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Different proposals for the wave function of the Universe are analyzed, with an emphasis on various

forms of the tunneling proposal. The issues discussed include the equivalence of the Lorentzian path in-

tegral and outgoing-wave-proposals, the definitions of the outgoing waves and of superspace boundaries,

topology change, and the corresponding modi6cation of the %'heeler-DeWitt equation. Also discussed

are the "generic" boundary condition and the third quantization approach.
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I. INTRODUCTION 0=f '
[dg][d4]exp[ —SE(g 4)] (1.3)

1('[;, 0]=0. (1.2)

Here, 8 is a second-order differential operator in super-
space. In principle, g(h, g) should contain the answers to
all meaningful questions one can ask about the Universe.
However, the conditions necessary to specify the ap-
propriate solution of Eq. (1.2) and the procedure by
which information can be extracted from that solution
are far from being understood.

As (almost) any difFerential equation, the Wheeler-
DeWitt equation has an infinite number of solutions. To
get a unique solution, one has to specify some boundary
conditions in superspace. In ordinary quantum mechan-
ics, the boundary conditions for the wave function are
determined by the physical setup external to the system
under consideration. In quantum cosmology, there is
nothing external to the Universe, and it appears that a
boundary condition should be added to Eq. (1.2) as an in-
dependent physical law.

Several candidates for this law of boundary condition
have been proposed. Hartle and Hawking [7] suggested
that g(h, g) should be given by a Euclidean path integral
over compact four-geometries g„(x,~) bounded by the
three-geometry h, (x) with the field configuration P(x):

In quantum cosmology the whole Universe is treated
quantum mechanically and is described by a wave func-
tion rather than by a classical spacetime. This quantum
approach to cosinology was originated by DeWitt [1]
more than 25 years ago, and after a somewhat slow start
has attracted much interest during the last decade. The
picture that has emerged from this line of development
[2-10] is that a small closed Universe can spontaneously
nucleate out of nothing, where "nothing" refers to the ab-
sence of not only matter, but also of space and time.

The wave function of the Universe is defined on super-
space, which is the space of all three-metrics h; (x) and
matter field configurations P(x }:

g[h; (x},P(x)] .

It is invariant under three-dimensional diffeomorphisms
and satisfies the Wheeler-DeWitt equation [1]

In this path-integral representation, the boundary condi-
tion corresponds to specifying the class of histories in-
tegrated over in Eq. (1.3). Coinpact four-geometries can
be thought of as histories interpolating between a point
("nothing") and a finite three-geometry h,".

A Euclidean rotation of the time axis, t ~ i r, is o—ften
used in quantum field theory because it improves the con-
vergence of the path integrals. However, in quantum
gravity the situation is the opposite. The gravitational
part of the Euclidean action Sz is unbounded from
below, and the integral (1.3) is badly divergent. Attempts
to fix this problem by analytic continuation [11] were
only partly successful, and at present it remains unclear
whether one can meaningfully define an integral such as
(1.3).

Alternatively, I proposed [10,12] that g(h, P) should be
obtained by integrating over Lorentzian histories interpo-
lating between a vanishing three-geometry 0 and (h, g)
and lying to the past of (h, g):

4(h 4}=I ' [dgl[dd]e". (1.4)

This wave function is closely related to Teitelboim's
causal propagator [13,14] E(hz, tI)&~hi, g, ):

i'(h, y) =&(h, yl0) (1.5)

Linde [8] suggested that, instead of the standard Eu-
clidean rotation t ~ i r, the actio—n Sz in (1.3) should be
obtained by rotating in the opposite sense, t ~+ir. This
gives a convergent path integral for the scale factor,
which is all one needs in the simplest minisuperspace
models. But in models including matter degrees of free-
dom or inhomogeneous modes of the metric one gets a
divergent integral. Additional contour rotations might
fix this problem, but no specific proposals have yet been
formulated. Halliwell and Hartle [15] discussed a path
integral over complex metrics which are not necessarily
purely Lorentzian or purely Euclidean. This encom-
passes all of the above proposals and opens new possibili-
ties. However, the space of complex metrics is very large,
and no obvious choice of the integration contours sug-
gests itself as the preferred one.
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In addition to these path-integral no-boundary propo-
sals, one candidate law of boundary conditions has been
formulated directly as a boundary condition in super-
space. This is the so-called tunneling boundary condition
[16,17] which requires that f should include only outgo-
ing waves at boundaries of superspace. The main weak-
ness of this proposal is that "outgoing waves" and the
"boundary of superspace" have not been rigorously
defined. The Lorentzian path-integral proposal (1.4) was
originally suggested [10] as a path-integral version of the
tunneling boundary condition, and indeed the two propo-
sals give the same wave function in the simplest minisu-
perspace model [18]. In the general case, the equivalence
of the two proposals is far from being obvious.

I should also mention a completely different approach
to quantum cosmology, the so-called third quantization
[19-24]. Here, the wave function of the Universe P is
promoted to a quantum field operator and is expressed in
terms of creation and annihilation operators for the
Universe. The problem of defining the boundary condi-
tions is then replaced by the problem of determining the
in state of the quantum field g. With the radius of the
Universe playing the role of time, it is argued that
creation of Universes from nothing corresponds to an
"in-vacuum" state at vanishing radius.

The problem of boundary conditions for the cosmolog-
ical wave function is related to the problem of topology
change in quantum gravity. In the path-integral ap-
proach, one has to specify whether the integration in (1.3)
and (1.4) is performed over four-manifolds of arbitrary
topology, or only a restricted class of topologies is includ-
ed. In the tunneling approach, part of superspace bound-
ary corresponds to boundaries between different topologi-
cal sectors, and one has to decide what kind of boundary
condition should be imposed there. Moreover, we shall
see in Sec. VII that topology change not only affects the
boundary conditions for 1(, but also leads to a
modification of the Wheeler-DeWitt equation.

In this paper I shall review the status of the tunneling
wave function of the Universe and attempt a more precise
formulation of the tunneling boundary condition. As a
prototype for this boundary condition, the next section
discusses the process of bubble nucleation in a false vacu-
um, which is in many ways analogous to the nucleation of
Universes. The outgoing-wave boundary condition for a
nucleating bubble will be formulated using a spherical
minisuperspace model. In Sec. III, similar approach is
applied to the simplest cosmological minisuperspace
model: a Robertson-Walker universe with a cosmological
constant, A)0. In Sec. IV, the wave function for the
same model is obtained by analytic continuation from the
"bound-state" wave function for A &0. Sect. V discusses
the Lorentzian path-integral approach and its
equivalence to the outgoing-wave boundary condition. A
possible extension of these approaches beyond minisuper-
space is discussed in Sec. VI. There it is suggested that
some general properties of the potential term in the
Wheeler-DeWitt equation xnay allow one to define outgo-
ing waves in the general case.

