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Kinetic versus thermal-Beld-theory approach to cosmological perturbations
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A closed set of equations for the evolution of linear perturbations of homogeneous, isotropic cos-
mological models can be obtained in various ways. The simplest approach is to assume a macroscopic
equation of state, e.g. , that of a perfect Suid. For a more refined description of the early Universe,
a microscopic treatment is required. The purpose of this paper is to compare the approach based
on classical kinetic theory to the more recent thermal-field-theory approach. It is shown that in the
high-temperature limit the latter describes cosmological perturbations supported by collisionless,
massless matter, wherein it is equivalent to the kinetic theory approach. The dependence of the
perturbations in a system of a collisionless gas and a perfect Buid on the initial data is discussed in
some detail. All singular and regular solutions are found analytically.

PACS number(s): 98.80.Cq, 11.10.Wx, 52.60.+h, 98.62.Py

I. INTRODUCTION

Early progenitors of the large-scale structure of the
Universe are usually provided for by small (linear) per-
turbations of otherwise homogeneous and isotropic cos-
mological models [1]. After they have come within the
Hubble horizon of the growing Universe and their sub-
stratum has turned nonrelativistic, they eventually be-
come large, leading to gravitational collapse, the corre-
sponding mass scale being set by the Jeans mass [2].

The theory of linear perturbations in a Friedmann-
Lemaitre-Robertson-Walker (FLRW) model dates back
to Lifshitz' work in 1946 [3]. The metric perturbations
and correspondingly the perturbed energy-momentum
tensor are decomposed into scalar, vector, and tensor
parts according to their behavior under spatial coordi-
nate transformations. In linear theory these parts evolve
independently. Any tensor 9'„ is divided into a back-
ground part t"„and a perturbation bt"„:=t"„—t"„.
The background is given by a FLRW model. However,
the mapping of points z" on the physical manifold to
points z" on the background is not unique. Unphysi-
cal (gauge) modes can be avoided by using Bardeen's
[4] gauge-invariant variables for the metric and matter
components. The evolution of the metric and the matter
perturbations is governed by the Einstein equation

G".+ bG". = —Sabra (T".+ Sr"
)

where 0"„is the Einstein tensor and T"„ the energy-
momentum tensor. Useful reviews of gauge-invariant cos-
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mological perturbation theory are, e.g. , Refs. [5] and [6].
In this paper we are mainly interested in comparing

the methods of determining self-consistently the matter
perturbations bT"„, needed to solve (1.1). The Einstein
equation describes the evolution of the metric pertur-
bations for given matter perturbations. The covariant
conservation of the perturbed energy-momentum tensor
follows from the Bianchi identity. This does not fix 6T „
completely; additional input is needed. The simplest pos-
sibility is to assume that both the perturbed and the un-
perturbed media satisfy a simple macroscopic equation
of state, e.g. , that of a perfect fiuid [3,6,7].

More complicated forms of matter in the early Uni-
verse require of course a microscopic description. Such
a description was first developed by Peebles and Yu [8]
on the basis of kinetic theory [9]. There the Boltzmann
equation in seven-dimensional phase space (r, x, p) with
an ansatz for the collision term is used. 7 denotes the con-
formal time, x the spatial coordinate, and p the spatial
moment»m. The timelike component of the momentum
is not independent, since the particles are on the mass-
shell p = gp2 + m2 (p = ~p[). The Boltzmann equation
together with Eq. (1.1) has then usually to be solved nu-
merically. A lot of work has been accomplished within
this framework [5,10—15,39].

A difFerent approach has been formulated more re-
cently by Kraemmer and one of the present authors [16].
In a completely Beld-theoretical kamework, the matter
perturbation bT"„ is determined by the (thermal) gravi-
ton self-energy [17), evaluated on the given background.
In contrast to kinetic theory, this framework is fully quan-
tum theoretical &om the begi~~ing, and might turn out
to be an alternative to the still to be formulated quan-
t»m kinetic theory. Up to new, this approach was used
to incorporate collisionless, massless matter [16,18] pos-
sibly mixed with a perfect fiuid component [19,20], which
can be described perturbatively by the high-temperature
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limit of the underlying 6eld theory. In this limit one may
expect equivalence with classical kinetic theory applied to
the quanta of the 6eld theory. A detailed discussion of the
relation between the thermal-field-theory approach and
the one based on kinetic theory is however still missing
and will be the main purpose of the present paper. The
two approaches are compared for the case of collisionless,
massless matter, with an arbitrary admixture of a perfect
Quid. We will show that both approaches coincide in the
high-temperature limit of thermal-field theory. The ex-
act solutions 6rst found in the 6eld-theoretical approach
[16,19] in the form of power series with infinite radius of
convergence will be discussed in some detail with regard
to their dependence on the initial data. Moreover, by
a generalized power-series ansatz further exact solutions
are obtained that are singular as the initial big-bang sin-
gularity is approached. (The existence of such solutions
has been established first by Zakharov [12] and discussed
further by Vishniac [13].)

