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Geometric gauge fields, particle production, and time
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The geometric magnetic- and electric-type fields are shown to have nontrivial effects in the form of
semiclassical back reactions from quantized matter fields on the adiabatically evolving classical back-

ground geometry. As a consequence of the gauge invariance of the induced reaction forces it then fol-

lows that the matter vacuum polarization in a space-time emerging out from a flat simply connected su-

perspace does not have a gravitational effect. However, the vacuum instability and the associated parti-
cle production do have a nonzero back reaction which gets encoded in the electric scalar potential. The
relationship between the standard semiclassical definition of time and the existence of a nontrivial Berry
phase is also explored. This offers an interesting constraint on the initial quantum state of the Universe.
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The study of the geometric gauge fields induced by a
light quantum system on a relatively heavy (quasi) classi-
cal system has drawn much attention [l —5] recently. The
induced gauge fields have their origin in the nontrivial
geometric phase acquired by the light system for a paral-
lel transport of the corresponding quantum state along a
curve in the projective Hilbert space. The geometric
forces generated by the induced gauge fields were shown

[2] to have physically realizable effects on the heavy
(quasi) classical system.

Some applications of the geometric magnetic-type field
in the minisuperspace cosmology were studied in Refs.
[4,5]. For a nondegenerate matter energy state the back
reaction in the gravitational sector was shown to be
determined by the corresponding U(l) adiabatic Berry
connection. This involved a semiclassical reduction of
the Wheeler-DeWitt (WD) equation of a fully quantized
gravity-matter system. It was also shown how, for a non-
cyclic evolution, the total particle production rate was
determined by the relative phase between the in and out
(matter) vacua, i.e., the Pancharatnam phase [5]. The
semiclassical Einstein's equations with back reaction
were also obtained in this more general case. The in-
duced electric-type field, being negligible under an adia-
baticity condition, was, however, not considered in the
above discussion. Recently, Berry and Robbins [2] also
discussed the e8'ects of such gauge reaction forces in
some solvable classical models. The general framework
of these studies is the following.

Let us consider an interacting system described by the
Hamiltonian (density} of the form

H(g, q)= G'JP, P +MV(Q)+h(q, g) .1

Here G;. is a metric in the con6guration .space of the
quasiclassical system Q, and P denotes the corresponding
conjugate momentum, h(q, g} is the fast Hamiltonian
coupling the quantum (field} variables q to the slow
quasiclassical system. We assume that the mass scale m
of the q system is much less than that of the Q system:

m ((M. Thus m/M may be treated as an adiabatic pa-
rameter for the coupled system (l). We also use the sum-
mation convention.

Now an application of an improved Born-
Oppenheimer-type adiabatic approximation shows that
the heavy Q variables are governed by the effective Ham-
iltonian

H, tt(Q, P)= G't(P; —A;)(PJ —AJ)

+MV(g)+Eso(g)+$(g) . (2)

The back reactions of the q system are encoded here in
the form of the magnetic vector potential A; and the
electric scalar potential P, apart from the usual Born-
Oppenheimer scalar potential [2] Eso =E„(g), the ener-

gy eigenvalue of the normalized eigenstate ~n(g) & of the
q system. The gauge invariant form of the potentials are
given by

magnetic field: B; =t};A —t} A, ,

electric field: E, = t},$,$=G'—tg, .

where

A,

= itirn&~a, n&

and

g,,= i}t'&t},n[(l —(n && ln)l ,t}&n.
1

(4)

(5)

Thus the gauge fields are completely determined by the
geometry of the Q-configuration space and the q-energy
state. Furthermore, the quantities B; and g;. which
influence the Q dynamics also have significance in the q-
quantum system: B;- is the "magnetic monopole" two-
form, whose flux through a Q cycle gives the nonin-
tegrable geometric phase and g;. is a metric governing the
separation of the quantum states in the space. Finally,
A; denotes the adiabatic connection one-form. The im-
proved Born-Oppenheimer technique is expected to yield
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a more accurate description of the Q system [1,2].
Two remarks are in order here.
(i} The Born-Oppenheimer potential is given by the en-

ergy eigenvalue E„(Q). However, in the semiclassical
reduction of the WD equation, time is defined as an affine
parameter of the integral curves of the vector field nor-
mal to the level surfaces of the Hamilton-Jacobi function
in the gravitational sector of the superspace. Thus the
concept of time is closely related to the emergence of the
adiabatic Berry connection A; (further clarifications will

be discussed later). The Born-Oppenheimer potential, in
this case, is shown [4] to be determined by the Berry con-
nection itself. Thus, in a gravity-matter system, the back
reaction of the quantum matter fields is totally deter-
mined by the induced gauge connection (fields).

