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Nonperturbative isotropic multiparticle production in Yang-Mills theory
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We use singular Euclidean solutions to find multiparticle production cross sections in field theories.
We investigate a family of time-dependent O(3) symmetrical solutions of the Yang-Mills equations,
which govern the isotropic high-energy gauge boson production. At low energies our approach
reproduces the instanton-induced cross sections. For higher energies we get new results. In particular,
we show that the cross section for isotropic multiparticle production remains exponentially small in
the running gauge coupling constant. The result applies both to baryon number violation in the
electroweak theory and to +CD jet production. We find that the isotropic multigluon production
cross section falls o8' approximately as a ninth power of energy but possibly might be observable.

PACS number(s): 11.15.Kc, 11.15.Tk, 11.80.—m, 13.85.Hd

I. INTRODUCTION

The past few years have witnessed an increasing inter-
est in the nonperturbative multiparticle production in-
duced by classical solutions of the 6eld equations. Typ-
ical examples are (i) baryon number violation in the
electroweak theory (for reviews see [1—4]), (ii) multijet
production in strong interactions [5, 6], and (iii) multi-
pion production in heavy ion collisions [7—9].

While there seems to be a consensus in that classical
field con6gurations are relevant in many + many pro-
cesses (see, e.g. , Refs. [10, ll]), it is not so clear in the
case of the two —+ many ones. The difficulty with the
latter processes is that an initial state with a few par-
ticles is a quantum rather than a classical one, even at
asymptotically high energies. If one starts &om a clas-
sical Geld with large energy at t = +oo and evolves it
back in time according to the classical equations of mo-
tion which preserve the 6eld energy, one would end up
with another 6eld con6guration at t = —oo with the same
energy. Meanwhile, at t = —oo the whole energy has to
belong not to the classical field (which should be zero or,
at best, contain only the wrong-&equency part not cor-
responding to any real particles) but to the few-particle
quantum state. Therefore there cannot exist any con-
tinuous classical 6eld con6guration interpolating in time
between t = +oo.

A way to overcome this difficulty has been indicated
by Khlebnikov [12], who, following a remarkable work of
Iordanskii and Pitaevskii [13], has suggested the study
of singular Euclidean solutions of 6eld equations. Sin-
gular fields do not conserve energy across singularities;
therefore, they are adequate to describe transitions be-
tween a quantum state with low or zero 6eld energy and
a (semi)classical one with high energy. Singular trajec-

tories in imaginary (Euclidean) time were introduced 60
years ago by Landau to calculate matrix elements be-
tween low- and high-energy states in quantum mechan-
ics [14]. Even if a final high-energy state can be de
scribed semiclassically, the initial low-energy state needs
not; therefore the Landau method gives an example how,
nevertheless, the matrix elements can be treated semi-
classically. It should be mentioned that an application
of the Landau method to multiparticle production has
been suggested by Voloshin [15]; however, only spatially
constant fields have been considered in that work.

The energy of the initial state, i.e., the collision energy,
is introduced as follows. Let the multiparticle production
be initiated by, say, an annihilation of two high-energy
particles with energies Eq 2 in the c.m. kame. To get the
physical on-shell amplitude one has to calculate the two-
point Green function in the singular background field,
take its Fourier transform, and then apply the "leg ampu-
tation" procedure of Lehmann, Symanczik, and Zimmer-
mann. The high-energy asymptotics of the Green func-
tion is apparently given by the Fourier transform of the
singularity point [13], which is exp [

—i(Ei + E2)ts;~s]»
Minkowski space, or, if one passes to the Euclidean space
with the usual substitution it ~ t, one gets ex—p(Et„„s),
where E = Eq + E~ is the total c.m. energy of the pro-
cess and t„.„gis the time position of the 6eld singularity
in Euclidean space. We will see below that integrating
over the positions of the singularity will result in the nec-
essary conservation law'. E = Efi id where Eg, ~g is the
energy of the produced multiparticle state.

Our aim is to calculate semiclassically the total cross
section induced by two high-energy particles with a total
energy E, i.e., the imaginary part of a forward scattering
amplitude which, in its turn, can be expressed through
the four-point Green function [we use P(r, t) to describe
a generic field]:

o(E = (pi+ p2) ) = (flux factor) lim Im d x e
P1 2 +77K

((~'+ ')W )(&'+ ')4( )(C+ ')&( )(&'+
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The purpose of the paper is to demonstrate how to cal-
culate the multiparticle production cross sections given
generically by Eq. (1.1), using the technique of singular
Euclidean solutions.

o (E) = exp 2 — dP/2U((t))

d 2U —2E (2.5)

II. SINGULAR TRA JECTORIES
IN QUANTUM MECHANICS

S= — dt -P + -(P —1)
1 1 2 1

g2 2 8
(2.1)

where g2 && 1 is a dimensionless coupling constant.

A. Quantum-mechanical "cross section"

In the quantum-mechanical case "mass shell" means
fixed energy for each "particle, " equal to 1 in our nota-
tion. Therefore, to get an analogue of high-energy cross
section one has to consider an "ofF-mass-shell" amplitude.
Since we are only interested in the cross section computed
to an exponential accuracy, it does not matter what spe-
cific operator O(g) we use to go off shell. We choose

O(P) to be a low-power polynomial of gk The analogue
of Eq. (1.1) in quantum mechanics would be

(2.2)

One can decompose the Green function () as a sum
over intermediate states with wave functions @„(P):

2

(O(d(pp))O(d(pp))) = ) /ddOp(d)O(d)C'„(d)
n

x e(t —t )e ' "~' ' +e(t —t )e

(2.3)

Integrating over tq z in Eq. (2.2) and taking the imaginary
part we get

Before proceeding to the Yang-Mills case we describe
a quantum-mechanical analogue of our approach. We
consider a particle with coordinate (t)(t) in a double-well
potential, whose (Euclidean) action is given by

where U(P) is the potential energy of the field. Equa-
tion (2.5) is directly applicable to the simple case of a
one-minimum potential; in this case one has to integrate,
in the first term, from P;, corresponding to the min-

imum of the potential, to P = oo, and in the second
term from the energy-dependent turning point Pq, where
the integrand nullifies, to P = oo. For the square of the
amplitude one has to double the result in the exponent.

We arrive thus at singular Euclidean trajectories. One
starts at (Euclidean) time t = —oo from the minimum of
the potential, goes according to the equations of motion
with zero energy to infinity (singularity) at some t =

T/2, a—nd then, starting from the same singularity, goes
with fixed energy E to the corresponding turning point

P) at t = 0. At theturning point P = 0, and one can enter
the Minkowski space to calculate the real-time evolution
of the field. However, the Minkowski action is a pure
phase; therefore, to find the cross section one needs not
know this part of the trajectory. Instead, one has to
square the amplitude, i.e., repeat the singular Euclidean
trajectory in the opposite direction: starting &om the
above turning point P) at t = 0, going with energy E to
a singularity at t = +T/2, and ultimately returning to
the minimum of the potential at t -+ +oo. The di8'erent
branches of the trajectory are shown schematically in Fig.
1(a).

The Yang-Mills theory is, however, more like the
double-well quantum mechanics, therefore we have to
generalize Eq. (2.5) to the case of a two-minimum poten-
tial as in Eq. (2.1), allowing for the instanton transitions
between the minima. To that end we first have to specify
the initial and final states 4'o @ entering Eq. (2.4). In a
double-well potential all levels are known to be split into

symmetric (s) and antisymmetric (a) states. For levels

deep inside the wells the corresponding wave functions
can be written as superpositions of states localized in
the left and in the right wells:

4 (1+P) + 4 (1 —P)

2

~(E) = ~d(&- —&)V J ddd'p(d)O(d)~h(d)
.(&) + -(4)

~2
(2.6)

(2.4)

where V is the time volume of the process [actually to
be canceled by the omitted "fiux factor" in Eq. (2.2)].
We see thus that the quantum-mechanical "cross sec-
tion" comes to a square of a matrix element between
the ground state 4'0 and a highly excited one 4'@.