The issues of topology change are tackled in Sec. VII.
It is argued that topology-changing transitions can occur

through superspace boundaries, but generally involve
configurations in the interior of superspace. This implies
that the Wheeler-DeWitt equation needs to be modified.
A possible form of this modified equation is suggested.
Section VIII gives some critical comments on the third-
quantization approach to topology change, and Sec. IX
contains some concluding remarks.

II. BUBBLENUCLEATION

I.= —4moR (1—R )' + eR
3

(2.1)

Here, cr is the wall tension, e is the difference between the
energy densities of the false and true vacuum, and
R =dR/dt. The momentum conjugate to the variable R
1s

pz =4m.oR R(1—R ) (2.2)

and the Hamiltonian is

~—[p2 +(4~oR 2)2]1/2 ~R 3
R (2.3)

Bubble nucleation does not change the energy of the
system, and if the false vacuum energy is set equal to
zero, we have

&=0,
which can be rewritten, using (2.3),

p„+U(R) =0,
U ( R ) = (4n crR ) ( 1 —R /R 0 ),

(2.4)

(2.5)

(2.6)

where Ro=3o /e. The equation of motion for R (t) can
be obtained from (2.2), (2.5), and (2.6)

RR =R —R (2.7)

and the solution is

R (t) = (R '+ t ')'~'

The world sheet metric of the bubble is

ds =(1—R )dt R(t)dQ—
(2.&)

(2.9)

To discuss the nucleation of true vacuum bubbles in a
metastable false vacuum, we shall make a number of sim-
plifying assumptions. First, we shall assume that the
bubble radius at nucleation is much greater than the
thickness of the bubble wall, so that the wall can be ap-
proximated as an infinitely thin sheet. Second, we shall
use the semiclassical approximation, assuming that the
tunneling action is large. (This is always true for a thin-
wall bubble, provided the theory is weakly interacting. )

The nucleating bubble is then nearly spherical and can be
adequately described by a minisuperspace model with a
single degree of freedom, the bubble radius R. Finally,
we shall disregard the gravitational effects of the false
vacuum and assume the spacetime to be Minkowskian.

In our rninisuperspace model, the world sheet of the
bubble wall is described by a single function R (t), and
the Lagrangian is
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where dQ is the metric on a unit sphere. With a new

time coordinate,

r=Roarcsinh( t /R o ), (2.10)

we recognize it as the metric of a (2+1)-dimensional de
Sitter space:

ds =dr —R (r)dQ

R(r)=Ra cosh(r/Ro) .
(2.11)

If the bubble wall gets inhabited by some two-
dimensional creatures, they will find themselves living in
an expanding inflationary universe. If they are smart
enough, they may also figure out that their universe was
spontaneously created at v=0, and thus Eq. (2.11)applies
only for r) 0.

How would these two-dimensional physicists describe
the quantum nucleation of the universe? In quantum
theory, the energy conservation (2.4} gets replaced by

(2.12)

Ro
gp=lp(R)l ' exp +I lp(R)ldR (2.19)

With the outgoing-wave boundary condition at large R,
the wave function in this range is determined [25] by
matching at R =Rp.

p(R &Ro)=p+(R)+ p(R—) . (2.20)

The two terms on the right-hand side of (2.20) have com-
parable magnitude at R =Ra, but in most of the forbid-
den range the f+(R) term dominates. The exponential
factor in the tunneling probability can be determined
[26-28) from

describe, respectively, the expanding and contracting
bubbles. In the quantum nucleation process, only an ex-

panding bubble must be present, and thus we require that
for R &Rp the wave function should include only the
outgoing wave, g+(R).

In the classically forbidden range, 0 (R (Rp, the two
solutions of (2.13) are

where P(R } is the "wave function of the Universe" and
the momentum operator is ps= —iB/BR. The square
root in (2.3) is complicated to deal with, and it is much
easier to use the energy conservation law in the form
(2.5):

f(Ro }

P(0)

Ro
-exp —2 p R R

0

=exp( noRO/—2) . (2.21)

[—a'„+U(R)]1(=0 . (2.13}

The transition from (2.12) to (2.13}involves commutation
of the noncommuting operators R and pR, which is

justified, as, long as

IRps @I » I [R,&s ]pl =
I @I, (2.14)

that is, away from the classical turning points, where

pz =0. Using the classical equations of motion for R (t),
we find that (2.14) is violated in a small neighborhood of
the turning point Rp.

M /R 0
—(o R 03 ) « 1 . (2.15)

p(R)=[ —U(R)]'~' (2.17)

is the classical momentum. To the leading order in the
WKB approximation,

pR p~(R ) =+p(R )f~(R ), (2.18)

where pz = id/dR This s—hows tha. t g+(R) and p (R)

Since the correct operator ordering is not known, we
shall keep the simplest choice as in (2.13).

We now come to the problem of determining the
boundary conditions for f(R). Only one nontrivial con-
dition is required; the second would simply determine the
overall multiplicative constant. The WKB solutions of
Eq. (2.13) for R )R o are

R
f~(R ) =p (R )

' exp +i J p(R ')dR '+i n /4
Ro

(2.16)

where

A different choice of operator ordering would not affect
(2.21), but it could affect the preexponential coefficient.

Having obtained the result (2.21), the two-dimensional
(2D) physicist could be puzzled about its meaning. What
does it mean to find the nucleation probability for a bub-
ble when there is only one bubble? Even it we assume
that there are other bubbles, they are unobservable, so
how can we test this theory observationally? Of course,
in the case of a nucleating bubble, there is an external ob-
server for whom the nucleation probability has a well-
defined meaning. This may or may not be so in the case
of the Universe. But the point I want to make is that
even a world sheet observer can derive some useful infor-
mation from the wave function of the Universe. If, for
example, several different types of bubbles can nucleate,
with different values of 0. and e, then the observer is more
likely to find herself in the type of bubble with the highest
nucleation probability (assuming, of course, that such
bubbles are suitable for 2D life).

Furthermore, nucleating bubbles are not exactly spher-
ical, and one could in principle calculate the amplitude
for a bubble to have a given shape. This problem has
been solved in the perturbative superspace approximation
which includes all the degrees of freedom of the bubble,
but treats all but radial motions as small perturbations
[29,30]. It turns out that perturbations of a spherical
bubble can be represented as excitations of a scalar 6eld
4 that lives on the bubble world sheet and has a tachyon-
ic mass, m = —3R0. The mode expansion of this field
contains four "zero modes" which represent overall space
and time translations of the bubble, while the remaining
modes describe deviations from spherical shape. As in
the cosmological case [31,32], one finds that the bubble
nucleates with the field @ in a de Sitter-invariant quan-
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turn state [33]. This prediction should be testable both by
external and world sheet observers.