(ii) Equation (2) is obtained under the adiabatic as-

sumption that there are no transitions between energy
states of the q system. However, the electric field contri-
bution actually belongs to a higher order approximation
because it arises due to the quantum fluctuations of the q
state over an energy eigenstate. This is the reason that
we have not considered this effect in Refs. [4,5].

In this paper, however, we show that the induced elec-
tric field does have nontrivial effects in semiclassical
cosmology, e.g., in the vacuum instability and the related
particle production issue. In fact, we obtain the semiclas-
sical back-reaction equation in a more general form, indi-
cating clearly the role played by the various gauge contri-
butions. The present discussion also clarifies the exact
forms of both effects due to the vacuum polarization and
the particle production due to an instability in the back-
reaction formula.

The issue of time in quantum gravity is still being de-
bated enthusiastically in the literature. The recent dis-
cussions of Kiefer and Barbour [6] have made it clear
that the method of defining time via a semiclassical
reduction of the WD equation [3—5] is not fully justified.
The semiclassical recovery of time demands using, for the
semiclassical gravitational wave function, a single com-
ponent complex WKB state -=exp(is/vari), S real (strictly
with a negligible imaginary part), the justification of
which is missing in the standard semiclassical analysis.
We will, however, show that the proximity of the
definition of time and the existence of a nontrivial adia-
batic phase provides a rationa1e for the choice of the re-
quired complex WKB wave function.

Cosmologica/ particle production The WD equ. ation in

quantum cosmology has exactly the form (1) with the
identifications Q; h,„,P, i%a/ah, „,—and G,, ~G;,«,
where h,-. denotes the three-metric in the geomtrodynarn-
ic configuration space of compact three-geometries, I',
the associated conjugate momenta, G; k& the superspace
metric, and V=h '~ (R —2A). Furthermore, h =det(h, "},
R the scalar curvature for the three-geometry, A denotes
a possible positive cosmological constant, and q stands
for the matter fields. Here M corresponds to the Planck
mass and we use the obvious double-indexed notation.
Henceforth, H denotes the matter Hamiltonian.

Following the analysis of Refs. [3—5], the effective
semiclassical Einstein equations (in fact, the Hamiltonian
constraint) [7] with back reactions are obtained in the

form

G'J(I'; R—&; )(P f—W )+MV+
2M ' ' J ' &xlx)

Gv
2M

C} +i A, y)
1

&xlx&

+i A,

(6)

Here the right-hand side (RHS) corresponds to the
electric-type scalar potential P(Q). It relates to the quan-
tum fluctuations about the given matter state IX) and is
expected to be small. Further, the Berry connection A is
given here by

y= f A' '
+P(Q) dt .

. dQ;
(9)

Thus the vacuum energy aside, the effective action deter-
mines the total back reaction from the matter states as a
sum of the Berry phase and of an integral of the electric
scalar potential. The higher order contribution of the
electric type arises from the inclusion of the next to the
lowest adiabatic approximation allowing for one inter-
mediate transition to another eigenstate and then subse-
quently returning to the original eigenstate. The zeroth-
order Berry phase correction comes from the states with
the same quantum numbers.

The parameter time t in Eq. (9) is defined intrinsically
by the relationd, , as a Q,, as

(10)
dt aQ, aQ dt aQ,

where the real function S(Q) is given by the WKB gravi-
tational state —=exp( —is/A'). Finally the matter eigen-
state is described by the curved space functional
Schrodinger equation

As stated already, we restrict the present discussion,
for definiteness, to the vacuum sector of the functional
Schrodinger Eq. (11). Although the definition of a vacu-
um state functional is rather tricky in a curved back-
ground [9], however, we assume the existence of a suit-
able (nondegenerate) vacuum state, which should be com-
patible with one appearing in the standard description of
the inflationary cosmological models based on a finite
vacuum energy. The possibility of a degenerate state is
considered elsewhere [10]. We note, incidentally, that the

&xlx&
(7)

Note that the matter (vacuum) wave function(al) IX) is
chosen in such a way that after a complete circuit in the
parameter Q space, the final vacuum functional IXI)
comes back to the initial one, but with a phase shift,

lx &/=e "Ix&;, (8)

where y is the correction to the effective gravitational ac-
tion [8]:
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basic set of equations in an inffationary model are the
seiniclassical Einstein equations, a systematic and con-
sistent recovery of which is, however, the main concern
in this paper.