According to the Landau method [14] this matrix el-
ement can be calculated to exponential accuracy as an
exponent of the difference of two shortened actions, one
with zero energy and the other with the given energy E:

To mimic in quantum mechanics the nonperturbative
Chem-Simons changing transitions of the Yang-Mills the-
ory we choose the initial state with low energy [4() in the
notation of Eq. (2.4)] to be localized near the left mini-
mum and have approximately zero energy:

(2.7)

For the high-energy state 4~ we take a superposition
which is predominantly localized in the right well and



268 DMITRI DIAKONOV AND VICTOR PETROV

E
2

I- ——,———M MINKOWSKI

T
2

M ~ T~

V I- —~ I4INKOWSKI4
~ ~

M 2

FIG. 1. Singular trajecto-
ries (a) below and (b) above the
sphaleron.

(b)

has energy approximately equal to E:

@.= (&) -@'.= (&)

Of course at energies E higher than the top of the
potential barrier one cannot say anymore that the state
(2.8) is localized near the right minimum, but it is prob-
ably the best one can do to define continuously in energy
the transitions between the left and right wells. In the
Yang-Mills theory a much more clear trigger of the tran-
sition with the change of the Chem-Simons number is
given by the accompanying change of fermion chirality
or baryon and/or lepton number violation. However, for
energies less than the barrier top the state 4@ (2.8) is
indeed localized near the right minimum. For energies
higher than the barrier matrix elements for the transi-
tion to any state are exponentially small, so the concrete
definition of the final state does not make a great differ-
ence.

%ith this definition of the initial and final states,
Eq. (2.5) has to be slightly modified. For energies higher
than the potential barrier the modification is cosmetic:
the singular trajectory described above has to start in
the specific minimum P = —1; it ends up in the same
minimum [see Fig. 1(a)]. For energies lower than the
barrier the Minkowskian part of the trajectory starting
from the turning point PI [see Fig. 1(b)] hits another
turning point Ps, where it again enters the forbidden zone
and hence develops in imaginary (Euclidean) time. This
branch (V) is a bounce resembling the kink plus antikink:
at t = 0 (chosen for symmetry reasons) the trajectory
reaches the turning point P4 belonging rather to the right
well. From this point one can proceed in Minkowski time
observing the final-state field in the right well. However,

—1
S' = S'v =, dP(P' —1),

2g

Qy
———Q1+~e

SII SIII dy g(y2 1)2

2 2

$4=v I—~~
S = — ding($2 —1)2 —s, (2.9)

where we have introduced a dimensionless energy e =
8g E. The final formula for the cross section is

a(E) = exp (—S'+ .S"—S + S"' —S' ) . (2.10)

At energies higher than the barrier (e' ) 1) the branch V
is absent and there is no contribution of Sv to cr(E) so
that we return to Eq. (2.5).

Let us comment on a few features of Eqs. (2.9), and
(2.10). The actions SI —SI each diverge at P = —oo;
however, their sum is finite. To see that explicitly we can
rewrite their sum as

the Minkowski action, being a pure phase, does not con-
tribute to the cross section; in order to obtain it one has
to repeat the trajectory in the opposite order and count
the actions (with appropriate signs) along the branches
I—V [see Fig. 1(b)]. We get, for the actions along the
different branches,
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SI—IV SI + SIV SII SIII

gP~+ 1= —(4'~+1)—
g2 3

4x

+ d~ (&'- 1) —V'(~'- 1)'-
—OO

(2.11)

which apparently is convergent. At k -+ 0 these branches
cancel altogether and one is left with the piece S,which,
in this limit, is an action on the infinitely separated in-
stanton (kink) and anti-instanton (antikink), equal to
4/Sg2. It gives the familiar Gamov suppression factor
for tunneling at zero energy. We thus rewrite Eq. (2.10)
as

o(E) = exp S' '-(E) —S (E) . (2.12)

As the energy rises the behavior of the cross section
is determined by the interplay of two opposite trends.
The tunneling probability, represented by exp( —Sv), in-
creases with energy whereas the overlap of the initial
low-energy state with the high-energy one, represented
by exp( —S ), decreases. This physical picture was

suggested several years ago in Ref. [16]; now we are in a
position to make it fully quantitative. At energies higher
than the barrier there is no compensation for that trend
&om the side of S, so the cross section will definitely
decrease, and we thus expect a maximum of the cross
section at energies of the order of the top of the barrier,
k'= 1.

2dlno. 2dS' —'v
g = —g —gdk dk dk

1 K(k) K(k) ~ 1 —+el
2 gl+ +e gl+ ~e ( 1++~)

64 3 ln ——10= —ln —+c ' +O(s ).
8 k 128

At k ) 1 we get

(2.15)

2dlno, dS' 'v 1 K(l) ( +s —11
ds 2 /2+A ( 2+a

1 t'1 11
B~ —,—~+O(E ~ ),8s'&4 g4' 2)

t'»~ I'(-.')I'(-'. )
E4' » I'(-'. )

(2.16)

4 s( 64
g lno(s) =--+ —

~

ln —+ 1
~3 8 ( s )

( 64 17&
+

i
31n ———i+O(s ),256 g e 2 )

(2.17)

while at large energies we get a decreasing cross section

(I 11g' ln 0 (s) = — B
~

—,—
~
+ O (s'~ ).

6 g4 2)
(2.18)

Integrating these equations we get the cross section. At
small energies we obtain a rising cross section

t —Cp dP

V'(4" —1)' —s
(2.i3)

B. Calculation of the cross section

The time dependence of the trajectories is given by

We notice that (2.18) is consistent with the exact bound
for the matrix elements found in Ref. [18].

The maximum of the cross section is achieved at k = 1,
corresponding to the top of the barrier. The logarithm
of the cross section there is exactly half that at k ~ 0,
where the suppression is solely due to the double instan-
ton action:

For s = 0 (branches I and IV) we get trajectories going
from —1 to —oo at t = kT/2:

g incr = ——, k=1.3' (2.19)

1( T)
P'(t) =coth-

i
t+ —i,2( 2)'

(t) = —coth —
~

t ——
~

= Q (—t).iv
2E 2)

(2.14)

At s g 0 (branches II, III, and V) the trajectories are
given by elliptic functions of the first and second kind.

Actually in order to calculate the cross section (2.10)
as a function of energy it is not necessary to know the
trajectories explicitly: the shortened actions contain less
information. We first calculate the derivatives of short-
ened actions with respect to s'. At s ( 1 we have [K(k)
is the complete elliptic integral of the first kind [17]]

C. "Square root" suppression

The "square root" suppression of the cross sections at
the maximum as compared to that at zero energies have
been advocated by Zakharov [19] and Maggiore and Shif-
man [20] from unitarity considerations (this and other
work on unitarity has been extensively reviewed in Ref.
[4]). It is remarkable that we get the square root sup-
pression in a diferent approach. Probably it means
that the correct formulas respect unitarity. Moreover, we

The same kind behavior has been found earlier by Voloshin

[21] for the high-energy production accompanying the decay
of a metastable vacuum.
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can show that this square root suppression is of a more
general nature. Indeed, let us compare dS/ds along the
branches II, III, and V for c & 1. According to a gen-
eral theorem of the classical mechanics (see Appendix
A) these derivatives are related to the periods of motion
along these branches:

—4
4'1

=T2-- v'U(4) —~

—4
44

=Tl
4. V'U(&) —s

U(re) = (P' —1)', T = T, + T, .

,ds' —'~
Sg

,ds~
Sg2

dE

(2.20)

Here Tq, T2 are periods of motion along the branches V
and II+III, respectively. We are going to prove that Tq ——

2Tz for a wide class of potentials U((t)).
To that end let us consider the difference of integrals

along two closed contours I'I and I'2 in the complex P
plane (see Fig. 2):

dP dP

r, QU((t)) —s r, QU(Q) —s
(2.21)

T$ 2T2 )

dSv dSr —rv
=2 (2.22)

Integrating this equation in e we arrive to the following
important relation first noticed in Ref. [22]:

S (s) = S (0) —2S' ' (s). (2.23)

Equations (2.22) and (2.23) are of a very general nature
and are independent of the explicit form of the potential.
[For the concrete potential considered above Eq. (2.22)

This difference is zero as far as the potential energy U((]t))

has no singularities in the whole complex P plane, so that
the integrand has only cuts at the turning points Pi
According to Eq. (2.20) the integral along the contour I'I
is equal to Tq while that along I'2 is equal to twice T2, as
there are two equal contributions &om two cuts to that
integral. Therefore we indeed get the relation

d'x [ddt'�(x, s)/ds]'

J'd~z (-', ('v;ds) + (T]d]) —s
(2.24)

One can choose the time t as the parameter 8, but
that is not necessary since (2.24) is reparametrization
invariant. One can try to use this freedom to introduce a
parametrization PE(z, s) such as to ensure that both the
numerator and the denominator have no singularities in
the complex s plane, except the cuts due to the turning
points of the denominator. (In the one-degree-of-freedom
case such a parameter s is the "field" P itself. ) If that
goal is achieved, one would prove the relations (2.22) and
(2.23) in field theory. We have not proven them in the
general case; however, we con6rm these relations for the
YM theory by a direct calculation in Sec. III, at least for
small 6eld energies.

