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Relationship between two theories of dissipative relativistic hydrodynamics applied to cosmology
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We compare Israel s relativistic causal theory of transient effects with the relativistic extended irrever-
sible thermodynamics of Pavon, Jou, and Casas-Vasquez, applying both to the case of cosmic fluid with
bulk viscosity only. They are completely equivalent up to the 6rst order in the parameter characterizing
the departure from equilibrium. We show, if certain relations between the main variables of the two
theories hold, that they are also equivalent up to the second order in this parameter. We also extend up
to any order Israel's theory and give the relations permitting again the equivalence between the two
theories in this general case. Some cosmological consequences are discussed.

PACS number(s): 98.80.Hw, 95.30.Tg, 98.80.Bp

I. INTRODUCTION

The relativistic thermodynamics of dissipative fluids up
to now remains divided between several theories [1—6],
and the possible equivalence between them has not yet
been examined. Our goal in this article is to show that in
dissipative cosmology with bulk viscosity only, up to
second-order irreversible effects, Israel's theory of tran-
sient effects (TE's) and the extended irreversible theory
(EIT) of Pavon are equivalent. We use here the simplified
denominations "Israel's theory" and "Pavon's theory"
for brevity's sake. However, the causal theory of TE's as
well as the EIT had their precursors [7—10], contribu-
tors, and co-authors, and their peculiarities are well re-
viewed in different works, e.g. , [11,12]. We shall not dis-

cuss here the old, so-called "first-order theories" of
Eckart [13],Landau [14],and Kluitenberg [15],and their
pathological features put into evidence in the works of
Hiscock and Lindblom [16,17], although many authors
continue to use them, e.g. , in recent papers [18,19].

The motivation of our study is a recent article by
Hiscock and Salmonson [20] which suggests the idea that
the EIT of Pavon et al. [2] is nothing more than the
"truncated" Israel-Stewart theory, and consequently,
when applied to the study of the dissipative Friedmann-
Robertson-Walker (FRW) cosmology, gives discussible
results that are studied by explicit comparative numerical
computations in the case of a Boltzrnann gas. The prob-
lem raised in this article [20] arises from a neglected term
in the entropy production, with important consequences
on the evolution of the Universe.

Contrary to many authors [21,22] we shall not discuss
here the relevance of the Boltzmann gas model when ap-
plied in the context of the primordial cosmology, because
it seems to us that the computations of Hiscock and Sal-
rnonson can give some relevant indications about the pre-

dictions of alternative theories even in this case, as they
suggest themselves [20] (p. 3249 and p. 3258).

Our analysis here will focus on the thermodynamical
aspect of the relativistic theory of dissipative fluids. We
examine and compare with caution the two second-order
theories of Israel [1] and of Pavon [2], and we show the
following. (1) No term of entropy production is lacking
in Pavon's theory; hence, it is not truncated but com-
plete. So, its application to the study of bulk viscosity as
the possible origin of the inflation seems relevant, at least
as far as Israel's theory application, even in the con-
sidered Boltzmann gas case. (2) The two theories are
compatible and equivalent up to the second order in the
dissipative effects. (3) If we extend Israel's theory, the
two theories are also equivalent up to any order.

The difference between the two theories lies simply in
the definitions of the main intensive variables, i.e., the
pressure and the temperature. Particular care must be
taken while defining the pressure, which, as we shall see,
seems to be the origin of the problem here. Thus, more
generally, we stress again [6] the importance of the choice
of the local equilibrium axiom in relativistic thermo-
dynarnics.

In Secs. II and III, we recall the main features of
Israel's and Pavon's theories. In Sec. IV, we perform the
comparison and show that they are compatible; then we
show general relations, up to the second order, existing
between the two theories. In Sec. V we give an extended
version of Israel's theory, and discuss some general
consequences on the bulk-viscosity-driven inflation.

II. ISRAEL'S THEORY

A. Balance equations

In Eckart's frame with four-velocity u, the fourteen
independent primary variables of nonequilibrium, the
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number of particles flux X, and the energy-momentum
tensor T ~, can be split as follows:

ri
~u

n
(2.7)

N =nu (2.1)

giving 21 secondary variables [1]: u, the particle num-
ber density ri, the internal specific energy u, the heat flux

q, the bulk-viscous stress ~, and the viscous stress ~ ~,

N, TPr)= (n—,u, u, q, n, n ~), (2.3)

T ~=n(1+u)u u~ —(P+n)A. ~ u—q~ u—~q +m ~,

(2.2)

ri
nu =(P+m. )—.

n
(2.8)

VQ +0. (2.9)

An overdot on a symbol means the derivative with
respect to the proper time co of Eckart's frame, e.g.,
n =dnldco, de =g &dx dx~.