The paper is organized as follows. In Sec. II we intro-
duce the Einstein —de Sitter background and the gauge-
invariant metric potentials and matter perturbations.
The Einstein equations are written down for these vari-
ables and their solutions for a perfect Huid universe are
recapitulated. The kinetic theory is explained in Sec. III.
We follow and add on to the approach of Kasai and
Tomita [15], which defines gauge-invariant distribution
functions. A set of integro-di8'erential equations similar
to that already existing in the literature [10] is derived
for the most general initial conditions. In Sec. IV we

prove that the same equations emerge &om the thermal-
field-theory approach in the high-temperature limit. The
gauge-invariant equations describing a mixture of a col-
lisionless gas and an isentropic perfect Quid are derived
in Sec. V, and their exact solutions in terms of (general-
ized) power series (details are given in the Appendix) are
discussed in Sec. VI. A summary is given in Sec. VII.

Throughout the paper we use units 5 = c = ka =
l. Our notation is similar to that of [4] and [15], but
we do not normalize energies and masses to /8mG. It
differs only in the definition of the metric potentials for
scalar perturbations and in that we expand all functions
into planar waves instead of spherical harmonics, since
we consider only a spatially Hat FI RW model. Greek
indices take their values in the set (0, 1, 2, 3} and Latin
ones in (1,2, 3}.

II. CAUC I-INVARIANT COSMOLOC ICAL
PERTURB ATION S

Before we define the gauge-invariant variables we intro-
duce the Einstein —de Sitter background. The invariant
line element is given by

ds = S (r) ( d7.—+ b;~dz'de~) (2.1)

with 7. the conformal time measuring the size of the
horizon in comoving coordinates RH. The background
energy-momentum tensor has the perfect-Quid form

T"„=u"u„(E + P) + Pb„", (2.2)

where u"u„= —1. We shall concentrate on the radiation-
dominated epoch, where E = 3I . The scale dependence
of the mean energy density is given by E(S) = E(S =
l)S, and the evolution of the cosmic scale factor S(7)
follows &om the Friedmann equation

S(~) = 8vrGE(S = 1)
7

3
(2.3)

As already explained in the introduction, the per-
turbed tensors are divided into scalar, vector, and tensor
parts:

bg„. = bgs. +bgv„+bg~„,bT„bTs„+bT" v„+"bTr (2 4)

Both tensors have ten independent components: four of
which belong to the scalar, four to the vector, and two
to the tensor part (the latter correspond to the two po-
larizations of a gravitational wave).

Since the Einstein —de Sitter background is spatially
fiat and depends only on the cosmic scale factor S(r),
any function F(7, x) can be expanded into plane waves
e'"'". A vector and a tensor valued plane wave is given
by we'~" and te' '~, respectively, where we specify the
constant (but k-dependent) vector w to be transverse
(w k = 0) and the constant symmetric tensor t to be
transverse-traceless (t. k = 0 and tr t = 0). With this
any symmetric tensor can be uniquely decomposed into
its scalar, vector, and tensor parts. This is done for each
individual mode proportional to e'"'" of Eqs. (2.4) as
follows [(p, v} = ((O,i), (0, j)}]:

b&s = S
ii, B(')

tu;B( ) 2x,u—j(;k~)Hz, —)1 {y) e

60 0
(2) I

e'" "
q 0 2t;,H~

(2.5a)

(2.5b)

(2.5c)

aIld

{2.6a)
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4~, (v(~) B(~)) )
(1)

All ~2)7CT
(2.6b)

