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Circular string instabilities in curved spacetime
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We investigate the connection between curved spacetime and the emergence of string instabilities, fol-

lowing the approach developed by Lousto and Sanchez for de Sitter and black hole spacetimes. We ana-

lyze the linearized equations determining the comoving physical (transverse) perturbations on circular
strings embedded in Schwarzschild, Reissner-Nordstrom, and de Sitter backgrounds. In all three cases
we find that the "radial" perturbations grow infinitely for r ~0 (ring collapse), while the "angular" per-
turbations are bounded in this limit. For r~~ we find that the perturbatioas in both physical direc-
tions (perpendicular to the string world sheet in four dimensions) blow up in the case of de Sitter space.
This confirms results recently obtained by Lousto and Sanchez who considered perturbations around the

string center of mass.

PACS number(s): 04.62.+v, 11.27.+d, 97.60.Lf

I. INTRODUCTION

The classical equations of motion for a string in curved
spacetime are generally nonintegrable due to their highly
nonlinear nature, and even if the system for some specific
background can be shown to be integrable, it may be a
very hard task to actually write down the general solu-
tion in closed form. In many cases of interest it is on the
other hand not so difficult to find special solutions. The
standard way is to make an ansatz that somehow exploits
possible symmetries of the background and somehow is
also based on physical insight in the specific case under
consideration. If properly chosen this ansatz may reduce
the original system of coupled nonlinear partial
differential equations to something simpler, and special
solutions may be found by quadratures. So, for instance,
if the background is axially symmetric one can look for
circular strings, if the background is stationary one can
look for stationary strings, etc.

A typical feature of nonlinear systems is the presence
of regions of unstable and chaotic motion, i.e., perturba-
tions around certain special solutions develop imaginary
frequencies and grow infinitely. In a recent paper Lousto
and Sanchez [1] consider such string instabilities in black
hole and de Sitter spacetimes. Their starting point was a
method of studying string solutions in curved space-
times, originally developed by de Vega and Sanchez [2].
By considering first order string perturbations around the
center of mass motion of the string (which is of course
just a geodesic), Lousto and Sanchez fully analyzed the
behavior of the solutions and found the regions of insta-
bility in the three cases of Schwarzschild, Reissner-
Nordstrom, and de Sitter backgrounds.

In this paper we will consider a somewhat similar situ-
ation. However, we wi11 take as the unperturbed string
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configuration a circular string in the same three back-
grounds, and we will in fact follow the analysis of Ref. [1]
very closely. We will use a method, developed by Frolov
and the author [3] (see also [4,5]), to study covariantly the
physical perturbations around circular strings embedded
in the curved spacetimes mentioned above.

This program is mainly motivated by the recent in-
terest in the dynamics of strings in curved backgrounds
and the study of string instabilties in curved back-
grounds: Basu, Guth, and Vilenkin [6,7] showed that cir-
cular cosinic strings may nucleate in the end of the de Sit-
ter phase of the evolution of the Universe (see also [8,9])
and thereby avoid to be inflated away from our visible
Universe. Later Vilenkin and Garriga [10] considered
small perturbations around these nucleated strings both
in the end of the de Sitter phase and after having entered
the radiation-dominated aera. The evolution of circular
cosmic strings in a radiation-dominated universe has also
been considered in [11-13].Furthermore, circular strings
have recently been discussed in the context of a more sys-
tematic investigation of string dynamics in curved space-
times [14—18], without considering perturbations around
the rings, however. Finally we mention that supercon-
ducting charge-current carrying circular strings in black
hole backgrounds have been considered in [19—21].

Our work is a natural continuation of the analysis of
Loust6 and Sanchez [1] and we hope it will give more in-
sight into the connection between curved space-times and
string instabilities. We will confirm that in some cases
(for instance de Sitter spacetime at r ~ ~ [22,23]) the in-
stabilities are really due to general features of the under-
lying curved background, while in other cases (for in-
stance Reissner-Nordstrom black hole for r ~0) they are
just artifacts of the dynamics of the special unperturbed
solution considered.