At e = 1 one reaches the top of the barrier where S~
vanishes. According to Eq. (2.23) it means that

S OSI—IV (1) ( ) Sinst
2 g 3

(2.25)

which reproduces Eq. (2.19) and gives the maximum of
the cross section corresponding to the square root sup-
presion as compared to that at zero energy. Combining
Eqs. (2.23) and (2.25) we can write

2Sinst + SI—IV(&)

1n(r(s) = &
-S'"", s = 1, S' ' (s) ) 0,
—S' ' (s) s)l (2.26)

This equation shows a jump of the derivative at r = l.
It should be mentioned, though, that in a parametrically
narrow strip near e = 1 the semiclassical formulas are
not valid anymore and one would expect a smooth match
between the two regimes of Eq. (2.26).

follows directly from Eq. 2.15)]. Moreover, we think that
Eqs. (2.22) and (2.23) are valid also in field theories
where tunneling may occur, Yang-Mills (YM) and Yang-
Mills-Higgs (YMH) theories being examples. The ana-
logue of Eq. (2.21) in field theory would be the follow-

ing contour integral in the complex plane of an arbitrary
parameter 8 parametrizing the solutions of equations of
motion with a given field energy PE(x, s):

D. Instanton interactions

Let us return to our concrete quantum-mechanical ex-
ample. To make contact with the previous work on the
instanton-induced cross sections at low energies we re-
call that a conventional way to present the results is via
the instanton —anti-instanton interaction potential U;„q.
The cross section can be written as a Fourier transform
of the time separation of the instanton and the anti-
instanton [23—26]:

FIG. 2. Contour integration proving the relation between
the periods, Eq. (2.22).

a(s) = f drexp]BT —Ui„,(T)]. (2.27)
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We define here U;„t so that at large separations T it in-

cludes twice the &ee instanton action. The integral over
T is perforxned by saddle point method, which is how one
gets the energy dependence of the cross section. Com-
paring Eq. (2.27) with 0 (E) found above [Eq. (2.17)], we
obtain the instanton interaction potential at large sepa-
rations

These terms are exactly those which are independently
known today for the YM instanton interactions. It should
be stressed that the last term has been computed from
unitarity in a laborous two-loop calculation in the YM
theory [26). It is remarkable that we reproduce the re-
sult of these dificult calculations in such a simple way.

1 4
U;„&(T)= ———8e —48Te + 136e

g 3

+0(
3T)— (2.28)

U:" » r(T) — 8e-T + 24Te 2T 40e--2T1 4
int

g 3

The first term here is twice the instanton action and the
second one reproduces correctly the well-known kink—
anti-kink leading-order attraction (see, e.g. , Ref. [27]).
The third term is new: we can compare it only with the
valley approach of Balitsky and Yung [28, 24, 29]. For the
sum ansatz of a kink and antikink these authors get

III. SINGULAR YANG-MILLS FIELDS

We now turn to the YM theory and describe the ana-
logues of the branches I—V (see Fig. 1), assuming that
the cross section of the two ~ many processes are to the
exponential accuracy given by Eq. (2.10). A derivation of
the generalization of the Landau formula to field theory
using the first order formalism can be found in the paper
of Iordanskii and Pitaevskii [13]. We shall reproduce the
well-known results for the instanton-induced cross sec-
tions at relatively low energies and get new results for
high energies. In the case of /CD we shall get the cross
section of isotropical multigluon production as function
of energy: it decreases as approxixnately the ninth power
of energy.

+0( 3T) (2.29)
A. Exact singular solutions with sero energy

T/2 + Pl + P2 + V (+ + Pl + P2)' —4PgP2

2PZP2

(2.30)

while the coupling g2 should be replaced by the gauge
coupling a according to the rule

1 4 4'
g 3 A

(2.31)

Therefore, the kink —antikink interaction (2.28) can be
transforxned into the instanton —anti-instanton interac-
tion. We get, from Eqs. (2.28) and (2.30),

which coincides with our result only in the leading order.
To our mind, it means only that the suxn of a kink and
antikink is not too useful beyond the leading order. In an
indirect way, however, our result for the next-to-leading
kink-antikink interaction seems to be in accordance with
another calculation, this time for the instanton —anti-
instanton interaction in the YM theory. Indeed, as em-
phasized in Refs. [28,24, 29], an instanton —anti-instanton
configuration can be obtained from a kink —antikink one
through a chain of conformal and gauge transformations.
The separation between the YM instantons R and their
sizes pq 2 is related to the separation of a kink and an-
tikink T as

In contrast with the quantum mechanics with only
one degree of freedom, in field theory there are infinitely
many ways to get an infinite field energy. In principle one
has to try any type of field singularities and the ultixnate
choice of the classical field should be made &om the max-
ixnum of the cross section with a given trigger for the final
state (if there is any). In this paper we restrict ourselves
to O(3) symmetrical field configurations which at low

energies reproduce the instanton-induced processes and
lead to an isotropic final state. One might well doubt
whether it is natural for high-energy collisions and in
a sense we prove that it is not, but at the moment we

would like to follow the instanton-induced processes up to
asymptotically high energies. For that reason we choose
the singularity in such a way that at given times pT/2
the A„field has a powerlike singularity in r where r is the
distance from the origin. We have nothing to say about
non-O(3) symmetrical singular fields, such as light-cone
singularities, etc. They would lead to another behavior
of the cross section and a different final state.

For branches I and IV corresponding to E = 0,
exact solutions of the needed type have already been
constructed by Khlebnikov [12]: They are the usual
Belavin-Polyakov-Schwarz- Tyupkin instanton (branch I)
and anti-instanton (branch IV) in the singular Lorentz
gauge with the scale parameter p changed to —p:

UvM(~) 1 6P1P2 + 12P1P2(P1 + P2)4~ 2 2 2 2 2 2

int ~4 R6

44 8
72P'P' I, O]~-P

+8 p2
' Rs (2.32)

Recently the result has been confirmed in Ref. [30] for
the case of the maximum-attraction orientation, though there
is still a difFerence between Refs. [30] aud [26] for general
orientations.

We a grateful to C. Wetterich for a discussion of this point.



272 DMITRI DIAKONOV AND VICTOR PETROV

A&') (r, t) =

t' r
)pv l(t + T

2
2

p2 p2 g+ p

pj T
t & —— (branch I),

&2+ &+ ——p

(3.1)

A' (r, t) = p)
„ t ) — (branch IV),

T

@2+ g +p
(3.2)

where i), i) are 't Hooft symbols [31].
Equation (3.1) describes the evolution of the field with

zero energy starting &om zero field at t = —oo and get-
ting to a singularity at t = T/2. It—is the analogue of
Eq. (2.14) in the quantum-mechanical example. Equa-
tion (3.2) describes the conjugate process: it goes &om a
singularity at t = T/2 to zero field at t = +oo. In case
of the electroweak (EW) theory with Higgs bosons one
can neglect the inBuence of the Higgs bosons as far as
the characteristic scale of the fields is p && m~, where
mar is the W boson mass. This is the case in two limits
we are now interested in: at E « miv/cx, where we shall
reproduce the well-known result, and at E )& mar/a, see
below. In the intermediate energy region one would have
to solve the coupled YMH system; otherwise Eqs. (3.1)
and (3.2) are exact. At t = pT/2 these solutions become
singular at the origin r = 0:

A4 ——0. (3 6)

In general, in the A4 ——0 gauge the spatial components
A, (r, t) contain three O(3) symmetrical structures:

A;(r, t) =a~;,n,
1 —A(T, t) B(T, t)+ b; —nn,

C(T, t) r
+a~, ) ~ = —

~

r r
(3.7)

duce new quantities, we use this gauge &eedom to keep
the A; fields at t = +T/2 exactly in the form given by
Eqs. (3.3) and (3.4):

A(i) ~f
l

A(iv)
2r

2p

)
('- " + 8-p)

T p + p

A~') lr ——
l

=
T2(T2 + p—2)

A„mUt (r, t)A„U(r, t) + i,Ut O„U, (3.5)

eliminating the A4 components in both branches I and
IV. (In fact, A4 ——0 is the adequate gauge to use: all
results are physically more transparent in it; we started
with a Lorentz gauge to make formulas more compact. )
It is easy to check that making a gauge transformation
(3.5) we do not destroy the coincidence of the spatial
components A; at the singularity points. We cite the
neccessary formulas in Appendix B. The time-dependent
gauge transforinations (3.5) are, however, defined up to
time-independent transformations. In order not to intro-

(v) I' T& ""
&P)

—2(T2 + P2)
'

We notice that (3.3) and (3.4) coincide for spatial com-
ponents A; but difFer in sign for the time component A4.
This is a gauge artifact, however. Indeed, one can per-
form a time-dependent gauge transformation

In Appendix B we quote the relation of these structures
to the A„field in the Lorentz gauge and the YM action
written in terms of the A,B,C functions.