We suppose the existence of the four-vector entropy
flux S for the system. The second principle of the ther-
modynamics is given by the relation

constrained by the seven relations

u u =1, u q =0, m =0, n ~u&=0 . (2.3')
In Eckart s frame, the nonequilibrium entropy density is
given by

The local space projector is defined as ns=S u (2.10)

ap=g &—u u~ (2.4}

(the signature of the metric g~~ is taken equal to —2).
The pressure P appearing in the energy-momentum ten-
sor (2.2) is only a dependent variable in the sense that it is
not included among the fourteen independent secondary
variables, whereas the bulk-viscous stress m is one of
these independent variables [see (2.3)], which stresses the
difference of treatment for the two variables P and m..
For this reason, the pressure P cannot be defined as

The local isotropy of the system leads again to suppose
that the entropy flux of conduction does vanish

(b,~Sp =0). —

Most of the authors (including Pavon et al ) agree on
this common basis for any relativistic thermodynamics
theory. The divergences appear when a thermodynami-
cal local equilibrium axiom, and its associated Gibbs
equation, is chosen. The pressure P to be considered in
the energy-momentum tensor (2.5) depends on such an
axiom.

as some authors often do (e.g., yet recently [23], p. 69).
Therefore, one must find an alternative way to define the
pressure P. Generally, it is defined thermodynamically
from the axiom of local equilibrium, which imposes a
new important independent variable to be considered:
the entropy, which we shall introduce below. Most of the
authors agree with the statement that the isotropy and
homogeneity of the cosmological FR& model impose the
bulk-viscous stress m. in the energy-momentum tensor as
the only dissipative phenomenon. ' Therefore, in such a
case, we have simply

B. Gibbs equation

so=so(n ', u) . (2.11)

Gibbs equation is founded here on the subtle notion of
a "fictitious" [1,6], or "comparison's" [5], or "fiducial"
[16] local equilibrium state. The specific entropy so of
the system in this local equilibrium state is supposed to
be only a function of actual nonequilibrium values
(n, u },just as if it were in thermodynamical equilibri-
um:

and the tensor (2.2) reduces to

Then, the associated Gibbs equation

dso=To 'du+POTo 'd(n ') (2.12)

T ~=n(1+u)u up (P+n)b ~. —

The conservation equations are

(2.5) enables us to define the temperature Tp and the pressure
Pp of fictitious equilibrium by putting

VX =0,
V T~=O,P

(2.6a)

(2.6b)

and lead, in particular, with (2.1) and (2.5), to the follow-
ing expressions of the expansion rate and of the first prin-
ciple of thermodynamics, respectively,

TQ
Bsp

, P,T, '=
t) ll

Bsp

an
(2.13)

P=PQ . (2.14}

In Israel's theory, the pressure introduced in (2.2) is the
same as the one defined thermodynamically by (2.13)
from the local equilibrium axiom (2.11)

We do not consider here the case of (pure) matter creation
[24,18,19]; l.e., we consider only the case of conserved number
of particles, but dense enough for taking into account the bulk
viscosity.

But we note that the specific entropy of fictitious equilib-
rium sp must be a priori distinguished from the actual
specific entropy s of nonequilibrium. At the se=ond-order
approximation considered by Israel, and for the only dis-
sipative phenomenon considered, the bulk-viscous stress
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m., Israel gives the explicit link between the two specific
entropies:

and Pavon [2] assumes that, in the second-order approxi-
mation,

7T2
S $0 f0

2

where

(2.15)
(

Bs

where

=n 'nT '~, (3.4)

q)0=go(n ', u ) (2.15') a=a(n ', u, m) . (3.4')

m2
ds =dso+ df'o+to~d (2.16)

is a coeScient proportional to the relaxation time of tran-
sient effects [1]. Differentiating (2.15) yields the relation

Equation (3.2) gives the entropy production

V S =ns=nT 'u+nPT '(n ')+aT 'nn. (3.5)

The first principle of thermodynamics (2.8) in (3.5) yields

Vg =aT 'n 'ri+aT (3.6)

C. Entropy source

The four-vector entropy density is, in this case,

S =nsu (2.17)

(2.18)

The first principle of thermodynamics (2.8) inserted in
(2.18), together with (2.14), yields

2

V S =m To '(n ')ri +n yo+npomir . (2.19)

so that the entropy source (2.9), with (2.17), (2.16), (2.12),
and (2.7), can be written as

2

VQ =ns=nTO 'u+nPOTO '(n ')+n yo+nq&on~ .