The paper is organized as follows. In Sec. II we will
derive the equation of motion for the unperturbed circu-
lar string in the Schwarzschild, Reissner-Nordstrom, and
de Sitter backgrounds. Then we use the general formal-
ism of Ref. [3] to obtain the linearized equations deter-
mining the physical (transverse) perturbations. For sim-
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plicity we will take only four-dimensional spacetimes; it is
of course trivial to include more "angular" space coordi-
nates but concerning the perturbations they will all
behave in the same way in our analysis. For both physi-
cal perturbations (one "radial" and one "angular" ) we get
Schrodinger-like equations of the form

d2 + V(r(~))f =0,
d

where f is the comoving perturbation, r (~) is the radius
of the unperturbed circular string, and the string time ~
plays the role of the spatial coordinate.

In Sec. III we analyze these equations, taking r as a pa-
rameter. From the sign of V(r) we find the regions where
we expect that the perturbations develop imaginary fre-
quencies and eventually grow infinitely, in the three back-
grounds considered. While in Sec. III we only get indica-
tions of the emergence of string instabilities, in Sec. IV
we consider the exact time evolution of the perturbations
in the regions r ~0 (ring collapse) and r ~ m. This pro-
vides a connection between the less strictly obtained re-
sults of Sec. III and the question of bounded and/or un-
bounded perturbations.

The details of our results are presented in Secs. III and
IV, and are summarized in Fig. 2. For r ~0 the pertur-
bations in the direction perpendicular to the string plane
are bounded in all three backgrounds, while the perturba-
tions in the plane of the string grow infinitely.

For r ~ 00 both physical perturbations are bounded in
the case of Schwarzschild and Reissner-Nordstrom black
holes (which is not surprising since these space-times are
asymptotically liat), but unbounded in the case of de Sit-
ter spacetime. Throughout the paper we use sign conven-
tions of Misner-Thorne-Wheeler [24] and units where
G = 1, c= 1 and the string tension (2n a') ' = 1.

II. EQUATIONS FOR THE STRING PERTURBATIONS

The classical equations of motion for the bosonic string
are in the conformal gauge given by

(2. 1)

where an overdot and prime denote derivatives with
respect to the string coordinates ~ and 0., respectively.
As usual these equations are supplemented with the two
gauge constraints

Let us first consider the unperturbed circular string. It
is obtained by the ansatz

t =t(~), r =r(r), P=o, 8=~j2, (2.4)

describing a circular string in the equatorial plane with
only one physical mode namely the radial r(~). The
equations of motion and the constraints (2.1) and (2.2)
lead to

ar.t+ ' tr' =0,
a

ar
r' — ' r' +—aa „t +ar =0,

2a 2
2—at +—+r =0.

a

(2.5)

This system of equations can alternatively be formulated
as a Hamiltonian system:

aP„——P, +—=0 .2 2

2 2a 2

We can then eliminate the cyclic coordinate t:

(2.6)

P, = —at' =const = —E, i.e. , t= —,
a

(2.7)

r' —E +ar =0 (2.8)

that is solved by

VO +
"o +E xa(x)— (2.9)

By inverting this relation for r(r) we then obtain t(r) by
integration of equation (2.7). Note also that the line ele-
ment (2.3) is now

ds =r (da dr );— (2.10)

i.e., the invariant string size is given by r (r).
We will now consider the perturbations in the two

physical directions normal to the string world sheet.
From the two tangent vectors

x"=(t,r', 0,0), x'"=(0,0, 0, 1),
we find the two normal vectors

(2.11)

where E is the "energy" of the string. The radial coordi-
nate r is then determined by

g„„x"x'"=g„(x"x"+x'"x'")=0 . (2.2)

In this paper we will consider perturbations around a cir-
cular string configuration embedded in Schwarzschild,
Reissner-Nordstrom, and de Sitter spacetimes. In static
coordinates these spacetimes are all special cases of the
line element,

n~z= 0,0, —,0, n
~

=,—,0,0
1 r ta'r' '

~ ar' r'
L

satisfying the equations

gpvnÃx ~ =0 gi.vnA "s=As .