Extension of this analysis beyond perturbative super-
space is a very complicated problem which has not yet
been solved. The bubble world sheet can, in general, be
represented in a parametric form as x"(P) with
a =0, 1,2. An external observer would evaluate the am-
plitude to find a bubble in a given configuration at x = T
by evaluating the path integral

g= f [dx"]e's. (2.22)

Given that there was no bubble at x =0, the integration
should be taken over all compact world sheets bounded
by the given two-surface at x = T and satisfying
0 & x (g) & T. As I said, calculating the integral (2.22), or
even making it well defined, is a very diScult problem.

For a world sheet observer, g is a time coordinate and
x "(g) is a set of four interacting scalar fields. She would
find the restriction on the range of x (() unnatural and
would probably define the no-boundary wave function f
in (2.22) as an unrestricted integral over x "(g). The two
wave functions will generally be different, but in the semi-
classical regime the integral (2.22) is dominated by the
neighborhood of the classical path, and the wave func-
tions will be essentially the same. It would be interesting
to further investigate this connection between the bubble
wave functions from world sheet and target space points
of view. At present, Eq. (2.22) is purely formal, and its
connection to the standard Euclidean formalism [27,28]
for calculating the vacuum decay rate is obscure.

On a qualitative level, one expects quantum fluctua-
tions to grow large at small length scales, and if large de-
forrnations are allowed, then the bubble wall can cross it-
self, and small "daughter bubbles" can be chopped off.
When viewed at very small scales, the bubble wall may in
fact have a fractal structure, with a dense foam of small
bubbles surrounding it. Moreover, the world sheet ob-
server may discover that on sufticiently small scales her
bubble is not a 2D surface after all, but is more adequate-
ly described by certain solutions of (3+1)- dimensional
field equations. Similar problems may face human ob-
servers as they explore distances approaching the Planck
scale.

III. de SITTER MINISUPKRSPACE

Turning now to the cosmological wave function, we

first consider the simplest rninisuperspace model,

1 aL=—Ea 1—
2 pf 2

—Aa (3.3)

and the momentum

p, = —aa/X, (3.4)

where A=(4G/3) p, . The Lagrangian (3.3) can also be
expressed in the canonical form

X=p, a —XA,
where

(3.5)

2
1 5'a 3+a —Aa
2 a

(3.6)

Variation with respect to p, recovers Eq. (3.4), and varia-
tion with respect to 1V gives the constraint

=0 (3.7)

The corresponding equation of motion for a is (for X = 1)

a +1—Aa =0,
and its solution is the de Sitter space

a (t) =H ' cosh(Ht),

(3.8)

(3.9)

d2 d++ —U(a) P(a) =0,
da2 a da

(3.10)

where

U(a)=a (1 —Aa ) (3.11)

and the parameter y represents the ambiguity in the or-
dering of noncommuting operators a and p, . This equa-
tion is very similar to Eq. (2.13) for a nucleating bubble,
and the following discussion closely parallels that in Sec.
II.

The y-dependent term in (3.10) does not affect the
wave function in the semiclassical regime. Without this
term, the equation has the form of a one-dimensional
Schrodinger equation for a "particle" described by a
coordinate a (t), having zero energy and moving in a po-
tential U(a). The classically allowed region is a H
and the WKB solutions of Eq. (3.10) in this region are

where H=A
Quantization of this model amounts to replacing

p, ~ —iB/Ba and imposing the Wheeler-DeWitt equa-
tion

S= fd xV —g —p„
R

16m.G
(3.1) 1(+(a)= [p (a)] '~ exp +i f p(a')da'+i~/4

(3.12)
where p, is a constant vacuum energy and the universe is
assumed to be homogeneous, isotropic, and closed:

ds =o[N (t)dt a(t)d. Q~] . —

Here, X(t) is an arbitrary lapse function, dQ& is the
metric on a unit three-sphere, and o. =26/3~ is a nor-2

malizing factor chosen for later convenience. Substitut-
ing (3.2) into (3.1), we obtain the Lagrangian

H
g+(a)=~p(a)~ '~ exp +f ~p(a')~da'

0

For a ))H

(3.13)

P.g+(a) =+p(a)g+(a), (3.14)

where p(a)=[ —U(a)]' . The under-barrier a &H
solutions are
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and Eq. (3.4} tells us that f (a) and g (a) describe an

expanding and a contracting universe, respectively (as-

suming that N & 0).
In the tunneling picture, it is assumed that the universe

originated at a small size and then expanded to its
present, large size. This means that the component of the
wave function describing a Universe contracting from
infinitely large size should be absent:

g(a &H ')=f (a) . (3.15)

The under-barrier wave function is found from the WKB
connection formula

g(a &H ')=1T+(a) f—(a—) . (3.16}

Away from the classical turning point a =H ', the first
term in (3.16} dominates, and the nucleation probability
can be approximated as [8,10]

2(H-') H '

P(0)
-exp 2J— Ip(a'}I«'

0

3=exp
86 p„

(3.17)

It should be noted that the choice of N & 0 in (3.4) is a
matter of convention. With the opposite choice, the roles
of g+(a) and P (a) would be reversed, and the boundary
condition (3.15) would be replaced by g(a & H ')
=t/i (+)aThis w. ould result in a time reversal transfor-
mation g(a)~g'(a). Another way to look at this is to
note that the time coordinate t is an arbitrary label in
general relativity, and it is a matter of convention to
choose time growing or decreasing towards the future
(where "future" is defined, e.g., by the growth of entropy
or by the expansion of the Universe). Clearly, there is no
physical ambiguity here, and once the convention is set,
the tunneling wave function is this model is uniquely
defined.

At this point, I would like to mention the "generic"
boundary condition suggested by Strominger [34]. He ar-
gued that since the nucleation of the Universe is governed
by small-scale physics, the boundary condition on f
should be imposed at small a, rather than at large a as in
the tunneling approach. The large-scale behavior of g
can then be determined without specifying the precise
form of this boundary condition. The under-barrier wave
function is generally given by a linear combination of
1T+(a) and g (a), and for a "generic" boundary condi-
tion at a =0, one expects the two terms to be comparable
at small a. However, g+(a) decreases exponentially with

a, while itt (a) exponentially grows and therefore dom-
inates for all but very small a. The corresponding wave
function in the classically allowed range is found with the
aid of the WKB connection formula:

The case for imposing boundary conditions at small a
appears to me unconvincing. The same argument could
be applied to bubble nucleation, but there we know that
the correct boundary condition is the outgoing wave at
large radii. Another familiar case when physics is
confined to small scales while the boundary conditions
are imposed at infinity is a bound state, such as the hy-
drogen atom. In the next section, we shall discuss how
the tunneling wave function can be obtained by analytic
continuation from a "bound-state" universe.