Now, as a consequence of Eqs. (10) and (11), one has
the relation [4,5]

A, =A, „, =-~-'&xlH. lx&«xlx&
I

= —e-'(II &. (12)

We note that S is a solution of the Hamiltonian-Jacobi
equation corresponding to the source-free classical equa-
tion, i e , . t.he correspondence limit of Eq. (4) with
A =/=0. It thus follows that the average energy from
the matter state which acts as the Born-Oppenheimer po-
tential in the effective Einstein s equations gets complete-
ly determined by the Berry connection. We also note
that in the presence of a vacuum instability, the vacuum
energy gets a small imaginary part: (H ) =Eo+iI
The real part Eo denotes the (nonzero) energy due to the
vacuum polarization. The imaginary part I, on the other
hand, gives the total particle production rate. The Berry
phase thus has two components: (i) one due to the vacu-
um polarization and (ii) one due to the particle produc-
tion, viz. ,

3 B Vv+XP (13)

where the vacuum polarization component y r is given by
the real time integral

y„=—iil
' I Eodt (14)

l

and the component from the particle production yz is

given by the imaginary (Euclidean) time integral [5]
fyp= —iri

' rd~, ~=it .
l

We note that although the Berry phase from the particle
production effect can be made real by integrating along a
path parametrized by the imaginary time, the corre-
sponding Berry connection (7) will in general be complex.
However, by a suitable gauge transformation, the Berry
connection Ar for the particle production can be made
to vanish [cf. Eq. (31}in Ref. [5]] in the required span of
the real time evolution of the matter fields in the back-
ground of a slowly varying gravitational field. The final
form of Einstein's equation with back reactions is thus
obtained in the form

&xlH. lx&
G'J(P; fiA; )(P fiA. )+M—V—+Re

&xlx&

,. &xl(~;+ A )(~, + A,') lx &

&xlx&

where A denotes the Berry connection from vacuum
polarization. The imaginary part of the energy expecta-
tion value is neglected because of its exponential small-
ness in the adiabatic approximation. We remark, howev-
er, that the electric type-potential in the RHS of Eq. (16},
although of a higher O(iil /2M) correction, becomes
significant in the region when the gravitational super-

space becomes simply connected and fiat. Indeed, for a
simply connected, fiat superspace (where a Lorentzian
space-time can be realized) the Berry phase is trivial and
hence the Berry connection A can be gauged away. It
thus follows, in view of Eq. (12), that the vacuum polar-
ization cannot produce a genuine gravitational effect. In
other words, the vacuum polarization in a space-time em-
erging from a simply connected fiat superspace cannot
gravitate. Thus in most of the homogeneous models one
does not expect the vacuum polarization to generate a
reasonable back reaction (the situation might consider-
ably alter when the matter Fock vacuum is prepared in a
fiat space-time with a nontrivial boundary surface/event
horizon, e.g., the case of a moving mirror). However, the
time-varying gravitational background is expected to in-

duce an instability in the matter vacuum. The back reac-
tion of the gravitational field due to the created particles
should have a finite contribution in the form of the RHS
in Eq. (16). In the presence of a nontrivial vacuum polar-
ization the effect of the instability will however be negli-
gible.

As an application of the above results, let us consider
the simplest one-dimensional de Sitter minisuperspace
with a scale scale factor a. Since the topology of the min-

isuperspace is trivial, 3 =0. However, the electric-type
potential is given by

, (x
*,

xI

2M &xlx)

„(r/s)+ ' (r/s }2, s =ds,
2M da 2M '

da

(17)

where I is the total particle production rate in a de Sitter
vacuum and S ls the de Sitter action. By a choice of a
suitable gauge, the vacuum energy is made to vanish [cf.
Eq. (12)]. The electric contribution (17), although small,
indeed plays a significant role in determining the back re-
action from the produced particles. This point was over-
looked in Ref. [5]. Note that the ratio r/S' is finite al-
though I is exponentially small. [The change in action,
S', is O(I ). ] Thus the back reaction (17) is consistent
with the approximations involved in obtaining Eq. (16).