(2.12)

(2.13)

drds2= —a(r)dt2+ +r d8 +r sin ed/, (2.3)a(r)
so in the first place we will keep a (r) as an arbitrary func-
tion. The components of the Christoffel symbol and of
the Riemann tensor (that we will need later) correspond-
ing to the metric (2.3) are listed in the Appendix. 5x"=n[~6x~|+n~i5xi, (2.14)

Here (R,S) takes the values "~i" and "l"and A =(r,a).
Obviously n~i is perpendicular to the string plane (that is
equal to the equatorial plane) while n&~~ is in the string
plane. The general physical perturbation can then be ex-
pressed as
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where 5x~~ and 5x~ are the comoving perturbations, i.e.,
the perturbations as seen by an observer traveling with

the unperturbed circular string. In the following we will

call these perturbations for the angular perturbation
(5x~) and the radial perturbation (5x~~ ), respectively.

According to the general covariant analysis of physical
perturbations propagating along strings in curved space-
times, carried out by Frolov and the author [3], the per-

turbations are determined by the matrix equation

05xR+2pRs (5x ) „+(VAVRS

ART I s A5x + c +R +s, AR5x
A T S 2 AB S

G c
—&" x"Ax'RR„„ngns5x =0 . (2.15)

Here h AR and 6AR are the intrinsic and induced metric,
respectively, while QR AR and pRs „are the second fun-
damental form and normal fundamental form [25], re-
spectively:

n =+co

5x~ = g C„q(r)e

(2.24)

c„ ( }
-'

~I

and the tilde denotes a
summation for InI&0, 1 only. The zero modes and the
InI=1 modes are excluded from the summations since
they do not correspond to "real" perturbations on a cir-
cular string [10]. They describe spacetime translations
and rotations that do not change the shape of the string.
They therefore correspond to simply "jumping" from one
unperturbed circular string to another unperturbed circu-
lar string. We are then left with the two equations
(InI ~2):

C~+ n +a —1+—a, C~=O,
t

QR AR =gp„ngx A Vp

pRs, A =& nÃx, A Vt ns

(2.16)

(2.17)
r 2 r E2

C + n + -a +—a —2 C =0.
nII 2 «2 " 2 nilr

(2.25)

1 a„(&—~ ~ A'5, ), (2.18)

VApRs =8 p s +PRAp s, etc .A A A B (2.19)

where V is the spacetime covariant derivative. C} and

VA are the world-sheet d'Alambertian and covariant
derivative, respectively:

Until now we have kept the function a in the line element
(2.3) as an arbitrary function of r. As announced in the
abstract we will, however, only consider the three cases
of Schwarzschild, Reissner-Nordstrom, and de Sitter
backgrounds. These spacetimes are essentially the scalar
curvature fiat cases of (2.3) since, from the Appendix, the
condition R =const =K is

Finally R„,represents the spacetime Riemann tensor.
This extremely complicated system of two coupled

linear second-order partial differential equations for-
tunately simplifies enormously for the special cases con-
sidered here. One can show that all components of the
normal fundamental form vanish, while the only nonvan-
ishing components of the second fundamental form are

=2 a y
R = (1—a) —4 ' —a,„=K,

r

that is integrated to

a (r) =1+—+ — r
a p K 2

r r2 12

(2.26)

(2.27}

(2.20)

rh" x"Ax'RR„„n~~n~ =a —1+—a „, (2.21)

The nonvanishing components of the relevant projections
of the Riemann tensor become

where a and p are constants. This expression covers the
cosmologically and gravitationally interesting cases of de
Sitter (a=P=O, K =12H ), Schwarzschild (P=K =0,
a = —2M) as well as Reissner-Nordstrom (K=0,
a= —2M, p=g2) spacetimes. In these cases (2.25) leads
to

rx Ax RR „nIinii
= (ra „+a„) . (2.22) C + n+ — ——r C =0,~ ~ a K 2

nl 2 6

F1~ally the d'Alambertian reduces to (conformal gauge)
I-j=B —8, and 6 A

A
=h "

GAB =2r . The original sys-
tem (2.15) now decouples and leads to the two equations

2

CII+ n + +2
~ ~

2 a p E K 2

2r r2 r 6

(2.28)

(az —a2)5x —a —1+—a „5x =0,r

(2.23)
2 2 E r2 2

(8 —8 )5x + 2 — a ——a 5x =0.r
r 2 2 2 ~ II

and r (r) is determined by (2.9}:

7 70 + dx
'o [(K/12)x x ax +(E——P—)]'~

(2.29}

These equations can further be reduced to ordinary
differential equations by Fourier transforming the comov-
ing perturbations:

For K=O (the black hole cases) r(r) is then a tri-
gonometric function, while for KWO (de Sitter case) it is
generally, but not always, elliptic.
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III. ANALYSIS OF STRING PERTURBATIONS

In this section we analyze the equations for the pertur-
bations (2.28) taking r as the parameter. Both equations
are Schrodinger-like equations of the form f+ V ( r)f=0,
and we will then say that the solutions are oscillatory in
time r if V(r) is positive but nonoscillatory in time r, de-

veloping imaginary frequencies, if V(r) is negative. We
are using the words oscillatory and nonoscillatory in a
weak (and sloppy) sense, that should not be confused with
the more strict use of the words in the mathematical
literature, where (say) oscillatory behavior usually means
that a function has infinitely many zeroes. Note also that
there is no simple one-to-one correspondence between os-
cillatory (nonoscillatory) and boundedness (unbounded-
ness) of the solutions. This can for instance be seen from
the simple example

~ ~f+ f =0.
4w

In this case we mould say that the solutions are oscillato-
ry on the positive half axis, but the general solution

f (r) = & &r+B&rlnr,

is in fact neither oscillatory in the strict mathematical
sense nor is bounded. In Sec. IV we will see, however,
that in most of the cases considered here nonoscillatory
behavior of the perturbations, developing imaginary fre-
quencies, will actually lead to unbounded solutions, indi-
cating that the underlying unperturbed string
configuration is unstable, in agreement with the string in-
stability characterization given by Lousto and Sanchez

It should be stressed also that we are still only talking
about the evolution of the comoving string perturbations.
The transformation to the perturbations as seen by an ob-
server at rest is a highly nontrivial problem, that to our
knowledge has only been done in the case of Hat Min-
kowski space [10]. In this paper we consider curved
spacetimes where everything is of course somewhat more
complicated.

Let us now consider the perturbations in the three
cases.

collapse from the maximal radius; this somehow resem-
bles the radial infall of a point particle. The collapse into
the Schwarzschild singularity of course takes infinite
coordinate time. This can be explicitly seen by integrat-
ing (2.7) outside the horizon:

I

tan( r/2) +5
tan(~/2) —5 (3.2)

~ ~ M
C„~+ n — C„q=0,

~ ~ M E2

C + n — —2 C =0.
nil r 2 &II

(3.3)

According to the discussion at the beginning of Sec. III
5xi is oscillatory in time for r & M/4, i.e., the first mode

(~n~ =2) becomes nonoscillatory at r =M/4. The higher
modes become nonoscillatory for smaller and smaller r
and for r=O 5xi is extremely nonoscillatory (nonoscilla-
tory for all modes). 5x

~~

is oscillatory in time for
r & (M+)/M +32E )/8 and the picture is then similar
to 5x

~
for smaller and smaller r Note . that

(M+'t/M +32E )/8&r, „=M++M +E so that
both 5xi and 5x~~ are oscillatory when the string is near
its maximal size. 5xi is also oscillatory at the horizon
r =2M while 5x~~ is oscillatory (nonoscillatory) at the
horizon for E &7M (E &7M ).

where 5=(+M +E M)—/E. It follows that t(0)=0
and t [arccos(M/+M +E )]=~. We note in passing
that the expression (3.2) is remarkably simple as com-
pared to the corresponding relation for the radial infall of
a point particle; see for instance Ref. [24]. From the
physical point of view we are mostly interested in the cir-
cular string and its perturbations outside the horizon, but
considering our whole analysis as a stability analysis of
some special solutions to some nonlinear differential
equations, there is no reason not to continue the solutions
a11 the way through the horizon into the singularity at
r=0.