The second difference, connected with the previous one,
is that now the pressure P of nonequilibrium in (2.2) is no
longer the pressure (2.13) of fictitious equilibrium (2.11),
but the one defined by (3.3) for extended local equilibrium
(3.1). Pavon had already noticed [2] (p. 87) that their
variables (T,P) differed from the (TO, PO) introduced by
Israel, except in the first-order approximation, where
they coincide. This result, because of the fact that the
functions s and so are different, is true for all thermo-
dynamical variables, except for n ', u, and u, which
are, by definition, the same at the fictitious equilibrium
and at the nonequilibrium.

We see from Eq. (3.6) that there is no neglected term of
the (2.19) type, and therefore Pavon's formula is not a
truncated Israel's formula.

According to Hiscock-Salmonson [20], the second term
in the right hand side (rhs) of (2.19) is the term which has
been neglected by difFerent authors. Note that this term
was repeatedly omitted by Israel [1,25].

III. PAVON'S THEORY

s =s(n ', u, m) . (3.1)

There are two (logically linked) main differences with
respect to the precedent theory exposed above. Firstly, if
we consider dissipative fluxes as new independent vari-
ables, it seems that we are necessarily led to a local equi-
librium axiom in extended thermodynamics [2] of the
form

IV. COMPARISON UP TO THE SECOND ORDER

A. Two bulk-viscous stresses

At this point the following important question arises:
if the two points of view, i.e., Israel's and Pavon's, are
complete and valid, why should they be incompatible? If
the two theories describe the same intrinsic reality, they
should start from the same primary variables: N, T ~,

and S". Since Israel and Pavon have chosen Po (2.13)
and P (3.3), respectively, as pressures in the same energy-
momentum tensor (2.5), where all other secondary vari-
ables are also identical, then it is necessary to distinguish
two bulk-viscous stresses n., (subscript i for "Israel" ) and

(subscript P for "Pavon"), respectively, but keeping
only their sums equal:

Then, the associated Cxibbs equation

ds =T 'du +PT 'd(n ')+
a

Po+~,- =P+m

We rewrite (2.16), with (2.12) and (2.15'), as
d&

(4.1)

Bu
PT Bs

an
(3.3)

enables us to define thermodynamically the temperature
T and the pressure P of extended local equilibrium by the
relations

This condition, in general, is unnecessary. The definition (3.4)

of a holds at any order; in this sense it is general. It is only

when we want to compare it, as we intend to do, with Israel*s

theory, that we limit ourselves to the second-order approxima-
tion only.
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1T; t)IPO 17; t)lPO
ds= T '+ du+ P T '+

Xd(n '}+qlo17;d17;, (4.2}

with

TQ
Xo'- = ~qo ~qo—Pgn-~ ' au

(4.7'}

and compare (4.2) with (3.2):

ds=T 'du+PT 'd(n ')+n 'aT '17 d17 (4.3)

At the second order, (4.7) in (4.1) yields

2= 2 (4.8)

From now on, the comparison between the two theories
makes sense up to the second-order approximation only.

Yet we cannot perform a direct term-to-term
identification of (4.2} and (4.3), because the variable 17, is

not independent of Pavon's variables (n, u, 17 ). From
(4.1) we have

BP ~Po dP
7r du+

Bu Bu t)n

Then, with (4.8), (4.1), and (4.5a), (4.5c) becomes

Bq&o 17p gP
aTo ' 1+To =nqlo 1+ (1+qlo17 ) .

tt 2 17

(4.9)

In Pavon's theory, up to the second order, the function
a must be expanded around ~ =0:

+ 1+ d17
aP

'

17p

(4.4)
a =ao+ aotrp+ ao +0(17p ),

where

(4.10)