IV. TUNNELING %AVE FUNCTION
BY ANALYTIC CONTINUATION

gP(a —+ co ) =0,
the solution is the Airy function

f(a }=Ai(z),

where

z=( —2A} z~'(I —Aa ) .

(4.1)

(4.2}

(4.3)

The asymptotic behavior of (4.2}at large a is

f(a) ~a '~ exp[ —( —A)'~ a3/3] . (4.4)

Continuation to positive values of A amounts to chang-
ing ( —2A) ~(2A) exp(%2m. il3), where the sign
depends on the direction of rotation in the complex A
plane. Choosing the upper sign and using the relation
[38]

2e —"'~ Ai(ze * '
) =Ai(z)+iBi(z),

we conclude that the wave function for A&0 is

(4.5)

f(a }=Ai(z )+iBi(z ), (4.6)

The quantum-mechanical wave function for the decay
of a metastable state is often obtained by analytically con-
tinuing the bound state wave function from the parame-
ter values for which the corresponding state is stable. A
similar approach can be adopted in quantum cosmology.
As an example, we again consider the minisuperspace
model (3.1), but now with p„&0. In this case A &0, and
it is clear that the classical equation of motion (3.8) has
no solutions. However, microscopic, Planck-size
universes could still pop out and collapse as quantum
fluctuations. Then one expects the wave function to be
peaked at very small scales and to vanish at a ~~.

When dealing with analytic continuation, approximate
solutions such as (3.12) and (3.13) are not sufficient, since
the neglected terms can become large after continuation.
We shall, therefore, use the exact solutions to Eq. (3.10)
which can be obtained [37] for a particular choice of the
factor-ordering parameter, y= —1. With the boundary
condition

f(a &H ')=g (a),
g(a &H '}=/+(a}+g (a} .

(3.18)
with

z=(2A) (1—Aa ) (4.7)

The same wave function is obtained [35] by applying the
Hartle-Hawking prescription to this model [36].

This is the tunneling wave function [17]. The corre-
sponding asymptotic form at large a is
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P(a) ~a ' exp( —iA' a /3) . (4.8)

At this point, I would like to comment on one impor-
tant difference between the above analysis and the stan-
dard treatment of the decay of a metastable state. In the
standard approach, the Schrodinger equation for the
bound state of a particle,

a
i —&z k(qz, q„'T)=0 (5.5)

ing at qz=(uz, Pz) at t =T. The function k(qz, q&, T) in

Eq. (5.4) has the familiar form of an amplitude for a "par-
ticle" to propagate from q, to q2 in time T and satisfies
the Schrodinger equation

&g=Eg , (4.9) with the initial condition

is solved with the boundary conditions $~0 at both
x~~ and x~ —~. The energy eigenvalues E„are
then completely determined by the Hamiltonian
%=—8„+U(x). In the course of analytic continuation,
as the parameters of the potential U(x) are changed, the
eigenvalues E„also change and develop imaginary parts
as the corresponding states become metastable. The re-
sulting wave functions describe a probability that is ex-
ponentially decreasing with time inside the potential well

by gradually leaking to infinity. On the other hand, in
the quantum-cosmological model (3.10) the eigenvalue of
the Wheeler-DeWitt operator is fixed at E =0. At the
same time, the wave function is defined on a half-line
a & 0, and the boundary condition (4.1) is imposed only at
a~~. The wave function is time independent, and a
steady probability flux at a ~~ is sustained by an in-
coming flux through the boundary at a =0. In fact, as
Eq. (1.5) suggests, the tunneling wave function is more
appropriately thought of as a Green's function with a
source at a =0, rather than an eigenstate of the Wheeler-
DeWitt operator. This will be further discussed in Secs.
V and VII.

We note finally that a "generic" choice of boundary
condition at a =0 would lead, for A &0, to a wave func-
tion which is not confined to small scales, but instead in-
creases without bound at a ~~.

V. TUNNELING WAVE FUNCTION
FROM A PATH INTEGRAL

To discuss the relation between the outgoing-wave and
path-integral forms of the tunneling proposal, we shall
consider a slightly more complicated minisuperspace
model: a Robertson-Walker universe with a homogeneous
scalar field. After appropriate rescalings of the scalar
field P and scale factor a, the corresponding Lagrangian
and Hamiltonian can be written as

k(qz, q, ;0)=5(qz, q, ) . (5.6)

The equation for K (qz, q, ) follows from (5.5) and (5.6):

&zK(q. z, q, )= i6—(qz, q, ) .

Here, & is the Wheeler-DeWitt operator,

P= —,'e . [a'.—a', —U(~, y)]

with the "superpotential"

(5.7)

(5.8)

U(a, g) =e [1—e V(P)], (5.9)

as
Ba

+ U(a, g)=0 .as (5.10)

and I am ignoring the factor-ordering ambiguity. The
subscript "2" of & in (5.5) and (5.7) indicates that a and
(t in (5.8) are taken to be az and Pz.

Apart from an overall factor, the operator & in (5.8) is
just the Klein-Gordon operator for a relativistic "parti-
cle" in a (1+1)-dimensional "spacetime, " with P playing
the role of a spatial coordinate and a the role of time.
The "particle" moves in an external potential U(a, (()).
Let us now consider the behavior of K(qz, q~) as
a&~+~ with a, fixed. We must first note that for
a —+ —oo the potential (5.9) vanishes, and K(qz, q, )

should be given [39] by a superposition of plane waves,

exp[ik(az Pz)]. Since the path integral in (5.4) is taken
over paths originating at some finite (a&, P&) and going off
to large negative a2, this superposition should include
only waves with k & 0. (Recall that p & 0 corresponds to
a &0.)

As az~+ ~, the potential U(a, tI)) diverges, and the
WKB approximation becomes increasing accurate. The
dependence of K(qz, q, ) on qz is then given by a superpo-
sition of terms e', where S is a solution of the Hamilton-
Jacobi equation,

2

X=—,'[e +e ( —a +P —V(P))],
&=—,'[e ( —p +p@) e+e V(—P)] .

(5.1)

(5.2)

Here, a = lna, V(P) is the scalar field potential, and the
lapse function has been set N = 1.