The equations determining the modes of 6x~ and 5x
l~,

respectively, are

A. Schwarzschild black hole

In this case the unperturbed string solution is (2.29):

r(r)=M++M +E cosr; (3.1)

i e., the string has its maximal radius r
=M + )/M +E at v =0. It then contracts through the
horizon rh„=2M for

r=arccos(M /i/M +E ) E ]0,vr /2 [,

and eventually fails into the singularity r =0 for

r=arccos( M/i/(M +E )G]—m/2, m[ .

Mathematically speaking it of course continues oscillat-
ing but for our purposes we only consider the process of

B. Reissner-Nordstrom black hole

In this case the unperturbed string solution is (2.29),

r(r)=M++M +E Qcosr; M —&Q (3.4)

and we now have to distinguish between two different
cases namely E & Q and E & Q .

(i) E & Q . The string has its maximal radius
r,„=M++M +E2 Q for r=O. It—first contracts
through the horizon r ~ =M ++M —Q for
r=arccos( t/M Q /i/M +E —Q—) H ]O, m/2[ and
then through the inner horizon r =M —i/M —Q for
r=arccos( +M Q I(/M +—E Q—) E ]~/2, ~[. —
eventually falls into the Reissner-Nordstrom singularity
r=O for w=arccos( —M/i/M +E —Q )C ]~/2, rl'].

(ji) E~ & Q2. The dynamics of the unperturbed string is
similar to case (i) all the way from r,„ through the two
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horizons, but in this case the string reaches a minimal
size r;„=M '—)/M +E Q

—& 0 for ~=a
The equations determining the modes of 5xi and 5xl,

respectively, are

C„l+ n ——+ (Q —E ) C„I=0.
r

(3.5)

Formally the C„i equation is identical to the C„i equation
in the Schwarzschild case, but one should remember that
in this case the charge of course is present through the
expression for r (r).

We now find that 5xi is oscillatory for r &M/4, i.e.,
the first mode ( ~

n
~

=2) becomes nonoscillatory at
r =M/4. The higher modes become nonoscillatory for
smaller r and for r~0 5xi is extremely nonoscillatory.
At first sight this seems to be similar to the
Schwarzschild case, but we should take into account that
the dynamics of the unperturbed circular string is very
different here: string (i) is oscillatory at the maximal ra-
dius and near the horizon. Near the inner horizon
it is oscillatory (nonoscillatory) for Q & 7M /16
(Q &7M /16). For string (ii) the discussion is similar
from the maximal radius through the two horizons.
However, string (ii) has a minimal radius and it follows
that if Q —E & 7M /16 then it is actually always oscil-
latory (since M/4 & r;„).

For the radial perturbations it turns out that
the situation is quite complicated. We find that the first
mode ( ~n~ =2) is oscillatory outside the inter-
val ]M/8 —[M /64 —(Q —E )/2]'/, M/8+[M /64—(Q —E )/2]'~ [. The higher modes are oscillatory
outside smaller and smaller subintervals. It follows that
5x1 is always oscillatory near the maximal radius, and for
Qi —Ei&M2/32 [this is only possible for string (ii)] it is
oscillatory for all r. The exact location of the nonoscilla-
tory interval as compared to the two horizons and to r;„
(for E & Q ) is very complicated since we have two pa-
rameters (E and Q ) to play with, so almost all situa-
tions are possible. The result is most easily visualized by
Fig. 1 accompanied by the following comments.

In region (il) we have E & Q and 5xi is nonoscillato-
ry at the (outer) horizon and all the w~ay towards the
singularity r=0.

In region (i2) we have E & Q and 5x~~ is oscillatory at
the horizon but becomes nonoscillatory before the inner
horizon, from which it is nonoscillatory all the way to-
wards the singularity r =0.

In region (i3) we have E & Q and 5x~~ is oscillatory at
both horizons but becomes nonosciljatory for r ~0.

In (ii1) we have —M /32 & E —Q & 0. In this narrow
band (represented by a thick line in Fig. 1) 5xi is oscilla-
tory at the horizon and near the minimal radius, but
there is a nonoscillatory region between the horizon and
~min

In (ii2) we have E Q& —M /32 and the str—ing is
oscillatory for aH r, so that is a very interesting region.