In order to find the fields along branches II and III
corresponding to a nonzero field energy Eg,~p, one has
to solve the YM equations (generally speaking, coupled
to Higgs bosons) in the time interval T/2 & t & T/—2
with the singular boundary conditions (3.6). As in the
quantum-mechanical example, the field energy Ep,~d is

directly related to the time interval T. However diKcult
technically, solving the YM equations with given bound-
ary conditions is a well-formulated problem which can
be solved numerically. %'e solve it analytically in two
limiting cases: (i) p « T, corresponding to low ener-

gies aEP « 1, and (ii) p )) T, corresponding to high
energies aEp )& 1. In the Grst case we reproduce the
usual instanton results. The second case corresponds to
asymptotically large energies, and the results here are
new.

B. Reproducing instanton results

In the case p (( T, i.e., low energies, we deal with a
situation shown schematically in Fig. 1(b). Therefore,
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( 4
S'-'v= —6~ —'

~
+O~ '

full ~ ~T ) ~T6)
(3.8)

one first has to find the singular solutions along branches
II and OI, and then go to the Minkowski space and find
the analogue of the turning point Ps. Then one has to
construct again the Euclidean solution along branch V.
Each time the boundary conditions for the solutions are
determined at the preceding step, so that the procedure is
straightforward. However, we have not solved the prob-
lem at arbitrary values of p/T, but only in the lowest
order in p/T. The explicit construction of the YM fields
along the branches I—V is rather lengthy and we relegate
it to Appendix C. We 6nd the following expressions for
the full actions along branches I+IV [with the actions
along branches II and III subtracted —we call it SI
see Eq. 2.11) and along the branch V:

4/s
i—lv l—iv 4~

Sphupt —SfuQ + EfieldT2 a (96fr)
(s.is)

Adding these two actions in the exponent in accordance
with Eq. (2.12) we get finally the cross section as a func-
tion of energy at small values of aEp:

4m (aEpl ~'
rr(E) = exp ——1+I

~ I )
.

g96~) (3.14)

This formula coincides with the well-known result for
small energies [23,32] obtained for the instanton-induced
total cross section in the saddle point approximation.
The one-loop correction to Eq. (3.14) is also known [24,
25, 33, 34]: it adds, to the exponent of Eq. (3.14), a term

ET2) &Ti —T2) &T2 )
(3.9)

4x (aEpl '~'

a g 96m)

The two-loop correction [26] adds

(3.15)

dS 4x p4
fiel- d

dS~„4m p4

dTi a (Ti —T2)'
(s.io)

In Eqs. (3.8) and (3.9) we have introduced the time T2 =
T —Ti, which is the net time for branches II+III.

According to the general mechanical formula (see Ap-
pendix A), the energy of the field is the derivative of the
full action in respect to the period of motion, which is T2
for branches II+III and Tq for branch V. Also, the 6eld
energy Efi fQ should be the saxne on branches II, III, and
V. From Eqs. (3.8) and (3.9) we have

4vr 144 (aEp'l 96m+- ln + const
n 5 i96s ) aEp (3.16)

C. Singular solutions for high energies

We have not reproduced these terms directly by our
new method (indirectly we got these terms from the
quantum-mechanical calculation of Sec. II by using the
conformal-symmetry arguments). We would like to stress
that what looks like a loop expansion in the conventional
approach appears to be equivalent to 6nding singular so-
lutions of the classical equations of motion. We believe
that it is a well-formulated prograxn which may be per-
formed for all values of the dimensional energy aEp.

Hence we get a relation between the times along branches
V and II+III:

(nEp) -"
Ti ——2' where T2 ——p ~q96 )

(s.ii)

v v 4n (cxEpl 4/s

shurt full «i6 i
1 9( 96m )

(3.12)

In Sec. II we obtained the same relation for the case
of quantum mechanics and presented arguments that it
could be of a more general nature. Now we have demon-
strated the validity of this relation "experimentally" in
the YM theory, at least for large periods, or, equivalently,
for small energies E.

The corresponding shortened actions are (see Ap-
pendix A for the definitions)

Iet us now consider the opposite case: T && p. It
means that the time during which the field is develop-
ing is much less than the spatial spread of the field, see
Eq. (3.6). During this short time the fields change only
at distances r && p, but cannot change signi6cantly at

p. Therefore, the region r & p cancels out in the
difFerence between the shortenned actions. For that rea-
son one can neglect r as compared to p in Eq. (3.6), so
that the boundary conditions for the field simplifies. In
terms of the A,B,C functions introduced in Eq. (3.7) the
boundary condition becomes

T'l ( Ti ( Ti 2pA~., +—
~

=3, B~., +—
~

=C~., +—
~

=-—.
2) I 2) & 2)

(s.17)

We see that the structure B + C is singular and thus
much larger than the structures A and B —C; therefore
we shall neglect the second two and work with one struc-
ture B+ C = D. The equations of motion for A, B—C,
and D will keep A and B—C negligible, as compared to
D, as far as r will remain xnuch less than p, which is the
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case of interest. Moreover, for the similar reasons one
can neglect the spatial derivatives of B + C and other
less singular terms as compared to the terms B,C /r
in the action; see Appendix B, Eq. (B9). The resulting
action written in terms of the large structure D becomes

—[Se(r)r ]'/
4r 1

4

P up to the turning point being x = 1 in the new nota-
tion:

T/2 oo y1 D4
g II+III dt d (

D2 +4o —T/2 o (2 Sr )
The corresponding equation of motion is

D3—D+ =02r2—

with the boundary conditions

( Ti 4pD/r, +—
/

= ——.

(3.18)

(3.19)

(3.2o)

It can be written as an equation relating the period and
the energy density:

(3.26)

This equation has a solution for P and hence for e(r) for
all values of the right-hand side: small r corresponds to
P -+ oo while large r corresponds to P ~ l.

The shortened action density along the branches II+III

The problem can be regarded as a simple one-degree-
of-freedom mechanical one, with r viewed as a parameter
of the trajectory. Equation (3.19) is integrable as there
exists a conserved energy density:

D'
e(r) = — D. -

8r 2
(3.21)

The time dependence of the Beld is determined by inte-
grating Eq. (3.21):

D(7,&) dD
t =

4p/, QD4/4r 2 —2e(r)
(3.22)

Introducing dimensionless quantities

4px =—
[Se(r)r ] / r[Se(r)r ]I/ (3.23)

we rewrite Eq. (3.22) as

P—[8 ()"]"=
2r x4 —1

(3.24)

The half-period of the motion T/2 is found from
Eq. (3.24) as an integral from the initial configuration

Dmin
II+III

( —4P/7

64p
dx Qx4 —1.r4 Ps

D4
dD —2e(r)4r2

(3.27)

,I+IV(„)
r4 3' (3.28)

which is indeed independent of T and should be sub-
tracted from Eq. (3.27). Of course, one could get
Eq. (3.28) directly by finding the action density along the
solutions (3.1) and (3.2). To get the complete shortened
action standing in the exponent for the cross section we

integrate the difference of (3.27) and (3.28) over r. Using
the relation (3.26) we integrate over P instead of r and
obtain

Being integrated over r, this action is apparently diver-
gent; however, one should not forget to subtract a sim-
ilarly divergent piece corresponding to the zero-energy
branches I and IV. To make the necessary subtraction
we notice that zero energy corresponds to infinite pe-
riod T and hence to P ~ oo; see Eq. (3.26). Putting
P = oo in Eq. (3.27) we get the shortened action density
for branches I and IV:

I—IV d (
I+IV II+III) ( P

0T vr I Vp ~ I V/x —1

( ~ d. P l (1
X dxV/x4 —1

)«'- ) ~'

4 &&(-4' -'2) & /
'/' 4= —O.9232—

8 ) T n T
(3.29)

~e remind the reader that the above calculation is performed for the case p )) T; hence Eq. (3.29) describes a rapid
falloK of the cross section in this region.