Iao..= II
aoap 0J

17 t)lpo gp t)PO
T '=T, '+ '

+17, — q, ,
Bu Q Bu

(4 5a) With (4.10), (4.9) becomes

We can identify now (4.2) and (4.3), using (4.4), which
yields the three relations

d lrp o'2
(4.10')

172 t)
PT '=P T '+ +17

Bn Bn
J

aP,
%0 I

On

(4.5b)

ao 17p ao t)qlo
aoTO

' 1+ 17p+ + Tll
ao P 2 ao

dP dP
=nqlp 1+7'p17p+ +7 p17p

17p 1l'p
(4.11)

n aT TT =qlo 1+ dP

~p
7Tf ~

Differentiating the equation (4.7) leads to4.5c

So, we end up with four coupled differential equations
(4.1) and (4.5) in the four Pavon's variables ( T,P, 17,a) as
functions of the four Israel's variables ( To, PO, 17, ,q&o). To
solve such a system is not an easy task. Fortunately, the
second order in the 17 approximation here considered en-
ables us to simplify the problem: in this case, (P —Po) is
necessarily at least of second order in 17p (or 17;); there-
fore, so is (17; 17 }, thro—ugh (4.1). The same holds for
the derivatives

P
21 ptl p

7Tp

(4.12)

QOT0 n+0 ~

—1

QQ
3/0

Qp

(4.13a}

(4.13b)

By identification of the 17p variable, and with (4.12), we
obtain from (4.11) the three relations

aP,
BQ BQ

aP
an

BPO

an

ao Bq'p 2+ Tp =4yp .
ao t)u

(4.13c)

77. B~r '=T '+
2 BQ

(4.6a)

which do not affect the 17 dependence of (P —Po), so
that the third terms on the rhs of (4.5a} and (4.5b) are at
least of third order in 17p (or 17;); therefore, we can
neglect them in this approximation. So, we find

Replacing now ao and ao in (4.10} by their values from
(4.13b) and (4.13c), we can obtain a up to the second or-
der as a function of m and of yo and its derivatives:

Bqlp 17p
a=nToqp 1+3ypm + 4yo —To +0(17p) .

BQ 2

(4.14)

STD BgoPT '=P T '+0 0

Using (4.6a} in (4.6b) yields, to second order in 17, ,

P P=y 17;, —

(4.6b)

(4.7)

Note that the condition ao+0 is essential for the general-
ity of the result, with the consequence that the expansion
(4.14) of a has generally a nonvanishing first-t rder term
in 17, while the expansions (4.6) of T and P, or (2.15) of s,
do not have such a term. This is due to the definition
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(3.4) of a, in which np. is already factorized, the intensive
variable considered in (3.4}being, in fact, n a~ .

Because of differentiation (4.12), which lowers the ex-
pansion by one power, (4.13c) is meaningless and (4.14)
plays the role up to the first order in m. only: its last
term becomes meaningless. We will run into the same
problem again with Eqs. (4.25) and (4.26). In order to
have the expansion for a up to the second order in m. , we
have to start from the expansion for s up to the third-
order in ~, which has not been considered in this sec-
tion.

In this section we showed that the theories of Israel
and of Pavon are equivalent up to the second-order ap-
proximation. Only the definitions of the intensive vari-
ables are different, but the formulas (4.6), (4.8), and (4.14)
enable us to determine one set of variables from the other
one. These formulas are equivalent to simultaneous
changes of scales for T, I', and m. .

n 'ri 1 vr—yo+yon. +qoTo Ron.

+npoTo(1+2yo'ir )~ (4.21)

with

yo Yo
0

~
—i 0 (4.21')

Identifying (4.20) with (4.21), we get the two relations

1 ~p yo+yo'ir +poTo Ao~ =gp(1+yon ),
(4.22}

The partial derivatives of (4.7) in (4.4) give, using also
(2.8), an expression for rr; that we substitute in (4.17),
which then becomes

B. Phenomenological laws g;(I+2yonp)=g (1+4yon +3yom ) . (4.23)

Looking now at the entropy sources (2.19) and (3.6), we
see that, using (2.8), we can rewrite, respectively,

and

VQ =n;[To 'n 'ri(1 yon;)+n—choir;],

VQ =m [To 'n ' ri+ny o(1 +3 yon )mp] .