(2.6c)

r = r + T(r, k)e'"'",
z* = x* —L ( ) (r, k) ak*e'"'", (2.7a)

and

x' = z'+ L( )(r, k)ur'e*"'" (2.7b)

for the vector perturbations. From (2.7a) and (2.7b) fol-
lows that only two scalar "potentials" and one vector
"potential" of the metric perturbations are gauge invari-
ant. A set of such metric potentials is given by

O:=2 HL, + H~ + (B— ——HT, )
(o) (o) ~(o)

3 T z

II:=—A+ HL, + —H (o)
3 T

+(B( ) —H )'+ -(B( ) —H ) (2.8a)

for the scalar part and by

(2.Sb)

for the vector perturbations. The prime denotes a deriva-
tive with respect to

where k = k/k, with k = )k).
The metric components A( rk), B( )(r, k), Hr, (r, k),

H& (r, k) and the matter variables b(r, k), v(~)(r, k),
xL, (r, k), mg (r, k) with a = (0, 1) transform non-(~)

trivially under gauge transformations, i.e., coordinate
transformations of the perturbed manifold while keep-
ing the background fixed. Only the tensor components
(a = 2) are gauge invariant by themselves. The gauge
transformations for scalar modes are

be defined. For the scalar perturbations we introduce

g:= xL, —b
(o) . „(o) ~(o)

+ 4 (v(o) B(o))
4 (0)6~ ——Vg

(2.10a)

„(). () (2.10b)

where v, ) can be understood as in the scalar case and
v, is the velocity relative to the normal to the constant-
time hypersurface. v, k/8 is the intrinsic angular veloc-

ity (vorticity) (Ref. [4]). The anisotropic pressure z'T, is
gauge invariant as above. For tensor perturbations the
only physical variables are given by the metric potential

HT, ——.H and the anisotropic pressure mT, , both al-(2) ~ ~ (2)

ready gauge invariant. (Here we follow the conventions
of Ref. [4], which differ from the definitions of 4' and H
in Ref. [19] by a factor of 2.)

From the Einstein equations (1.1) relations between
the metric potentials 4, II, 4', and H and the matter vari-

ables g, e, ez, vrT, v, , and v, follow. The details are
given in Ref. [4]. For the scalar components

g is called the entropy perturbation, although it may not
coincide with the perturbation in the true physical en-

tropy. v, is the amplitude of the matter velocity, and is
related to the shear 0 by 0 = v, k/8 (Ref. [4]). e is the
density contrast on a spacelike hypersurface which repre-
sents the local rest frame of matter everywhere, whereas
es is the density perturbation on a hypersurface whose
normal vector has no shear. The anisotropic pressure

is gauge invariant by itself.
For vector perturbations the invariant matter variables

are

x:=~k. (2.9)

The variable x is related to the number of (half-) wave-
lengths inside the Hubble horizon

and we shall later adopt it as a normalized time variable.
4 and II are translated into the variables used by

Bardeen [4] by

1
4H ———4

2
1

4A ———II ——4 .
2

In the same manner gauge-invariant matter variables can

(2.11a)

(2.11b)

t' „4, 1 2, 2z'
~

4" + —4'+ -4+ —II' ——ll
~

= —g3 x 3 )
(2.12a)

(2."+3)4+32:4'+6II= 3~, . (2.12b)

Covariant conservation of the perturbed energy-
moment»~ tensor implies

which show the reason for our choice of the metric poten-
tials: 4 is a potential for the density perturbation and II
the potential for the anisotropic pressure perturbation.
Another set of equations is useful:
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+ TJ
——

l

——4 —II. (2.13)

For vector perturbations the Einstein equations read

(2.14)

and conservation of the energy-momentum tensor yields

(2.15)

interacting with electrons via Thomson scattering. For
collisionless, massless neutrinos, Stewart [10] derived the
full set of Einstein-Vlasov equations. An extensive inves-
tigation of density perturbations with massive and mass-
less neutrinos, radiation, and other matter was performed
numerically by Bond and Szalay [14].

Kinetic theory is applicable for particles whose de
Broglie wavelength is smaller than their mean &ee path.
For collisionless matter this is certainly the case. More-
over, the de Broglie wavelength 2z/p has to be smaller
than the Hubble horizon R~ = r (GT4) i)2, i.e. , with

Tensor perturbations satisfy p ~ T &g mp)T (3.1)

(2.16)

Our task in the next section (kinetic theory) and in
Sec. IV (thermal-field theory) is to self-consistently deter-
mine the matter perturbations &om a microscopic theory.
But the simplest case is to close the above equations by
assuming macroscopic equations of state. We end this
section by briefly recapitulating the solutions obtained
with a perfect fluid.

