1. These extremal black holes contain
infinite throats (in an appropriate metric) and are topo-
logically different from the wormhole originally discussed
in [5] and generalized in [10]. We have also considered
possible quantum corrections to this leading-order semi-
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classical approximation, and found that in certain cases
they can become large. These corrections can affect both
the geometry down the throat and the physical pair-
creation rate.

Many open problems remain. Some have been men-
tioned earlier, and include a better understanding of the
limit on §B (2.31) and the fact that the difference of the
actions for the wormhole and extremal instantons for
a=0 is the Bekenstein-Hawking entropy. One of the
most important is to develop a better understanding of
the quantum corrections to the instanton approximation
and their effects on the geometry and pair-creation rate.
It is particularly important to understand the calculation
of the rate, as a finite answer may indicate that such
black holes serve as a model for black hole remnants
[19,32,18,27,9,26,25]. It is notable that because of the
higher-order quantum effects, one does not immediately
recover the naive estimate of an infinite rate arising from
the infinite number of states. A better understanding of
these corrections will also help to resolve the question of
whether an infinite volume of space can really be created
in a finite amount of time. If so, there would appear to be
problems with causality, unless the state down the
throats were fixed uniquely.

Another interesting problem is to understand the
behavior of charged black holes when the background
fields are turned on or off in a finite time. Suppose one
starts with an extremal black hole and slowly turns on a
magnetic field. Will it stay extremal? We have seen that
the solution right near the horizon is independent of the
magnetic field. But there will certainly be an effect on the
solution farther from the black hole, which can propa-
gate toward the horizon. The outcome seems to depend
on a. The large potential barriers [16] for a > 1, or for
a =1 with any matter other than (4.2), indicate that the
perturbations never reach the horizon. The black holes
stay extremal. In particular, a Kaluza-Klein monopole
should not turn into a magnetically charged black hole if
a magnetic field is turned on. On the other hand, for
a <1, the potential barriers vanish at the horizon. This
together with the second law of black hole thermodynam-
ics strongly suggests that any time-dependent perturba-
tion will raise the mass of the black hole away from ex-
tremality. (One could perhaps produce an extremal ac-
celerating black hole with a <1 by first accelerating any
charged black hole and then adding charged particles
with g >m.)

This dependence on a is further supported by con-
siderations of black hole thermodynamics. Recall that
for the static dilaton black holes, the Hawking tempera-
ture vanishes in the extremal limit only for a <1. It
reaches a constant for @ =1 and diverges for @ > 1. Thus,
if one turns on a weak magnetic field, one could match
the Unruh temperature of the acceleration with the
Hawking temperature of a slightly nonextremal black
hole only if a <1. We have already encountered the Eu-
clidean analogue of this statement in Sec. IIL
Wormhole-type instantons require the same matching of
temperatures and hence only exist for @ <1. A particu-
larly puzzling case is a =1 with the special matter (4.2).
Since the potential barriers vanish near the horizon, one
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might expect the accelerated black hole to become slight-
ly nonextremal, but the temperatures cannot be matched
in this case. It is not clear what the equilibrium solution
is.

In the quantum theory, other important questions are
related to observations by observers at infinity and the is-
sue of energy balance. Suppose as suggested above, that
an accelerating black hole is continually emitting Hawk-
ing radiation to stay in equilibrium with the acceleration
radiation that it absorbs. One would expect this Hawk-
ing radiation to be observed at infinity. But the station-
ary observer does not see the acceleration radiation.
Where does she say that the energy is coming from to
maintain equilibrium? It may be that, as in the case of an
accelerating charge, to describe energy balance requires
understanding the details of the switching on and off of
the background field [33]. One more intriguing question
is whether the black hole continually and indefinitely
swallows quantum information in this process, producing
an arbitrary amount of entropy in the outgoing state.

We close with one final issue. There is presumably a
rotating analogue of the dilaton Ernst solution (2.1). (A
rotating analogue of the a =0 C metric is already known
[34].) It is likely that this could be analytically continued
to discuss pair creation of rotating black holes. There is
reason to believe that this will provide a wormhole in-
stanton for a =1. One piece of evidence comes from [9],
where an approximate wormhole instanton was con-
structed which includes rotation. Another comes from
the fact that, for the rotating black hole with a =1, the
Hawking temperature goes to zero in the extremal limit
whenever the angular momentum is nonzero [35]. Thus
J

S =——1—A¢7Aff§3+edx\/ﬁe_¢/“———1 3 (e?*Vgnt)|
E & Vg *

8 g

where Ag is the range of ¢ (2.6), and Ar is the range of 7
which is given by (3.1) for both types of instantons. The
individual terms that appear in this integral are given as
follows. The unit outward-pointing normal to the surface
y =x —¢€ has components

_ A(x —y)G(p)F(y)'/?
AV B2 F(x)G(x)— F(p)G(p) ]2

ny=

(A3)

_ A(x —y)G(x)F(x)'?
AVI+IEGIN2 F(x)G (x)— F(p)G(p)]/2

n*=

The induced three metric & on the surface can be con-
structed and used to obtain

Vh=4 '35_3A1/(‘+"2’F(x)“ZF(y)”Z

X[F(x)G(x)—F(y)G(y)]'/*. (A4)
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one could match the Unruh temperature at the accelera-
tion horizon by a slightly nonextremal rotating black
hole.
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APPENDIX A: CALCULATING THE ACTION

We present here more details of the calculation of the
action of the instantons discussed in Sec. III C. As shown
there, the action of any solution can be reduced to a sur-
face term

1

Sp=—5 [ AxVEe ¥V (e k).