Integrating the energy density e{r) over r we get the field energy
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3 " 4~ »'&'a "dP (' 3/2
p«e(r) = +4a s aT T& n, . p ( i i/~ —I) ( i i/~ —I gp

4' 3 p s&'2 CB(4, 2)i 4~ 0.5539 p
a T T ( 8 ) a T T (3.30)

One can immediately check that Eqs. (3.29) and (3.30)
satisfy the general relation between the shortened action
and the energy (see Appendix A):

whereas the cross section is given simply by

~(E) = exp -S'-'v(E), (3.37)

dT dT
(3.31)

The energy Efi,i& (3.30) actually has a double meaning.
We have introduced it as the energy of a singular Eu-
clidean 6eld between the singularity points. It becomes
purely potential energy at the turning point (t = 0) start-
ing &om where the field enters the classically allowed re-
gion and hence develops in real Minkowski time. There-
fore, it is also the energy of the outgoing field or, equiv-
alently, the energy of the final multiparticle state.

Simultaneously, it is the energy of the few-particle ini-
tial state. To see that we notice that the cross sec-
tion is defined via the imaginary part of the four-point
Green function of the initial particles; see Eq. (1.1). The
high-energy asymptotics of a Green function in the back-
ground 6eld is determined by the positions of the singu-
larities of the field. In the case depicted in Fig. 1(a) there
is one singularity at t = T/2 for th—e amplitude and one
singularity at t = +T/2 for the conjugated amplitude.
Therefore, the asymptotics of the four-point Green func-
tion and hence of the cross section is

I IV II III
Sfull —Sfull + Sfull Sfull Sfull ' (3.33)

On the other hand, the full actions are simply related
to the shortened actions provided the fields satisfy the
equations of motion (see Appendix A):

Sshort + Sshort Sshort short «ld
IV II III

(3.34)

[the quantity Si i has been calculated in Eq. (3.29)].
Thus, we get &om Eq. (3.32),

exp [ EparticieT + S —+ EfiaigTj . (3.35)

Integrating over the separation between the singulari-
ties T we obtain the energy conservation law

Eparticle = Efield = E (3.36)

exp [Ei(—T/2) + E~(—T/2) —E,T/2)
E2T/2 —Sf„—u (T)]

= exp [—Ep,t;,i,T —Sr„ii(T)], (3.32)

where E~~rt,,le ——E~+E2 is the energy of the initial two-
particle state and Sfull is the full or Lagrange action of
the field:

where the shortened action S should be expressed
through the energy. It should be mentioned that in a
case depicted in Fig. 1(b) there are additional field sin-
gularities at t = +Ti/2 and a similar analysis is slightly
more complicated.

Expressing the time between the singularities T
through the field energy (3.30) and substituting it into
Eq. (3.29) we get, finally,

4~ (apEI '&'
o(E) = exp ——1.316

~a (4ir) (3.38)

T && p, (3.39)

as contrasted with the usual attraction at large separa-
tions; see Eq. (2.32). We believe that it is a reasonable
result if one defines U;„t not as the action of an arbitrar-
ily chosen Euclidean configuration such as the valley (we
have shown in Sec. II that the valley leads to the wrong
U;„i already in the next-to-leading order), but through
unitarity, as in Eq. (2.27). Physically, the effective repul-
sion of instantons at small separations appears here as a
result of a rapidly decreasing overlap between low-energy
and high-energy states. Prom the purely Euclidean view-
point a closely situated instanton and anti-instanton re-
semble a vacuum state and therefore have to be eH'ec-

tively strongly repulsive if we wish to read ofF a nonper-
turbative contribution &om that con6guration. Equa-
tion (3.39) is good news for the @CD instanton-vacuum
builders.

IV. ENERGY BEHAVIOR
OF THE CROSS SECTION

We have established the behavior of the cross section
for multi-gauge-boson production as a function of a di-
mensionless quantity aEp, where p is the spatial size of
the YM field, at sinall [Eq. (3.14)) and large [Eq. (3.38)]
values of this parameter. Applications of this result are

which is valid for nEp )) 1 and describes a decreasing
cross section at large values of this parameter.

The result of this subsection can be formulated also
in terms of the instanton —anti-instanton interaction po-
tential U;„t. We find, at small separations T, a strong
repulsion:

p p~3/2
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different in the /CD case, where scale invariance is pre-
served at the classical level, and in the electroweak the-
ory, where it is broken from the beginning. We discuss
the two theories in turn.

M.„(p)= 1 96p
4m dry

4g2 (t2 + r2 + p2)4

(4.2)

A. +CD

In @CD the scale p is arbitrary and one has to integrate
over it. Naturally, p will then be Gxed by the maximum
of the cross section as a function of the dimensionless
parameter nEp. We know the behavior of the incr(E) at
small and large values of this parameter, and we plot it
in Fig. 3, where we have added the next-to-leading term
(3.15) at small uEp. The low-energy and high-energy
curves intersect and give the maximum at a point which
is remarkably close to a point marked by a circle in Fig.
3, which is the position of the maximum that we would
expect independently of the above calculations.

Indeed, in Sec. II we have presented general arguments
in favor of the relation (2.23) and in Sec. III we have con-
Grmed it at low energies for the YM case. If we assume
Eq. (2.23) to be correct at all energies up to the sphaleron
top of the barrier, we would get that, at the maximum
corresponding to the top of the barrier, the cross section
is exactly the square root of the cross section at zero en-

ergy. It means that the low- and high-energy branches of
the cross section should intersect at

4x 1
ln amax =

2
(4 1)

To what value of the dimensionless parameter aEp
does this maximum correspond? Our arguments here
are even more shaky; however, one could speculate that
the maximum occurs at energy equal to the mass of the
sphaleron. In the massless YM theory we are now dealing
with, the sphaleron mass can be estimated as the poten-
tial energy of the instanton field exactly in the middle of
the transition when the instanton passes the Ncs ——1/2
point. We have

We Gnd then that the maximum of the cross section
should be achieved at the value of the dimensionless pa-
rameter

= 0.1875.
q4vr ) „16 (4.3)

This is the point marked by a circle in Fig. 3, and we
see that it is remarkably close to the intersection of the
low- and high-energy curves. Higher order corrections to
both curves should probably move the intersection point
exactly to the position calculated here.

The fact that the spatial size of the classical field p
scales down as 1/E at the maximum means that quan-
tum corrections to the classical calculations of this pa-
per should be controllable and small at E —+ oo. The
one-loop quantum corrections, as usual, should make the
gauge coupling run. . Also, one would expect a large pref-
actor owing to the zero modes about the classical trajec-
tory —something like (2m/n)4+', where N, is the number
of colors. The prefactor n starts to "run" only at the two-
loop level. Combining renormalization-group arguments
with the result (4.1), we expect the isotropical multigluon
production cross section to be

o;,t(E) =,.
!
—

! ! bin —
!

c f~)t'f E)' '"

" '"!1.(E/~)! (4 4)

where 6 = 11N,/3 —2'/3 = 7 is the one-loop Gell-
Mann —low coefEcient and A is AqcD 200 MeV. The co-
efEcient c and the power p are determined by the second-
loop Cell-Mann —low coefIicient and by the Green func-
tions of the initial particles of the process; that is where
the nonuniversality of cross sections comes in. A calcu-
lation of these constants seems to be feasible.

Thus we arrive at a prediction that the total cross sec-
tion for isotropical multigluon production in /CD should
fall ofI' as approximately the ninth power of their aggre-
gate energy. However, a presumably large prefactor and
the peculiarity of the events might help to make such pro-
cesses observable; this subject deserves a more thorough
study.

It is worth mentioning that the momentum distribu-
tion of the produced multigluon state can be found easily
by solving the YM equations in Minkowski time starting
&om the "sphaleron" field (4.2). Since that field has only
one parameter p related to energy through Eq. (4.3), the
gluon momentum distrubution will have a scaling behav-
ior with energy, modulo logarithmic corrections.