The path integral (1.4) for this model can be expressed
in the form [14,18]

K(qz, q, ) =f dTk(qz, q (, T), (5.3)
0

T
k(qz, q, ;T)=I [dq]exp i I Xdt

0
(5.4)

where q =(a,P) and the integration is taken over all
paths a(t), P(t) beginning at q, =(a, ,P, ) at t =0 and end-

In each term, the function S(a,g) describes a congruence
of classical paths with

as/ay
d a BS/Ba

(5.1 1)

For V(p) &0, U(a, p)= —es V(p) &0, and it follows
from (5.11) that ~dglda~ &1. Hence, the "particle" tra-
jectories are asymptotically "timelike" and correspond ei-
ther to expanding universes with p =OS/Ra&0 or to
universes contracting from an infinite size with
BS/Ba & 0. Since a11 paths originate at a, & ~, the super-
position should include only terms with BS/Ba &0. For
V(P) &0, the trajectories are asymptotically "spacelike"
and cannot extend to timelike infinity i+ or to null
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The general form of the Wheeler-DeWitt equation can
be written as [1]

(V —U)/=0,
where

(6.1)

$2
V =fd xN G,iki +—h

ij kl 2

is the superspace Laplacian,

G;,„i=2h ' (h,,h, , +h, ,h,„hil—h

is the superspace metric,

U= f d xNh' [—R' '+ —,'h'P;P +V(P)]

(6.2)

(6.3)

(6.4)

FIG. 1. The probability flow in the minisuperspace model
(5.1). In this conformal diagram, a plays the role of time and P
the role of a spatial coordinate.

P(a, P) =f dhoti'K(a, itp~
—~,P') . (5.12)

The trajectories then originate at the past timelike
infinity i, but the behavior of i' on the rest of the super-
space boundary should be the same as that of K. This is
illustrated in Fig. 1 for the case of V(P) )0. The proba-
bility Aux is injected into superspace at i and exits in
the form of outgoing waves through S and i+. We con-
clude that the path-integral and the outgoing-wave forms
of the tunneling wave function are equivalent, at least in
the simple model (5.1). This is not very surprising, since
Eqs. (5.3)—(5.7) coincide with the standard equations for
Feynman propagator in the proper-time representation,
and the causal boundary conditions for the propagator
are the same as the outgoing-wave boundary conditions
for g.

VI. BEYOND MINISUPERSPACE

infinity 2+. One expects, therefore, that K(q2, qi)~0
for q2 at i+ or S+.

Thus we see that the propagator K(q2, q, } satisfies the
outgoing-wave boundary conditions both at a~ —00 and
a~+ ao. The tunneling wave function (1.4) is obtained
by letting a&~ —00 and integrating over all initial values

of/:

e 2ag
ij ij (6.6)

where det(h; )=1. Then the Laplacian term in (6.1) is
~exp( —3a), the first two terms in the superpotential
(6.4) are ~exp(a), and the last term is ~exp(3a). The
relative magnitude of these terms for a~+~ is the same
as in Eq. (5.9).

In the limit a~ —ao, the superpotential U in (6.1) be-
comes negligible, and one can hope to define outgoing
modes analogous to the plane waves of the previous sec-
tion. This possibility has also been suggested by Wald
[40] in a difFerent context. Here, I will not attempt to an-
alyze the most general case and illustrate the idea in a re-
duced superspace model which includes all degrees of
freedom of the scalar field P, but only one gravitational
variable a. With the scalar field represented as

P(x)=(2m )' g f„Q„(x), (6.7)

where Q„(x) are the harmonics on the three-sphere, the
superspace Laplacian (6.2) takes the form [31,32]

is the superpotential, h; (x) and N(x} are, respectively,
the three-metric and the lapse function in the (3+1)
decomposition of spacetime,

ds =(N +N;N')dt 2N;dx—'dt h; dx—'dxj, (6.5)

h =det(h, "), and R ' ' is the curvature of three-space. As
before, matter fields are represented by a single scalar
field P and I have ignored the factor-ordering problem.
The wave function g is a function of h;1(x) and P(x), but
is independent of N(x}. The metric h; can be represent-
ed as

The main difBculty in formulating the outgoing-wave
boundary condition in the general case is similar to the
difficulty with the de5nition of positive-frequency modes
in a general curved spacetime. There is, however, a hope-
ful sign. Our definition of outgoing waves in the minisu-
perspace model (5.1) was based on rather general proper-
ties of the potential U(a, g): its unbounded growth at
a~+ 00 and its vanishing at a—+ —00. It is not difBcult
to verify that the superpotential in the Wheeler-DeWitt
equation has similar properties in the general case.

p2 3(x

Bcx

The plane-wave asymptotic solutions are then

g(a, f„)=exp ik a+i gk„f„

with

k —gk„=0.

(6.8)

(6.9)

(6.10)
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The tunneling wave function includes only terms with
k )0. This is the boundary condition at a~ —~.

To formulate the tunneling condition on the remainder
of superspace boundary, one first has to specify what that
boundary is. In other words, we should decide what class
of metrics and matter fields should be included in super-
space. The form of the Wheeler-DeWitt equation
(6.1)—(6.4) suggests that we should include all
configurations [ h,

&
(x },P(x) } for which h ' R ' ',

h '~ h'jg, g . , and h ' V(P) are integrable functions.
Then the superpotential U is finite everywhere in super-
space and will generically diverge towards the boundary.
This happens, in particular, at a~+ ~. As

~
U~~ ~,

some components of the gradient VS in the Harnilton-
Jacobi equation

(VS) + U=O (6.11)

should also diverge, and one can hope that the WKB ap-
proximation will become asymptotically exact, thus al-
lowing one to define outgoing waves [41,42]. For exam-
ple, when some dimensions of the Universe become very
large (e.g., a~ ~), the classical description of the corre-
sponding degrees of freedom becomes increasingly accu-
rate. Denoting these classical variables by c;, and the
remaining variables by q. , the asymptotic form of the
wave function can be written as [31,43-45]

is~(c)
g(c, q)=pe " y~(c, q) .

N

(6.12)

VII. TOPOLOGY CHANGE

In the discussion, so far, I have not touched upon the
issue of topology change in quantum gravity. This issue,

The Hamilton-Jacobi functions Sz(c) describe
congruences of classical paths, p;= —aSrac;. The tun-
neling boundary condition selects the solutions of (6.10)
which include only outgoing paths, evolving towards the
boundary.

It should be noted that superspace defined by the
condition

~ U~ & 00 includes a very wide class of
configurations. The metric and matter fields have to be
continuous, but not necessarily differentiable. In particu-
lar, scalar fields with discontinuous derivatives and
metrics with 5-function curvature singularities on sur-
faces, lines, and points are acceptable configurations.
This conclusion fits well with the path integral approach,
where it is known that the path integral is dominated by
the paths which are continuous, but not differentiable.
The superspace configurations can be thought of as slices
of these paths.