Time. In the standard canonical geometrodynamic
formalism, "time'* is recovered from the full WD equa-
tion at a semiclassical regime where the pure gravitation-
al wave function is assumed to be approximated by a
WKB-type state =—exp( iSs/A) H—ere S d. enotes the
source-free gravitational action. The WKB gravitational
state happens to be single component and complex (Ss
real). For a superposition of the WKB states of the form
A exp(iSs/fi)+B exp( isslfi), the d—efinition of time,
Eq. (10), breaks down, indicating the special status of the
choice of the single component, complex WKB state in
recovering the semiclassical time. No justification is,
however, ofFered for this special choice. The problem is
all the more serious [6] once we note that the WD equa-
tion is real. Stated in other words, a dynamical principle
needs to be invoked in selecting a very special complex
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wave function from a real WD equation.
From the discussion in the earlier paragraphs it turns

out that the effective WD equation is essentially complex
due to the adiabatic gauge coupling of matter to the grav-
itational modes. Further the definition of time is con-
trolled by the appearance of a nontrivial Berry connec-
tion. Indeed, in the case of a trivial gauge coupling, Eq.
(12) gives a constraint on the matter eigenstates, viz. ,

H ~y)=0. (18)

This is however unphysical in the sense that the concept
of time disappears even in the ordinary matter
Schrodinger equation. Finally, in the definition (10) of
time the action S must be either real or pure imaginary.
A general mixing of %KB states is clearly incompatible
with the induced gauge structure. We thus conclude that
the occurrence of a nontrivial geometric phase in the
semiclassical adiabatic regime singles out a well-defined
complex WKB state in the gravitational sector, thus al-
lowing for a consistent recovery of the concept of time.

The above observation has an interesting implication in
quantum cosmology. As we remarked earlier, in a simply
connected Hat superspace, a nontrivial Berry phase can
emerge in connection with an instability and the associat-
ed particle production. Moreover, this nontrivial phase
is realized in terms of a Euclidean time parameter. As a
consequence, the initial state of the Universe may only be
realized as a "tunneling" state peaked around a classical
instanton, e.g. , the de Sitter instanton. An accurate
description of the initial state, however, asks for a suit-
able boundary condition proposal which may be imple-
mented through either the no-boundary [11]or the tun-
neling boundary condition [12] proposal. In either of
these boundary condition proposals the dominant contri-
bution in the universe wave function comes from a real
WKB state [13] of the form exp(~Sz/A'), Ss being the
action for the de Sitter instanton. The classical evolution
of the Universe in the physically allowed Lorentzian sec-
tor is governed by the analytically continued effective
Einstein equation (16) with back reaction from the parti-
cles produced [14] in the (Euclidean) instanton regime.

An interesting constraint on the quantum state of the
Universe can, therefore, be obtained from the adiabatic

Berry phase. Indeed, the physical time is shown to have
its origin in a periodic Euclidean parameter, inducing a
thermal background in the initial Universe [14].

We conclude with the following remarks.
(i) When a Yang-Mills gauge group is included in the

matter sector, the total Berry phase, Eq. (13), gets a con-
tribution y&M corresponding to an ordinary gauge anom-
aly [8].

(ii) The present discussion is restricted, for simplicity,
to the nondegenerate matter eigenstates. Thus the in-

duced gauge group is Abelian. One might, however, gen-
eralize the above results to the case of a non-Abelian (in-

duced) gauge group by considering suitable degenerate
matter states [10,15]. Allowing for an induced gauge ro-
tation on the gravitational quantum states one may then
envision a possibility of realizing a fermionic state [16] in

the cosmological context.
(iii) One expects to obtain similar, if not identical, re-

sults in the Ashtekar's canonical formalism [17]. The
gauge structure in this case is larger. Apart from the
usual diffeomorphism group invariance, the effective
gravitational action must be invariant both under SO(3)
and an induced geometric gauge group G.

(iv) Although the issue of renormalization is not con-
sidered explicitly, the main results obtained here are ex-
pected to run through when explicit renormalization is
introduced, with obvious modifications due to the pres-
ence of higher derivative terms in the renormalized gravi-
tational action [9]. Extra care is, however, needed in
handling the electric-type potential in the effective gravi-
tational action. In particular, we note that, the vacuum
polarization being ineffective in generating a physically
sensible back reaction, the initial inflationary epoch of
the Universe may only be driven by the higher derivative
terms in the renormalized gravitational action. This ob-
servation seems to offer a natural resolution of the cosmo-
logical constant problem.
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