0.2 0.4
I

0.6 0.8

(ii2)

FIG. 1. The location of the critical radius where the nonos-

cillatory behavior sets in for the ~n~=2 mode in the case of
Reissner-Nordstrom black hole. The details of this 6gure are
explained at the end of Sec. III B. Note that we only consider
Q'& M'.

C„i+(n 2H r )C„i=—O,

E2
C + n —2H r —2 C =0

~ll r n)~

(3.6)

Let us consider the three configurations described above
one by one.

(i) 5xi is oscillatory for r &2/H; i.e., it is always
oscillatory since r,„&2/H On the oth.er hand we
find that 5x „ is oscillatory in the interval
r E](1—V 1 EH )/H, (1+—Vl EH )/H [; i.c., —
the first mode (~n~=2) becomes nonoscillatory at the
boundaries of this interval. The higher modes are oscilla-
tory in larger and larger intervals containing the above
interval. Note that (1++1 EiH )!H &r,„—
& (1—+1—E H )/H so that 5xi is always oscillatory
when the string has its maximal size. On the other hand
5x~~ is extremely nonoscillatory for ~ ~0.

(ii) The critical string radii are the sanM as in case (0,
but the dynamics of the unperturbed string is completely
diferent. %'e have that r;„&2/H so that 5x~ is oscil-

C. de Sitter syaeetime

In this case r(w) is in general given by a Weierstrass el-
liptic function. The detailed dynamics of unperturbed
circular strings has been discussed elsewhere
[6,8,15,16,18] so we shall not go into it here. We will
consider only the following three types of solutions,
whose existence is clear from (2.8) when a = 1 Hr . —

(i) For 4H E «1 there is a solution starting with a
maximal radius r,„=(1—+1 4H E )/2—H and then
collapsing to r=0. It is always inside the horizon
ri„=1 /H.

(ii) Still for 4H2E2 & 1 there is another solution starting
with a minimal radius r;„=(1++1 4H E )/2H —and
then expanding through the horizon towards infinity.

(iii) For 4H E & 1 there is a solution starting at r=O
and then expanding through the horizon towards infinity.

The equations for the modes of 5xi and 5xi, respec-
tively, are
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C„i+(n 1)c„i=0—,

C„~~ + ( —
2)C„~~=0 .

(3.7)

So, as already stated in [3], we get instabilities for the
~
n

~

= 1 modes (and for the zero modes). However, as ex-
plained after Eq (2.24.), we do not consider these modes
as "real" perturbations [10] since they just correspond to
"jumping" from one unperturbed string to another one,
without changing shape. It may be a matter of taste
whether or not to include the ~n~

= 1 modes, but in any
case we get the somewhat surprising result that the sta-
tionary circular string solution in de Sitter spacetime is
actually stable against "real" perturbations where

~
n~ ~ 2.

This concludes our investigations of oscillatory and
nonoscillatory (in the weak sense considered here)
behavior of the comoving perturbations around a circular
string in the three backgrounds of Schwarzschild,
Reissner-Nordstrom, and de Sitter spacetimes. In the
next section we will relate some of these results to the
question of bounded or unbounded comoving perturba-
tions.

latory at r;„and at the horizon, but it is nonoscillatory
from r =2/H towards infinity. For 5x~~ the picture is
more or less the same. %e find that
(1++1 E2H2)/H2) r2 ) r2 ) (1 Ql E2H2)/H2
so that 6m~i is oscillatory at r,„and at the horizon, but it
is nonoscillatory from r =(1+Pl E—H )/H towards
infinity. Note that the nonoscillatory behavior of 5x

~~

sets
in a little before 6x~, but in both cases it is outside the
horizon, and of course for higher and higher modes the
nonoscillatory behavior sets in for larger and larger r.

(iii) Again the critical radii are the same as in the other
two cases. 5x~ is oscillatory from r=0 through the hor-
izon to r =2/H where the first ( ~

n
~

=2) nonoscillatory
behavior sets in. It is then nonoscillatory all the way to-
wards infinity. The higher modes become nonoscillatory
for larger r. Finally 5x~ is oscillatory in the interval
r E](1—+1 EH —)/H, (1++1 EH —)/H [ sur-
rounding the horizon, but it is extremely nonoscillatory
for both r ~0 and r ~~.