Py (A1)

For both the extremal and wormhole instantons there is a
boundary at infinity, x =y =§£;. We will evaluate the ac-
tion on the surface y =x —e€ and then take the limit e —0.
This will enable us to properly subtract off the infinite
contribution of the background magnetic-field spacetime.
Performing the trivial integrations over ¢ and 7 yields

(A2)

y=x—€>r

Expanding in powers of € and integrating, (A2) be-
comes

3F(&) F'
&) P e ]
€ a?

wL?
A%G'(&)

E= (A5)

The first term diverges as e—0. In terms of the asymp-
totic Melvin coordinates p,{ introduced in (2.14), this
term is simply —3m(p*+£?)/4. It is independent of the
black hole charge and is precisely the action of the Eu-
clidean analogue of the dilaton Melvin solution (2.15).
Notice that the dependence on B cancels. Since we are
only interested in the difference between the Euclidean
Ernst and Melvin actions, we subtract the leading term in
(AS).

For the extremal instantons there is an additional
boundary down the throats of the black holes y =§,. A
similar calculation to that above, but much simpler,
shows that this boundary does not contribute to the ac-
tion, and hence the action of the extremal instantons is
also given by (A5). Thus the action for both types of in-
stantons is finite and given by
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_ TLF'(&)
aZAZG'(§3)

2 ALEN(E;—6))
A(E3)(E—E3)

where we have used the expression (2.19) for the physical
charge q.

For general a, we have not been able to express S; ex-
actly in terms of the physical charge § and physical value
of the background magnetic field B given by (2.16). Us-
ing (2.20), one can, however, establish that in the case of
the a =0 wormbhole instantons, (A6) agrees with the exact
result obtained in [11]: namely,

2

Sp=dmg?—1—88)__ E)A .

1—(1—gB)*
A necessary condition for the instanton approximation
to be valid is that @ﬁ be small. Thus we would like to ex-
pand Sy in ﬁﬁ. We will expand the quantities that ap-
pear in (A6) in terms of 8=1/§,. Then we expand 3B in
terms of 8 and invert the relation. Finally, we will use
these expansions to find the leading-order behavior of S
and the next-order correction. The calculation will be
different in the two cases of the wormhole and extremal

instantons since the conditions on the parameters differ.
First we give some relations which hold for both the
wormhole and extremal cases. From the definition of the

roots of the cubic in the function G we deduce

E

=2mq (A6)

(A7)

§26:64= r_:—A— ;

§:63 16364 18,6,=0, (A8)

btete=——

2763654 rod’

and hence that
1 5
:——1+- _ 2+... s

€3 25 85

(A9)

1 5
= = +_82+ i
&4 1+25 2
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1. Wormhole

We first consider the wormhole instantons for 0<a < 1
defined by the constraints (2.4) and (3.2). From (3.3) and
(A9), we deduce

§1=%[1+(—26)“+“2’/“““2)+ ] (A10)
Next using (2.4) and (2.20)
aB==5|1+36+ - |, a=o0,
(A11)
(1+a2gh=—5 1+%5+-~-  0<a<l.

Expressing § in terms of @ﬁ and using (A6), we obtain the
action for the wormhole-type instantons:

1 1

98 2

1 1
_____+___
(1+a®gB 2

, a=0,

SE=77@2

(A12)

+--- ], O<ax<l.

Sp=mq’

2. Extremal

We now turn to the extremal instantons defined by
£,=§&, and (2.21). Using (A9) and (2.21), we first deduce
that

(1+a?)gB=—58+0(8%) , (A13)
and from (2.20) that
(1+a2)gB=—8(1+18)+0(8%) . (A14)

Expressing 8 in terms of 4B and using (A6), we obtain the
action for the extremal type instantons for all a

Sp=mg° D .

= (A15)
(1+a%gB 2

The mass of a static extremal black hole is given by
(1.4) with r, =r_, so m=q/V' 1+a?. Thus we see that
the leading-order term in the action in all cases is
So,=mm?/qB, the Schwinger result. The difference be-
tween the extremal and the wormhole actions is 7g> for
a=0, and zero for0<a <1 as @ﬁ——»O.
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FIG. 1. The z,7 plane of the dilaton Ernst solution, in the
limit r; A << 1. The dotted lines indicate a region of size ~r
surrounding the black hole at y~§&,; inside this region the
geometry is approximately that of the black hole. The black
hole moves on a trajectory with acceleration A4, and the ac-
celeration horizon is given by y =£;. The coordinates used in
(2.1) cover only the unshaded part of the figure.