FIG. 3. The behavior of the natural log of the cross sec-
tion as a function of oEp at small (dotted curve) and large
(dashed curve) values of this parameter. The circle shows the
expected maximum of the cross section.

B. EVV theory

In this case the size of the classical Geld p is determined
not only by energy but also by the Higgs vacuum expec-
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tation value v. At low energies one has to multiply the
aEp-dependent cross section (3.14) [with the addition of
one-loop (3.15) and two-loop (3.16) corrections] by the
factor

exp( —2x' p'n'). (4 5)

Integrating over p, one gets the familiar expansion of
the total baryon-number-violating (BNV) cross section
in terms of the dimensionless energy measured in units
of the sphaleron mass [26,30]

o, ,(E) = exp F(e—)
4~ E

i/6~mw/a

V. MASSLESS A/4 THEORY

For future reference we would like to cite here the re-
sults for the massless A/4 theory whose Euclidean action
1S

(5.1)

Instead of the singular instanton one has to start here
with the singular Lipaton [37], which gives an O(3) sym-
metrical zero-energy field singular at t = pT/2 [12]:

F(s) = —1+ —s ——s i ——s i [inc+ const].
8 16 16

(4.6)

The growth of the function F(s) has lead in the past to
hopes that the BNV processes may become unsuppressed
at energies of the order of the sphaleron mass mw/a,
corresponding to e 1. However, unitarity arguments
of Refs. [19, 20] indicated that the BNV cross section
induced by instantons should not rise beyond the square
root of the cross section at zero energies. We now arrive
to the same conclusion &om our singular solutions.

At very high energies (E )) mw/a) the size of the field

p is determined by the factor (3.38) rather than by the
Higgs factor such as (4.5), meaning that p 1/aE «
1/mw. Therefore one can neglect the Higgs inHuence
and arrive at the conclusions of the preceding subsection,
viz. , that the cross section does not rise above the value
of exp( —2'/a) = 10

At energies of the order of the sphaleron mass (E
m /a) one cannot neglect the Higgs effects and has to
Gnd singular solutions of the YMH equations along the
branches I—V. If our general arguments based on analytic-
ity are correct, we would again expect that the maximum
occurs at exactly the sphaleron energy and corresponds
to the square root suppression.

The momentum distribution of the produced R' and H
bosons should follow from the Minkowski development
of the sphaleron —the "fall" of the sphaleron. This
distribution has been studied numerically in Refs. [35,
36]. We argue now that the same distribution would
happen at high-energy collisions; however, its probability
would be of the order of 10

P(r, t) = 2
p

r +(t+T/2~p) —p
(5.2)

Since there is no tunneling and consequently no branch
V in this theory, one gets a monotonically decreasing
cross section as function of the dimensionless quantity
AEp. Probably it is in accordance with the theory not
being asymptotically &ee. The calculations of Sec. III
can be repeated without any serious change (in fact, they
are much more simple). For small AEp the cross section
has been actually calculated in Ref. [12] and we confirm
it:

167r 3 ( EpA )
inane g

———,] ~ ~, AEp && 1. (5.3)
A 2'» (, 16'')

For large AEp the leading term can be obtained imme-
diately from Eq. (3.38) by changing notations. Indeed,
introducing a new variable D(r, t),

(5.4)

we get, for the action (5.1),

D4&

") (5.5)

which coincides with (3.18) up to the overall factor. The
boundary conditions for D(r, t) as ixnposed by Eq. (5.2)
also coincide with those of the YM case (3.20). Hence the
behavior of the cross section can be immediately obtained
from Eq. (3.38) by a suitable change of constants. We get

16~' ( AEp &)"
lnoi t

——— 1.119
~ ~, AEp && 1.
g16n2)

(5.6)

Equations (5.3) and (5.6) exhibit a monotonically de-
creasing cross section as function of AEp; integrating over

p, one falls into the trivial maximum at AEp = 0 corre-
sponding to zero particle production, which is naturally
more probable than multiparticle production. It is a pre-
rogative of field theories with nontrivial topology to have
a nontrivial behavior of classical cross sections even in
the massless limit.

VI. CONCLUSIONS

We have elaborated on the use of singular Euclidean.
solutions to describe semi-classical multiparticle produc-
tion in field theories. We have shown that, by using in-
stantonlike O(3) symmetrical singular solutions, one re-
produces the usual formulas for the instanton-induced
cross sections for low energies. However, the present ap-
proach allows us to solve the problem at all energies. We
have found analytically a family of singular solutions la-
beled by p/T, which govern the high-energy behavior of
multiparticle production both for the YM and A/4 the-
ories. We have presented new arguments (not based on
unitarity, but rather on analyticity) that the maximum
of the instanton-induced cross sections in @CD and EW
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theories is still exponentially small in the coupling con-
stant, with the coeKcient corresponding exactly to the
square root suppression as compared to zero energy. An
interpolation of the low- and high-energy branches of the
cross section give numerically this square root point to
a surprisingly good accuracy; see Fig 3. Simultaneously
our result means that there is efFectively a strong repul-
sion between instantons at small separations.

As a by-product of our study we get a nonperturbative
formula for the isotropic multigluon production in @CD,
Eq. (4.4). Presently unknown coefficients and powers
of the logarithms in that formula seem to be calculable
and deserve further study. It would be also extremely
useful, if possible, to understand Eq. (4.4) in terms of
some clever summation of Feynman graphs for a gluon
branching process; we mean the approach initiated by
Cornwall [38] and Goldberg [39].

As to the applications to the baryon number violating
processes in the EW theory, our result is in line with other
people, who, in the recent years, argued &om various an-
gles that the BNV instanton-induced cross section has to
be small at all energies. However, we feel that it is not the
end of the story, but rather its beginning. It should not
be surprising that the isotronic multi-particle production
is suppressed at high energies. One should expect that at
high energies the events have at most the axial symmetry.
Therefore, one should look for solutions with singularities
of a difFerent kind, not just O(3) symmetrical. The same
applies to other cases where we expect that multipar-
ticle production might be described semiclassically such
as multijet production and low-x structure functions in
@CD, multipion production in heavy-ion collisions, etc.

Our 6nal remark concerns an alternative approach to
semiclassical multi-particle production [40] in which the
few initial high-energy particles are used as a (weak)
source for classical fields. How can this approach be rec-
onciled with our? We think that including the source
explicitly, one has to look for anomalous solutions of
field equations, which do not possess singularities how-
ever small the source, but which develop a singularity
when the source is set identically to zero. We have ob-
served such a scenario in quantum mechanics and a d=2
massive o model, and believe that it is a general case.
However, in a d=4 Yang-Mills theory the hopefully equiv-
alent approach based on singular Euclidean solutions is
seemingly more simple.

APPENDIX A:
GENERAL RELATIONS FOR THE ACTION

Let Sf„llbe the Lagrange action

1 1 2~r u = — dt —4' + U(~)
g 2

(Al)

Using energy conservation

-O' —U(0) = —Eu',
2

(A2)

where T is the period of the motion. Equation (A3)
introduces the so-called shortened action

Sshort = Pdg. (A4)

In the main text we make intensive use of the general
identities following &om Eq. (A3):

and

dSshort

dE
dS h, t dE

dT dT
(A5)

dSfull E
dT

(A6)

Branches I and IV correspond to zero energy, so that
the full actions along these branches coincide with the
shortened ones:

gl gIV ~I gIV~full ~full ~short ~short

The relations (A5) and (A6) apply directly to branch V,
in which case the period is denoted by Ti [see Fig. 1(b)]:

dsvshort
dE

V
full

de
(AS)

which is satisfied if the field P(t) satisfies the equations
of motion, we can present Sfull as

Sg&&= — dfp +Efdf
g2

dP/U(P) —s+ ET = S,& „+ET, (A3)

ACKNOWLEDGMENTS

The period of motion along branches II+III is denoted
by T2 (it becomes equal to the full time between the
singularities T for energies above the barrier) and we have

SII+III SII+III + ETfull short 2.

We are grateful to Larry McLerran for an enlighting
discussion of the Mueller corrections and to Pavel Pobyl-
itsa for useful remarks. We would like to thank the Insti-
tute for Theoretical Physics-II of the Ruhr University at;

Bochum for hospitality. This work was supported in part
by the Russian Foundation for Fundamental Research
under Grant No. 93-02-3858. D.D. thanks the Alexan-
der Von Humboldt Foundation for financial support.