(4.15)

(4.16)

m; = —(;[(1—yon; )n 'ri+nyoTo&; ],
= —

g [n 'ri+nyoTo(1+3yomp)mp],

(4.17)

(4.18)

where the positive coefficients of bulk viscosity are
defined by the functions

We notice that the term with jo of Israel's Eq. (2.19)
gives, with (2.8), the corrective term (

—yon; ) of
To 'n 'ri in (4.15), whereas the equivalent term in
Pavon's formalism gives a corrective term .3yp~ to
n go~ in (4.16).

Comparing formally (4.16) and (3.6}, we see that if we
use in (3.6) the values of fictitious equilibrium To and

apTp instead of the coefficients of the two rhs terms, the
term nyo3yonpa of (4.16) will disappear. Therefore, as
Hiscock and Salmonson observed [20], (3.6) would be-
come a "truncated" formula. Some authors [22] indeed
use (wrongly) these fictitious values. But some other au-

thors do not use them [26].
The expressions (4.15) and (4.16) lead to the phenome-

nological laws

Now (, also a function (4.19) of m p, can be expanded up
to the second order as follows:

772

gp =gpo+gon +pg
' o+0(m~p ),

2

p

97Tp o

a'g,
2

8'rrp o

(4.24)

in the rhs of (4.22) and (4.23). Identifying the two poly-
nomials (4.22) and (4.23) for the variable n p, we obtain

0; =k,o

2ky—o=ko

(4.25a)

(4.25b)

kp =kpo+ko~p =k;(1 2yo~p) . — (4.26)

D. Relaxation times

and, instead of the third equation (identification of m.

terms), we have two contradictory equations that we shall
not write down. This comes from the fact [already seen
about Eq. (4.14)] that we did not take into account the m.

term in the second term of the LHS of (4.23), which
comes from the derivative dP/Bn. , which, in turn, from
(4.7), can give a n p term only. For this reason we can ob-
tain a relation between g; and gp up to the first order in
m only:

g;=g,.(n ', u), g =g (n ', u, m. ) . (4.19)
We can evaluate the relaxation time of Pavon's theory,

which is defined by

C. Coei5cients of bulk-viscosities

Inserting (4.18) in the expression (4.8}of vr, , we obtain

(4.27)

and compare it with the relaxation time of Israel's theory

gp[n 'ri (1+yo~ )—

+nqroTo(1+4yom'„+3yovr )jr ] . (4.20)

r =aors, , (4.28)

where ao is given by (4.13a). Using (4.14), (4.26), and
(4.28} in (4.27) leads to

3Because they use a local equilibrium axiom of the (2.11) type. r =ro( 1+yon' ) . (4.29}
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We see that the two theories use two distinct time scales
as a consequence of the scale's changes for the intensive
variables T, P, and a (or m ) found in (4.6), (4.14) [or (4.8)].
Though our formulas are valid up to the second order
only (or first order for g and ~), they show clearly that ~ a
fortiori will differ from ~0 up to any order in n. .

with the conditions

40'= Q2p

ae
c 0

$0=/(n ', u, 0)=0, —:0,

(5.4)

V. ON THE EXPONENTIAL INFLATION
DRIVEN BY THE BULK VISCOSITY

Some authors [18,27] distinguish qualitatively two
types of bulk viscosities: a "real" or a "usual classical"
one, and an "effective" one or "viscous pressure. " How-
ever, these authors did not try to give any relation or link
between these two types of bulk viscosities, and devoted
their attention to the second type only, which, according
to them, originates from "matter creation, " and is the
only possible candidate for the inflation agent. Indeed,
we know that the stationary bulk viscosity cannot drive
inflation, as has been recognized by Lima et al. [22] after
Pacher et al. [28], from kinetic theory considerations ap-
plied to the conditions of the early Universe. Here we
make a different distinction, namely, the distinction be-
tween n; and m [see (4.1}and (4.8)], which is valid in the
case when the matter is conserved, but our approach
leads to similar conclusions. The only explicit link we
have found in the literature is an interesting relation pro-
posed by Lima et al. [[22], Eq. (3.2)], which connects two
coef5cients of bulk viscosity:

recovering (2.15) while expanding the P function.
Instead of (4.5), by comparison with Eq. (4.3), we then

obtain

Bu

Po ay ay
Bu der; Bu

(5.5a)

PT '=P T '+
0 0

(5.5b)

BP dP

a, a~
(5.5c}

p+(p+P+n )8=0, (8=V u %0),
where

(5.6)

The system of equations (5.5) has to be completed by Eq.
(4.1). We observe that we can no longer use the simplify-
ing hypothesis leading to (4.6}.