If the definition of outgoing waves along the lines indi-
cated in this section is indeed possible, then the same ar-
gument as in Sec. V suggests that the wave function
defined by the path integral (1.4) should satisfy the
outgoing-wave boundary condition. One advantage of
the path-integral definition is that it may be consistent
even if outgoing waves cannot always be defined. Anoth-
er advantage is that the path-integral version appears to
be better suited to handle topology change (see Sec. VII}.

however, can hardly be avoided, since the "creation of a
universe from nothing" is an example of a topology-
changing event.

The Wheeler-DeWitt equation (6.1) is based on canoni-
cal quantum gravity, which assumes the spacetime to be a
manifold of topology R XX, where R is a real line and X
is a closed three-manifold of arbitrary but fixed topology.
The corresponding superspace Qx includes only three-
metrics of topology X. We can define the extended super-
space 0 including all possible topologies. It can be split
into topological sectors, with all metrics in each sector
having the same topology.

The division of superspace into topological sectors can
be illustrated by lower-dimensional examples. In the
(1+1)-dimensional case, three-geometries are replaced
by lines (strings), and topological sectors can be labeled
by the occupation number of closed strings. In (2+1) di-
mensions, a point gE9 corresponds to a number of
closed surfaces (membranes), and each surface can be
characterized by the number of handles [46]. Each topo-
logical sector of 9 can thus be labeled by an infinite set of
integers [no, n, , . . . ] giving, respectively, the occupation
numbers for surfaces with 0, 1, . . . handles. In the
(3+1)-dimensional case, there is a much richer structure,
but a topological classification of three-dimensional mani-
folds has not yet been given.

Creation of a universe from nothing described in Secs.
III—V is a transition from the null topological sector con-
taining no universes at all to the sector with one universe
of topology S3. The surface a= —~, ~P~ ( ~ can be
thought of as a boundary between the two sectors. The
probability Aux is injected into superspace through this
boundary (see Fig. 1) and fiows out of superspace through
the remaining boundary (a~—~ with

~ P ~

—+ oo, or
a~+ ~). One could have thought that topology-
changing transitions always occur through the boun-
daries of the corresponding superspace sectors. This was
the point of view I adopted in my earlier formulation of
the tunneling boundary condition [17]. I no longer be-
lieve this picture to be correct, but it may still be useful in
cases when topology change is a semiclassical tunneling
event. In this section I shall first review the motivation
for the old approach, then explain why I think it is not
applicable in the general case, and finally discuss some al-
ternative approaches to topology change.

Tunneling amplitudes in quantum field theory are often
evaluated semiclassically using the steepest descent ap-
proximation. One then finds that the path integral for
the amplitude is dominated by a solution of Euclidean
field equations, called the instanton. If topology change
is a quantum tunneling event, one can similarly expect it
to be represented by a smooth Euclidean manifold Af iri-

terpolating between the initial configuration X& and the
final configuration X2. The intermediate super space
configurations can be obtained as slices of A, and can be
conveniently described using the concepts of Morse
theory [47].

Consider a smooth real function f (x) on manifold JR.
A point xo is called a critical point of f if Bg(xo) =0.
A critical point is called nondegenerate if
det[B„B f(xo)]NO. We shall call f (x) a Morse function
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if it has the following properties: (i) f (x) takes values be-

tween 0 and 1, with f (x)=0 iff x EX„and f(x)=1 iff
x F Xz, (ii) all critical points of f are in the interior of At

(that is, not on the boundary) and are nondegenerate. In
a 2D example of Fig. 2, the manifold JK is shown embed-
ded in a three-dimensional space, and the Morse function
is given by the projection on the vertical axis. In this
case, the saddle point P is a critical point of f (x). It can
be shown that a Morse function can always be defined
and that it always has some critical points if X, and Xz
have different topology. We shall assume that f(x) is
chosen so that it has the smallest possible number of criti-
cal points, that is, no more than dictated by topology.

Slices of AI corresponding to superspace configurations
can be obtained as surfaces of constant f. (Different
choices of Morse function will, of course, give different
slicings. ) These slices will have a smooth geometry, ex-
cept the critical slices passing through critical points.
With an appropriate choice of locally Cartesian coordi-
nates, the Morse function in the vicinity of the critical
point can be represented as

d

f(x)= g a;x;, (7.1}

FIG. 2. Topology change in two dimensions. The initial
configuration XI has topology Sl and the final configuration X2
has topology Sl Sl. The manifold JK interpolating between Xl
and X2 is shown embedded in three-dimensional space. The
Morse function f (x) is given by the projection on the vertical
axis. The critical point P and the critical section f(x)=f(P)
are indicated.

where d is the dimensionality of space (d =3). The criti-
cal section, f(x)=0, is a generalized cone. For d & 3 it
has a curvature singularity of the form [48]

(7.2)

where r is the distance from the critical point, r =g;x; .
For d =2, the curvature has a 5-function singularity,
R( )h '~ ~5( '(x}. An important special case of topology
change is the "creation of universes froin nothing, "when
the initial configuration is absent. A two-dimensional il-
lustration is shown in Fig. 3. Here, the critical slice is a
single point. For near-critical slices, in d &2 the curva-
ture is again given by (7.2), where now r is the charac-
teristic size of d-space.

The idea of Ref. [17] was that the boundary of super-

FIG. 3. Creation of a two-dimensional universe from noth-

ing. Here, the mainfold Af has a single boundary X, and the
critical section consists of a single point P.

space can be divided into regular and singular parts. The
regular boundary includes only configurations which can
be obtained as critical slices of smooth Euclidean mani-
folds. Such configurations correspond to transitions be-
tween different topological sectors. The remaining part
of the boundary is called the singular boundary, and the
outgoing-wave boundary condition is imposed only on
that part. The boundary condition on regular boundary
was supposed to enforce conservation of probability flux
as it flows from one topological sector to another, but no
specific form of the boundary condition was proposed.
The overall picture was that the probability flux is inject-
ed into superspace through the boundary with the null
sector; it then flows between different topological sectors
through the regular boundaries, and finally flows out of
superspace through the singular boundary [49].

As I mentioned earlier, I no longer think this picture
can be valid in the general case. The main reason is that
topology change does not necessarily occur between
configurations at the boundaries of superspace sectors,
but generally involves configurations in the interior of
these sectors. It is true that, in order to change topology,
one has to go through a singular three-geometry. But, as
we discussed in Sec. VI, superspace includes a very wide
class of configurations, such as metrics with integrable
curvature singularities and scalar fields with discontinu-
ous derivatives. Note in particular that curvature singu-
larities (7.2} on critical slices are integrable, and therefore
the critical slices will generally lie in the interior of super-
space.