We usually combine this action with that along branches
I and IV in order to cancel the divergencies. Denoting

SI—IV SI+IV SII+III SI—IV SI+IV SII+III
full full full short short

(A&0)
we have

SI—IV SI—IV
full 21
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so that

ggI —IV

dE
ggI —IV gE

dT2 dT2
'

I—IV
full

dT2

(A12)

in order to eliminate the A4 component. The profile func-
tion of the gauge transformation is found &om the equa-
tion

A4 ——iU84U = (nr) = (nr)r4'(r + t ), (B4)
Bt

APPENDIX B: GAUGE TRANSFORMATION
TO THE A4 ——0 GAUGE

Let us consider an instantonlike field in the Lorentz
gauge:

which can be integrated once the function 4(r2 + t ) is
given.

With P(r, t) known, the gauge-transformed spatial
components A'; take the O(3) symmetrical form

A,'(r, t)=e; n . ' + h; —n n;)
1 —A(r, t) B(r, t)

or

A„(z)= 2ri„„x„4(z)

A4 ——A4 —= (nr)r@(r + t2),'2

(Bl)
where

A(r, t) = cos 2P —(cos 2Pr + sin 2Pt) 2r4, (B6)

A; = A —= (—~,t + i [(nr) r, —n;] r) C (r' + t').' 2

(B2)

B(r, t) = —sin 2P + (sin 2Pr —cos 2Pt)2r4, (B7)

BP
C(r, t) = 2r —+ tC

Br
We make a hedgehog gauge transformation

A'„=Ut (r, t)A„U(r,t) + i Ut B„U,

U = exp [i(nr)P(r, t))
(B3)

If the 't Hooft symbol g instead of g is used in the defi-
nition of the field (Bl), one has to change t ~ t in all-
the above equations.

The YM action rewritten in terms of these structures
1s

SYM= dz(F„) = — dt dr A +B + —C
4g2 "" a 2

(A2+B2 —1)2 2C(A'B —AB') C (A +B )+2r2 r (B9)

The Chem-Simons number is

Ncs = — dr A B —B A + —(A + B —1)
1

27 r

(Blo)

APPENDIX C:
SINGULAR YM FIELDS AT LOW ENERGIES

1. Branches II and III

At low energies we do not expect large deviation on
branches II and III Rom the zero-energy solutions (3.1)
and (3.2), which are just singular instantons. To save the
space we introduce the following notation. Let A' ' (t +
T/2 —p) be a singular instanton in the Lorentz gauge
defined by Eq. (3.1). Similarly, A„t'(t —T/2 + p) is
shorthand notation for the singular anti-intstanton given
by Eq. (3.2). The time arguments of the fields are what
we wish to stress here. We next gauge transform the

A;(t+T2/2+ p), t ( 0
A; (—t + T2/2 + p), t ) 0. (Cl)

The two branches match at t = 0; however, their time
derivatives there have opposite signs. Equation (Cl) sat-
isfies the YM equation of motion everywhere except the
point t = 0:

I

fields to the A4 ——0 gauge according to the formulas of
Appendix B.We denote the resulting spatial components
as A;(t+ T/2 —p) and A;(—t+ T/2 —p) (note that we
have changed the sign of the arg»ment for the case of the
anti-instanton field, in agreement with the procedure of
Appendix B).

We next notice that the net time for branches II and III
is Tz = T —Ti [see Fig. 1(b)]. The field along branch II
has to stop at a turning point at time Ti/2 and the fie—ld
along branch III has to stop at time Ti/2. Since these
are the same turning points, we can temporaly identify
them with a single point t = 0; the singularities occur
then at time +T2/2.

To get the fields satisfying the boundary conditions at
the singularity points we introduce the field
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bS[Ao] = 2A;(T2/2+ p)h(t) = b(t)O(p /T ) . (C2)

Therefore, we have to modify A in the vicinity of the
turning point at t = 0. We look for the solutions along
the branches II and III in the form

A;(t) = Ao(t) + B;(t),

where the additional Geld I3; satisfies the zero bound-
ary conditions at the singularity points +T2/2 and the
equation of motion

A,". "'(r, O) =O, A,""'(r,O) = 2A, (r, T, /2) {C6)

Let us now calculate the full action along the branches
II and III, subtracting those along the zero-energy
branches I and IV:

SI—IV SI+IV SII+III
FU11 fu11 dt d zd[A ]

instanton; their addition would correspond to a shift or
a distortion of the singularity points and therefore wouM
not satisfy the necessary boundary conditions at +T2/2.
We thus obtain the Geld at the turning point t = 0:

o= ["*+ '] = ["*]+[-a,'+x(A,')]B+o(B'),

(C4)

T2/2
dt d'z 2[A" "']

—T2/2
(C7)

B,(t = o) = A, (ltl+ T, /2) (C5)

The resulting field A, + 8, is smooth at t = 0; it is
shown schematically in Fig. 4(a). Equation (C5) gives
the only solution of the equation of motion to the needed
accuracy, which is even in t and decreases in the direc-
tion of the singularity points. One could, in principle,
add to Eq. (C5) a solution of the homogeneous equation.
Such solutions would be the zero modes of the singular

Bt

where —8, + K is the quadratic form of the YM action.
To the accuracy we are now interested in, the Geld B;

is of the order of p2/T22. Therefore, we can neglect the
nonlinear terms in Eq. (C4) and the shifts by p in the
arguments of the fields. Furthermore, in the region of
t 0 one can put A = 0 in the quadratic form K, since
Ao is also of the order of p2/T22 in this region. Solving
Eq. (C4) at t = 0 and taking into account Eq. (C2) we

get 0

dt d'zC[A, (t + T2/2)],
T2/2

dt d'z (2[A'+ B] —K[A']) . (C8)

In Wq we change the time variables and use the fact
that the Lagrange density is even in time. We obtain

Wi ——2 dt d zE[A, (t)].
T2/2

(C9)

This integral can be calculated in two ways: (i) using
the equation of motion for the A, field and (ii) using the
gauge invariance. The Grst method leads to the equation

Using equations of motion and gauge invariance this ac-
tion can be calculated without undue difhculty. Let us
add and subtract the action computed on Ao (Cl) in the
time interval between pT2/2. We write

S~„11
——TV~ + lV2,

I—IV

—T2/2

Wi ——2 dt d zC[A, (t + T2/2)]

A. t+-T2
2 At -t+

2
Wi ————

2
d zA, (r, T2/2) A, (r, T2/2). (Clo)

- T2

2
(a)

Using the gauge invariance we can return to the Lorentz
gauge and obtain

R"g —— dt d x I'„

I

2

(b)

0

T) -T2
2

Tl

2

4

(Cl1)

In W2 we expand the integrand in B; neglecting terms
O(Bs) and O(B4) and use the equations of motion for
Ao and B, [Eqs. (C2) and (C4)]. We have

T2/2

Ws ———— dt d xB, (r, t)A; (r, T2)b(t).
g -T /2

FIG. 4. A schematic view of (a) the singular solutions
along branches II and III and (b) the bounce solution along
branch V.

d xA, (r, T2/2) A, (r, T2/2) = Wi, (C12)
g

where Eq. (Clo) has been used in the last line. Adding
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up the two pieces, we thus obtain the full action along
branches II+III (with branches I and IV subtracted):

(C15) and (C17):

B;(t = —Ti/2) = 2A;(T2/2) —A, (6T),
+r-rv —6( P

f 0( ~,
[

ET2 r
(C13)

B;(t = —Ti/2) = A;(—b,T).
(c18)

2. Branch V

We now go back to the turning point at t = 0 where
we have already found the field, it is given by Eq. (C6).
What we called t = 0 corresponds actually to two points:
t = +Ti/2. At these points the field enters the allowed
region and develops in Minkowski time. The solution of
the Minkowski equations of motion is

A; '"" = A;(T2/2+ it) + A;(T2/2 —it). (C14)

Indeed, this is a solution of Minkowski equations of mo-
tion for not too large t since A, itself is a solution of
Euclidean ones, and (C14) is evidently obeying bound-
ary conditions (C6).