In de Sitter space there is also a stationary circular
string solution [3,15,16]. From (2.8) follows that it is de-
scribed by 4E H =1, 2H p =1. The, stability of this
solution was already considered in [3] in a different
gauge, so let us restate the result here. The equations for
the modes of 5xi and 5x

~~,
respectively, are (3.6):

energy) we have Minkowski space, where the perturba-
tions are obviously bounded; they are just ordinary plane
waves. For de Sitter spacetime, on the other hand, we
can get unbounded perturbations for both r ~0 and
f —+ OO.

In all cases it will turn out that the behavior of the per-
turbations in the asymptotic regions corresponds to
different cases of the motion of a particle in the potential
a(r ro—) ~ [1,26,27], in the sense that they are described
by a stationary Schrodinger equation with ~ playing the
role of the spatial parameter. It is an elementary obser-
vation that if a & 0 and P ~ 2 there are singular solutions
for 7~GO. Therefore, as soon as we have obtained the
potential with the two parameters a and P we can con-
clude whether the perturbations blow up, indicating that
the underlying circular string is unstable. For complete-
ness we will, however, give the full solutions in the
asymptotic regions, demonstrating explicitly if and how
the perturbations blow up.

r (r) = IEI(ro —r), (4.1)

and the two equations determining the perturbations (3.3)
become approximately

C — M

(4.2)
~ ~

~ll 2 nil(ro —r}

Let us first consider the perturbations in the angular
direction (the C„i s}. Keeping in mind that 7 p r is posi-
tive in the relevant range of ~ we find the two real in-
dependent solutions in terms of Bessel functions [28]:

f =gro rJi(2&M/—~E~/ro r), —

g =Qr, rX, (2&M/—~E~+r, ~) .
(4.3)

The most interesting feature of these solutions is that
they are actually bounded [28]:

f &M /IE I (ro r), g — &—I El /M, r —ro .
1

A. Schwarzschild black hole

In this case we have r(r)=M+')/M +E cosr with
r +0 corre—sponding to r~ro ——arccos( M/+M—+E )

from below (cf. Sec. III A). For r~0 we then have ap-
proximately

IV. TIME-EVOLUTION AND ASYMPTOTIC BEHAVIOR

In this section we address the question of bounded or
unbounded comoving perturbations by considering the
time evolution of some of the solutions found in Sec. III;
i.e., we now take ~ as the parameter. It is clear from the
general equations determining the perturbations (2.28)
that we can only expect unbounded behavior of the solu-
tions in the 2 regions r ~0 and r ~ ao, so we will restrict
ourselves by considering the solutions in these regions
only. It is also clear that in the two cases of black holes
we need only consider r ~0 since for r ~~ (that can of
course only be obtained for E ~~, i.e., infinite string

(4.4)

This therefore provides an example where the solutions
were classified as nonoscillatory (according to Sec. III A),
but where the actual time evolution demonstrates that
the solutions are bounded, and they are in fact oscillatory
in the strict mathematical sense of having infinitely many
zeros. This is, however, an exceptional case; in the other
cases under consideration here we will find that nonoscil-
latory behavior at r~0 or r~~ leads to unbounded
solutions.

For the perturbations in the radial direction (the C„i's)
we find the complete solution
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C„(r)=a„(ro—r) + (4.5)
~ 0 2
C~i 2 C~j. 0 ~

(ro —r)
(4.13)

where a„and P„are arbitrary constants. This solution is
indeed unbounded for 7 ~7p.

s ~

C~ll 2 &II(ro —r)

B. Reissner-Nordstrom black hole

Here we only consider the case where E ~Q to en-
sure that we have solutions collapsing to r=0.
Then the unperturbed string is determined by
r(r)=M++M +E O—cosr and r~0 corresponds to
r +ra —=arccos( M /+—M +E Q)—from below (cf.
Sec. III B). The approximate solution for r ~0 is then

It follows that they both blow up in exactly the same way
as C„i(r) blows up at r ~0 in the Schwarzschild case;
compare with (4.2) and (4.5).