To give a specific example, consider creation of a
wormhole in a universe having initially the topology of
S3. The transition is then between the topological sectors
S3 and S, XS2. The wormhole radius can be defined as
r = ( 3;„/4n )', where 3;„ is the smallest cross-
sectional area of the wormhole, and can be used as one of
superspace variables. Since r has a semi-infinite range,
r =0 is a superspace boundary in the sector S& XS2. On
dimensional grounds, the curvature in the wormhole vi-
cinity is R '-r, and the integral of R' 'h' does not
diverge as r ~0. The boundary at r =0 is therefore simi-
lar to what was called the regular boundary in Ref. [17].
On the other hand, configurations in the S3 sector "right
before" topology change do not lie on any boundary.
These configurations should only satisfy the continuity
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can be obtained from one another by changing topologi-
cal relations at a single point. The Wheeler-DeWitt equa-
tion for I(z(h) in topological sector N is obtained by
varying (7.3):

FIG. 4. A loop of string intersects itself and splits into two.
Sharp angles (kinks) formed at the point of reconnection propa-
gate around the "daughter" loops at the speed of light.

requirement: all matter fields should take the same
values at the points that are about to be identified.

An important example of topology change in lower di-
mensions is reconnection of intersecting strings. At the
classical level, this process plays a crucial role in the evo-
lution of cosmic strings [50] (see Fig. 4). At the quantum
level, it represents the elementary interaction vertex in
fundamental string theories. A string loop can be
thought of as a one-dimensional closed universe. The su-
perspace configurations for the loop are given by the
functions x&(o ), where rr is a parameter on the loop and
the spacetime coordinates x" play the role of world sheet
scalar fields. Topology change (loop splitting) can occur
in configurations where the loop self-intersects, that is,
when x"(rr, }=x "(02) for some o „oz. These
configurations are not special in any other way and do
not lie on superspace boundary. The configurations im-
mediately after splitting have discontinuous derivatives of
x"(o } at reconnection points. They are also legitimate
superspace configurations and do not belong to a bound-
ary [51].

The conclusion is that topology-changing transitions
affect not only superspace boundary, but can occur be-
tween points in the interior of different topological sec-
tors. This has an important implication: in order to ac-
count for topology change, the Wheeler-DeWitt equation
has to be modified. In the tradition of the subject, I
would like to offer some speculations regarding the form
of this modified equation.

My suggestion is that the Wheeler-DeWitt operator A
in (1.2) should be modified by adding an operator 5 that
has matrix elements between different superspace sectors.
The corresponding action can be written symbolically as

~x =& (0N ~0~ 4x~0x)— (7.5)

out of superspace. The waves fiowing into and out of the
regular boundary correspond to transitions between topo-

AQ~(h)+ g f [dh']8~N. (h, h')Q~, (h') =0 . (7.4)
N'XN

The form of the operator 8(h, h'} is, of course, un-
known. One can hope to gain some insight into it by
studying lower-dimensional examples. In the case of
strings, the topological sectors can be labeled by the num-
ber of disconnected loops n and 8„„,has matrix elements
with n'=n+1. An even simpler example is given by
pointlike particles, which can be thought of as (0+1)-
dimensional universes with spacetime coordinates x"
playing the role of scalar fields and the Klein-Gordon
operator V +m playing the role of the Wheeler-DeWitt
operator. Topology change corresponds to elementary
particle interactions, such as the one illustrated in Fig. 5
for a A,P theory. There, two particles merge into one,
and the 8 operator should be proportional to 5 functions
ensuring that the initial and final particles have the same
coordinates at the moment of interaction. It would be in-
teresting to develop the first-quantized formalism for par-
ticle interactions in the form (7.4) and verify its
equivalence to a quantum field theory with nonlinear in-
teractions. The possibility of equivalence between a
linear system of equations (7.4) and a nonlinear field
theory may seem rather unlikely. It is well known, how-
ever, that the full content of a perturbative quantum field
theory can be expressed as an infinite set of linear rela-
tions between the Green's functions (Schwinger-Dyson
equations). A similar representation has also been ob-
tained in matrix models of two-dimensional quantum
gravity [52].

To formulate the boundary conditions for the functions
gz(h) in (7.4), we again divide the superspace boundary
into singular and regular parts. The singular boundary
includes configurations with

~ U~ ~ ~ and the null part of
the boundary at a —+ —Oe (see Sec. VI). The functions Pz
should have only outgoing waves at the singular bound-
ary. These waves carry the probability Aux

S=f [dh]P*%g+ f [dh][dh']I(*(h)8(h, h')g(h'),

(7.3)

where the integration is taken over all superspace sectors
and h stands for all superspace variables. It seems
reasonable to assume that topology change is a local pro-
cess; then we should have 8(hi, h2)=0 unless Iti and h2

FIG. 5. This P' interaction diagram corresponds to two sca-
lar particles merging into one.
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logical sectors. In the example of the S& XS2~S transi-
tion, the flux flowing into the regular part of the bound-
ary at r =0 in the S& XS2 sector reappears through the
source term on the right-hand side of (7.4) in the S3 sec-
tor. The boundary condition at r —0 should enforce flux
conservation between the two sectors. I will not attempt
to write down a specific form of this boundary condition.

Assuming that outgoing waves can be defined along the
lines of the previous section and that the flux conserva-
tion condition is formulated, one can hope that the wave
function defined in Eqs. (7.4) is equivalent to the one
given by the path integral (1.3), where the integration is
performed over four-manifolds of arbitrary topology. It
is known that any Lorentzian metric interpolating be-
tween two compact spacelike surfaces of different topolo-
gy must either be singular or contain closed timelike
curves [53]. The singularities, however, can be very mild
[54], and there seems to be no reason for excluding the
corresponding spacetimes from the path integral. If all
metrics of finite action are included, this would be more
than suScient to permit Lorentzian topology change.

V=X(ak~k+a'~k)
k

(8.2)

The state containing no universes at a~+~ is then

IO),„, with Vkl0),„,=0, and single-universe states are
akl»..