The field (C14) describes the outgoing gluon field
which corresponds to multigluon production without
changing of the Chem-Simons number. In order to
change it we need one more tunneling transition cor-
responding to branch V of Fig. 1(b). Normally the
Minkowski solution develops between the turning points
Pi and Ps (as it was in our quantum-mechanical exam-
ple) and determines the initial field configuration Ps for
branch V. However, this is not the case in the lowest ap-
proximation we are dealing with. In this approximation
the two turning points Ps and Pi coincide, so that branch
V starts at the same field where branch II ends. It should
be also mentioned that far from the centers in the leading
approximation there is no diH'erence between the field A,.
of the singular and of the nonsingular instantons. We
shall therefore denote the instanton field in the A4 ——0
gauge by A; as before.

Thus we have to find branch V as a solution of the
Euclidean equations of motion with the boundary condi-
tions given by Eq. (C6):

B; = A; [ t+ (—Ti —T2)/2], (C19)

which clearly decreases for increasing t and hence does
not contain the zero modes which would lead to the shift
of the instanton position.

Let us turn now to the region near t = 0. Here we
cannot apply immediately the method used above for
branches II and III since the field A, is not small now.

However, it is gauge equivaLent to a small field A, :

A, (t) = Ut(r)A, U(r) +iUtB;U, (c20)

where U(r) is a gauge transformation with the winding
number equal to unity. One can apply the same con-
siderations as above to the gauge transformed fields A,.

and B; = UB;Ut. As a result we obtain the following
expression for B, near t = 0 [cf. Eq. (C5)]

B; = Ut(r)A;
~

~t~+
~
U(r).

2
(c21)

The solution of Minkowski equations of motion, which
starts at the turning point at t = 0, is [cf. Eq. (C14)]

2 J

Ti —T2 &

+A;
~

it+—U( ) + 'UtB U.
i

(C22)

The field B; should not increase in the direction of the
center of instantons; then it does not include zero modes
corresponding to the distortion of the instantons. We can
satisfy this requirement only if AT = T2/2. Indeed, in
this case the solution of equation of motion for B; with
the boundary conditions (C18) is

A; (+Ti/2) = 0, A, (+Ti/2) = 2A, (T2/2).

Again we are looking for a solution in the form

A~ =A,'+B;,

(C15)

(C16)

It describes gluon production around the minimum with
the Chem-Simons number equal to one.

Now we can calculate the action along the branch V.
The full action

where this time A, is the field of the usual instanton in
the A4 ——0 gauge at t ( 0 and that of an anti-instanton
at t ) 0; the centers of both are shifted by AT, to be
found below. We have

S~v„=—, d'xi[A,' + B;]
g -T;//2

(C23)

A, (t+ T, /2 —AT), t & 0
A;(—t+ T2/2 —AT), t ) 0 (C17) can be expressed as a sum of twice the instanton action,

[see Fig. 4(b)].
The shift in the positions of the instantons AT should

be determined from the region near Ti/2. In this region-
the field B; obeys linearized equations of motion follow-
ing from the quadratic form of the action in which one
can neglect the instanton field being small in this region.
The boundary conditions for B; follow directly from Eqs.

(c24)

and corrections of four types. The first is due to the fact
that we have to calculate the action not along the whole
t axis but in the time interval (—oo, —Ti/2):
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T1 /2

4

(C25)
n (T2)

ZS, = — d'* B;(t)A;
~

t+ T, —Tz

g2

1
+—B;(t)B;(t)

t= —T1 /2

(C28)

The second is a similar defect of the action, but coming
from the time interval (0, oo):

The other is the contribution of the b function at t = 0:
OO

= ——3
4n. ( p

(Tg —T2 j (C26)

The third and fourth corrections are the contributions
due to the B; 6eld:

+-B;(t)B;(t)
C=O

= AS2. (C29)

AS3+ AS4

T1 /2
d x (8[A, + B;]—i.[Ao]) . (C27)

—7;/2

Adding up the four corrections we obtain Gnally the full
action along branch V:

As above, we shall use here the equations of motion for
both 6elds A,- and B; and get two contributions. One is
the contribution of the boundaries at t = kTq/2:

Sr 0: 1 6
[ [

6
[ i

. (C30)v 4~ (Pl' f P

ET2 J

[1] M. Mattis, Phys. Rep. 214, 159 (1992).
[2] P. Tinyakov, Int. J. Mod. Phys. A 8, 1823 (1993).
[3] A. Ringwald, presented at the 4th Hellenic School on

Elementary Particle Physics, Corfu, Greece, 1992 (un-
published).

[4] R. Guida, K. Konishi, and N. Magnoli, Int. J. Mod. Phys.
A 9, ?95 (1994).

[5] V. Zakharov, Nucl. Phys. B385, 452 (1992).
[6] I. Balitsky and V. Braun, Phys. Rev. D 47, 1879 (1993);

Nucl. Phys. B380, 51 (1992); Phys. Lett. B 814, 237
(1993).

[7] A. Anselm, Phys. Lett. B 217, 169 (1988); A. Anselm
and M. Ryskin, ibid. 226, 482 (1991).

[8] J.-P. Blaizot and A. Krzywicki, Phys. Rev. D 46, 246
(1992).

[9] J.-P. Blaizot and D. Diakonov, Phys. Lett. B 815, 226
(1993).

[10] S. Khlebnikov, V. Rubakov, and P. Tinyakov, Nucl. Phys.
B367, 334 (1991).

[ll] A. Mueller, Nucl. Phys. B401, 93 (1993).
[12] S. Khlebnikov, Phys. Lett. B 282, 459 (1992).
[13] S. V. Iordanskii and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.

76, 769 (1979); [Sov. Phys. JETP 49, 386 (1S79)].
[14] L. D. Landau and E. M. Lifshitz, Quantum Mechanics

(Pergamon, New York, 1965), Ch. VII.
[15] M. Voloshin, Phys. Rev. D 4$, 1726 (1991).
[16] T. Banks, G. Farrar, M. Dine, D. Karabali, and B.Sakita,

Nucl. Phys. B$47, 581 (1990).
[17] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,

Series and Products (Academic, New York, 1980).
[18] C. Bachas, Nucl. Phys. B877, 622 (1992).
[19] V. Zakharov, Nucl. Phys. B85$, 683 (1991).
[20] M. Maggiore and M. Shifman, Nucl. Phys. 865, 161

(1991);$71, 177 (19S1).
[21] M. Voloshin, Nucl. Phys. B$6$, 425 (1991).
[22] V. G. Kiselev, Phys. Lett. B 278, 454 (1992).
[23] V. Zakharov, Nucl. Phys. B371, 637 (1992).
[24] V. V. Khoze and A. Ringwald, Phys. Lett. B 259, 106

(1991);Nucl. Phys. B$55, 351 (1991).
[25] D. Diakonov and V. Petrov, Proceedings of the Mth

Leningrad Nuclear Physics Institute 8'inter School
(LNPI, Leningrad, 1991).

[26] D. Diakonov and M. Polyakov, Nucl. Phys. B389, 109
(1993).

[27] J. Zinn-Justin, Phys. Rep. 70, 109 (1981).
[28] I. Balitsky and A. Yung, Nucl. Phys. B274, 475 (1986);

A. Yung, ibid B297, 47 (198.8).
[29] J. Verbaarschot, Nucl. Phys. B362, 33 (1991); B386,

236(E) (1992).
[30] I. Balitsky and A. Schafer, Nucl. Phys. B404, 639 (1993).
[31] G. 't Hooft, Phys. Rev. D 14, 3432 (1976).
[32] M. Porrati, Nucl. Phys. B847, 371 (1990).
[33] A. Mueller, Nucl. Phys. B364, 109 (1991).
[34] P. B. Arnold and M. P. Mattis, Mod. Phys. Lett. A 6,

2050 (1991).
[35] M. Hellmund and J. Kripfganz, Nucl. Phys. B373, 749

(1991).
[36] W. N. Cottingham and N. Hasan, Nucl. Phys. B392, 39

(1992).
[37] L. N. Lipatov, Zh. Eksp. Teor. Fiz. '72, 411 (1977) [Sov.

Phys. JETP 45, 216 (1977)].
[38] J. M. Cornwall, Phys. Lett. B 24$, 270 (1990).
[39] H. Goldberg, Phys. Lett. B 246, 445 (1990); H. Goldberg

and R. Rosenfeld (unpublished).
[40] M. Mattis, L. McLerran, and L. Yaffe, Phys. Rev. D 45,

4294 (1992).