The energy conservation (2.8) can be rewritten as [[22],
p. 2756 Eq. (2.6)].

I +2.
r

(5.1)
p=n(1+u)=p(n ', u) . (5.7)

where g, is the quasistationary bulk-viscosity coefficient.
Lima et al. consider also a conservation law for the

"bosonic primeval charge, " so that the conditions are in
fact comparable to ours. Formula (5.1) has the same
form as our formula (4.26), but presents two essential
differences: (i) It is not an approximation up to the second
order, whereas ours is; (ii) it is considered in the particu-
lar case of exponential inflation and for a given state
equation, which is not our case. In addition, the ways of
obtaining them are quite different. Their Eq. (5.1} is the
rewriting of the phenomenological law only, which we
can have from (3.6); namely,

=g (n 'n . a+~).

B. Exponential inflation

Let us consider the case of exponential inflation. Then,
by definition, we have the Hubble parameter H:=R /R
(where R is the scale factor of FRW metric) such as

H=C"=K0 (5.8)

p=0 .

(5.9) in (5.6) leads to [with (4.1)]

(5.9)

so that the first Einstein equation [see, e.g. , [22], p. 2757,
Eq. (2.15)] for the FRW cosmological model yields

Moreover, our relation (4.26) comes from the comparison
of the two bulk-viscous stresses (4.17) and (4.18) [which is
(5.2) with (4.14)] of the two theories. So, we cannot
directly compare (5.1}and (4.26).

A. Extended Israel's theory
and

m; =const

P+m = —p=PO+m; .

Accordingly, it follows from (5.10) and (5.7) that

(5.10)

(5.11)

Now we want to apply our results to the problem of
bulk-viscosity-driven inflation. So, great magnitudes of
the bulk-viscous stress are needed. Hence we must con-
sider an extension of Israel's theory up to any order in m,-.
In this case, instead of the function (2.15), we can set,
more generally,

+1:—0
a7r

(5.12}

are satisfied, because n ', u and, n;(or n~) are ind. epen-
dent variables.

Relation (5.11) leads to the cancellation of the transient
effects in Israel's theory:

s(n ', u, m.;)=so(n ', u)+P(n ', u, m.;), (5.3) m;=0, (5.13)
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We can compare now our results to those of Lima et aI.
[22]. The result (5.13) leads to j'=0 in Eq. (5.1), so that
we find again a bulk viscosity which cannot drive ex-
ponential inflation ([22], note 32).

Equation (5.14) in (5.2) and in (3.4) gives also

n

n
(5.15)

and s independent of i', or, by using (5.3), P independent
of n.;.Then (5.4) implies that

—:0. (5.16)

The two theories become equivalent and reduce them-
selves to Eckart's theory.

VI. CONCLUSION

The comparison of two theories of relativistic irreversi-
ble processes limited to bulk-viscosity considerations only

and the relation (5.12) in (5.5c) leads to the same result in
Pavon's theory:

(5.14)

led us to a necessary distinction between two bulk-viscous
stresses connected via the relation (4.1). We emphasize
explicitly the distinction between these bulk-viscous
stresses, which seems to confirm the qualitative distinc-
tion made by other authors [18,27]. The difference be-
tween the two theories originates essentially from the
consideration of two distinct thermodynamical local
equilibria, and we give the relations (4.5) or (5.5) up to the
second order or at any order in m, respectively, between
the intensive variables, namely, pressure, temperature,
and coefficient of transient effects of the two theories.

When these results are applied to the study of a possi-
ble bulk-viscosity-driven exponential inflation in early
cosmology, the field equations for the FRW metric (with
k =0) inexorably lead to the disappearance of the tran-
sient effects. Such a drastic consequence is involved by
the peculiarly simple form of the field equations, in the
case of the exponential inflation, which permits us to
separate the variables (n ', u ) and tr; [see (5.10)].

Of course, if we want to take into account the full im-

pact of dissipative effects, we have now to consider the
specific role of matter creation [24]. This more general
scenario will be considered in a forthcoming paper.
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