Since both sets of functions are complete, they must be
linearly related to one another,

4k g ( kk'1 k'+~kk'|(k')
k

(8.3)

and Eqs. (8.1) and (8.2) then imply a linear relation be-
tween the creation and annihilation operators:

relations. The "in-vacuum" state, containing no
universes at a~—oo, would then be defined by
ak IO);„=0, and single-universe states would be given by
lk ) =ak IO). In the opposite limit of a~+ oo, one can
similarly define a complete set of mode functions gk, gk,
such that pk(a~+ oo) ocexp(iS) with BS/Ba&0, and
write

VIII. COMMENTS ON THIRD QUANTIZATION ~k g (akk'ak' ~kk'ak' ) '
k'

(8.4)

y (ak Pk +ak|(k )
k

(8.1)

with fk(a~ —oo ) ~ exp(icoka), cok &0, and creation and
annihilation operators satisfying the usual commutation

It has often been argued [19-24] that an adequate
description of topology change can be given in the third-
quantization approach, where the wave function f is pro-
moted to the status of a quantum field operator. Topolo-
gy change is then accounted for by self-interaction of g.
For example, a g interaction allows a parent universe,
say of topology S3, to split into two daughter universes of
the same topology. This is probably adequate for one-
dimensional universes (strings), where topology is charac-
terized simply by the occupation number of closed loops.
However, in higher dimensions the situation is not so
simple. For two-dimensional universes, one would have
to introduce an additional field creating and annihilating
handles, while three-dimensional topologies have not yet
been classified, and one may need to introduce an infinite
number of fields and interaction types. It is not evident,
therefore, that third quantization offers any advantages in
describing topology change, compared to the "first-
quantized" approaches like (7.4) or (1.4).

I would also like to comment on the specific implemen-
tation of the third quantization picture in simple minisu-
perspace models [19,21,24]. Without introducing non-
linearity, the creation of universes in this approach is de-
scribed in a manner similar to the description of particle
creation in a time-varying external field. The idea is sug-
gested by the fact that the Wheeler-DeWitt equation is
similar to Klein-Gordon equation with the scale variable
a playing the role of time and the superpotential U play-
ing the role of a time-dependent external potential. For
a~ —oo the potential vanishes (see Sec. VI), and one can
expand the field operator f into positive- and negative-
frequency modes:

If the universal field g is in the state IO);„containing no
universes at a —+ —00, then the average number of
universes in state k at a~+ m is generally nonzero and
given by

«k ) =(01&k~k I0);.=g IPkk'I'.
k'

(8.5)

The suggestion in Refs. [19,21,24] is that (Kk ) should be
interpreted as the number of universes created from noth-
ing. I disagree with this interpretation for reasons that I
will now explain.

In the third quantization picture, there are no
universes of vanishing size (a~ —oo), and as a grows,
the number of universes increases and finally reaches its
asymptotic value (Kk) at a~+ oo. The universes are
created at finite values of a, that is, with a finite size.
This is drastically diferent from the creation-from-
nothing picture, where the universes start at zero size and
continuously evolve towards larger sizes, so that all the
"creation" occurs at a~ —~.

The origin of the difference between the two pictures is
in the fact that the "time" a is not really a monotonic
variable: the universes can both expand and contract.
The positive- and negative-frequency mode functions gk
and gk correspond, respectively, to expanding and con-
tracting universes. From this point of view, what is de-
scribed in third quantization as creation of a pair of
universes at some a =ao, is simply a contracting universe
that turns around and starts reexpanding at a =ao.

This can be illustrated using a (0+1)-dimensional ex-
ample: pair creation in an external field. Following Feyn-
man, antiparticles can be interpreted as particles travel-
ing backwards in time, and pair creation corresponds to a
particle trajectory like the one shown in Fig. 6. The tra-
jectory can be represented as x"(~) with —oo &v & oo.
Using the string theory language, ~ is a world sheet time
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FIG. 6. Feynman's picture of pair creation in external field.
A particle traveling backwards in time from t=+Oo turns
around and travels back to t = + ao.

coordinate, and x" are target space coordinates. For an
observer riding on the particle, ~ is a suitable time coordi-
nate and x"(r) is a set of interacting scalar fields [55].
The field x (r) decreases with r at r~ —ec and grows at
r~+ ao. On the other hand, an external (e.g. , human)
observer, whose home is in the target space, will use x as
his time coordinate.

In the third quantization picture, the variable a plays
the role of target-space time x . It is not impossible that
some superhuman observer living in this target space will
observe the creation of pairs of universe [56]. However,
we are interested in what happens from the point of view
of a world sheet observer, living inside the universe and
using the world sheet time ~. In any case, it appears that
the process described by the third quantization formalism

[(8. 1 )—( 8.5 )] does not correspond to a topology-
changing nucleation of the universe that the authors of
[19,21,24] had in mind.

IX. CONCLUSIONS

The wave function of the universe g can be obtained ei-
ther by solving the Wheeler-DeWitt equation with ap-
propriate boundary conditions or by performing a path
integration over an appropriate class of paths. Our dis-
cussion in this paper was focused on the tunneling propo-
sal for f. Although little was proved, our discussion lead
to several conjectures which will be briefly summarized
here.

In the path-integral approach, the tunneling wave
function is defined as a sum over Lorentzian four-
geometries interpolating between a vanishing three-
geoinetry (a point) and given three-geometry. The sum is,
in general, performed over manifolds of arbitrary topolo-
gy. I have argued that the wave function defined in this
way should satisfy the outgoing-wave condition on a part
of superspace boundary.

Superspace can be divided into topological sectors, and
part of its boundary can be thought of as the boundary
between different sectors. We call it regular boundary.
The rest of the boundary, which includes "incurably"
singular configurations, is called singular boundary (see
Sec. VI for more details). The outgoing-wave condition
should be satisfied only on the singular boundary. I have
argued that the superpotential (6.4) of the Wheeler-
DeWitt equation either vanishes or diverges almost
everywhere at this boundary and that this may enable one
to give a precise definition of outgoing waves.

If the topology of the universe is restricted to be that of
a sphere, then the outgoing-wave boundary condition
may be sufhcient to determine the tunneling wave func-
tion. However, in the general case, this condition has to
be supplemented by some boundary conditions at the reg-
ular boundary.

If topology change is allowed, then I have argued that
it will occur not only through the boundaries between the
superspace sectors, but will generally involve
configurations in the superspace interior. This will result
in a modification of the Wheeler-DeWitt equation. A
possible form of the modified equation is suggested in
Sec. VII.

Apart from the tunneling approach, I gave a critical
discussion of the "generic" boundary condition (in Sec.
III) and of the third quantization picture (in Sec. VIII).

The tunneling approach to the wave function of the
universe was motivated by the analogy with bubble nu-
cleation and we may still gain important insights into the
complicated issues of quantum cosmology by studying
the wave function of the nucleating bubble. We may also
learn a great deal from quantum gravity in two dimen-
sions, which can be thought of as quantum cosmology of
one-dimensional closed universes (strings), and even from
the ordinary quantum field theory, in which the branch-
ing propagator lines in Feynman diagrams can be
thought of as branching zero-dimensional universes (par-
ticles). However, in pursuing these analogies, one should
remember that in all these cases the observer is usually
assumed to be in the target space, while in quantum
cosmology the observer lives on the world sheet. The re-
lation between the wave functions of the universe (bubble,
string, particle) obtained by these different observers is an

intriguing problem for future research.
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