In the region r +0—(considering now the unperturbed
strings (i) and (ii) of Sec. IIIC) we find from (2.8) the
asymptotic behavior r' =E . For a collapsing string
(i ~ 0}this leads to

r (r) = IEI(ro —r), (4.14)

and

r(r)=+E Q(r—o r), —E )Q2

Mr(r)= (ro —r) E =Q2 .p

(4.6)

(4.7)

for some constant vp, and r~0 corresponds to 7 'Tp

from below. The two equations determining the pertur-
bations (3.6) in this limit become

C„~+n C„~=O,
The two equations determining the perturbations (3.5) be-
come

~ ~ 2

( )2

(4.15}

E —Q~(ro —r)
(4.8) Obviously C„t(r) is finite while C„i(r) blows up in the

same way as for r +cc. —

C„~~
— C„=O, E )Q(r r)— (4.9)

V. CONCLUSION

and

~ ~ 2C — C =0 E =Qea
( p

nR
7 p T

(4.10)

Eauation (4.8) is solved by (4.3) with IEI replaced by
~E —Q, and the solution is bounded. Equations (4.9)
and (4.10) are solved in the form (4.5), so the solutions
blow up for r~ro. Notice that for E =Q the perturba-
tions in the two physical directions are determined by ex-
actly the same equation.

C. de Sitter spacetime

Finally, we come to the de Sitter case, and we first con-
sider the asymptotic region r~ao, i.e., we consider the
strings (ii) and (iii) of Sec. III C. The asymptotic behavior
of the unperturbed string is most easily found directly
from the equation of motion (2.8). For a =1 Hr and-
r —+00 we find

In conclusion we have studied the comoving perturba-
tions around circular strings embedded in the curved
spacetimes of Schwarzschild, Reissner-Nordstrom, and
de Sitter backgrounds. The results of our analysis are
summarized in Fig. 2, the details are presented in Secs.
III and IV. The main conclusions were already drawn in
the Introduction but let us say a few more words here.
Our results for the perturbations on the circular strings
in de Sitter spacetime in the asymptotic region r~ ~
confirm the results of Lousto and Sanchez [1] and also
the results of Gasperini, Sinchez, and Veneziano [22,23]
for highly unstable strings. For the black holes we get
the same results as Lousto and Sanchez in the
Schwarzschild case, while in the Reissner-Nordstrom
case the results are different for the angular perturba-
tions. This is, however, a "normal" situation; some spe-
cial solutions of a nonlinear differential equation are
stable and some are unstable. In this sense the de Sitter
spacetime at r~ 00 provides an exceptional case.

r' —Hr =0,
so that, for an expanding solution (r ~ 0),

Ir(r)=
H(ro —r)

(4.11)

(4.12)

I
Region

I
Mode

I
Schwarsschild

I
Reissner-Nordstrom

I
de Sitter

r ~ 0 biz bounded bounded bounded
r —+ 0 ba]t unbounded unbounded unbounded
r ~ oo bc~ bounded bounded unbounded

oo bz~] bounded bounded unbounded

for some constant 7p and r~ao corresponds to 7~7p
from below. The two equations determining the pertur-
bations (3.6) become

FIG. 2. This diagram summarizes the results obtained in this
paper. 5x~ and 5x~~ corresponds to the comoving angular and
radial perturbations, respectively.
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—a,
2a

1I" =—aatt 2, r

1I &&=
—ar sin 0, I ~&„=—

a„PI I J
tr ~ ~ rr2a

I &= —ar,

The Riemann tensor is

I &z=cotO, I &,
=—, I &&=

—sinOcosO .
r

(A2)

APPENDIX

In this Appendix we give the explicit expressions for
the nonvanishing components of the Christoffel symbol
and Riemann tensor corresponding to the line element
(2.3).

The metric is

=1g«= —a, g„„=—,gs&=r, g&&=r sin 8, a =a(r) .a'

The Christoffel symbol is

2
Rrtrt a, rr& Rror8 r R rprp a rsin 8,

2a 2a
2R«tz= —aa „R««=—aa „sin 0,

Re&a&
=r'( I —a)sin 8 .

The Ricci tensor is

R&& =sin 8R&s=(1 —a ra „)sin 8—.

Finally the scalar curvature is

2 4R= —a +—(1—a) ——a
, rr r

(A3)

(A4)

(A5)
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