In the case of a perfect fluid the anisotropic pressure

vanishes (m&~
= 0 for all a). Additionally we assume

adiabatic (isentropic) perturbations, i.e., g = 0. Equa-
tion (2.11) implies II = 0, and Eq. (2.12a) reduces to an
ordinary difFerential equation for the metric potential C.
The solution is given by a spherical Bessel function for
regular behavior at z = 0 and a spherical von Neumann
function for singular behavior in the origin:

C = — c jil I+d y l

(o) & * & (o) (
& 3) 3)

where c(o) and d(o) are constants. The regular solution
approaches a constant for small x (superhorizon scales),
which leads to a growing e x2 because of Eq. (2.11).
Vector perturbations in a perfect Quid have constant v

Rom (2.15), which is a consequence of the Helmholz-
Kelvin circulation theorem [21]. Requiring regular be-
havior of 4' at x = 0 implies v, = 0, for otherwise 4'
would be proportional to 1/x2. The tensor perturba-
tions are f'reely propagating gravity waves; the solution
of (2.16) is given by

which can be regular or singular as x -+ 0. Their am-
plitude decays ( x ) for large x in accordance with
energy conservation [21].

III. KINETIC THEORY APPROACH

The framework for kinetic theory within general rel-
ativity was set up long ago (see, e.g. , Refs. [9,22]); a
recent book on this subject is Ref. [23]. In the con-
text of cosmological perturbations, kinetic theory was
first used by Peebles and Yu [8]. They discussed the
coupled Boltzmann and Einstein equations for photons

the temperature T has to be below the Planck scale [23].
In this section we shall concentrate on the case of col-

lisionless, massless matter; the results for the more gen-
eral and more realistic case of a two-component system
including a perfect Quid will be given later on. The mass-
less case is somewhat exceptional in that it is rigorously
consistent with a thermal equilibrium situation. A ther-
mal equilibrium in an expanding universe can only be ob-
tained in the case of massless particles, since the FLRW
models provide a conformal timelike Killing vector only

[9], or in the nonrelativistic limit.
In setting up the kinetic approach to cosmological per-

turbations, we follow the paper by Kasai and Toinita [15].
They use gauge-invariant distribution functions [24], split
up into scalar, vector, and tensor modes. Other authors
are usually working in a specific gauge [10—14,39]. An
in6nite set of gauge-invariant equations for the Quid vari-
ables describing density perturbations has been obtained
in Ref. [25]. The authors of Ref. [15] use kinetic theory
within the tetrad description of general relativity [22].
The tetrad is de6ned by g„„=e„e„g b. It spans an
orthonormal basis in the tangent space.

The phase space of an ensemble of particles is described
by the four space-time coordinates z" and the momen-
tum components of the particles p":= dx"/ds, s being
an aKne parameter. Since the particles' energy is on the
mass shell p = lpl =:p (for m = 0), the dimension of the
phase space is seven. An invariant volume of momentum
three-space is given by dpidp~dps/p =:dsp/p, where the
indices refer to the tetrad basis. The distribution func-
tion F(r, x, p) satisfies the Boltzmann equation

L(F):=
I
p" —I'.",p"p' lF(, , p) = &[F]

c)

Bx& ~ c)p )
(3.2)

The collision term C is a functional of E and has usually
to be put in by hand. It is identically zero for collisionless
matter. I'"„denotes the usual ChristofFel symbol.

The energy-momentum tensor is de6ned by

(3.3)

In the collisionless case covariant conservation of T"„fo1-

lows from the Vlasov equation L(F) = 0. The perturba-
tions of the energy-moment&. n tensor are given by



50 KINETIC VERSUS THERMAL-FIELD-THEORY APPROACH TO. . . 2545

d3
p"P bF+(~p"p +p"bp )F (3.4)

p
ables eg, v, ,— and zr& from (2.10a) and (3.4) (a more
detailed derivation is given in [15]):

The perturbations of the particle momenta bp" are cal-
culated with help of the inverse tetrad, which reads

4' 3 (P)
eg = = dpp ap (x) p) 1 (3.9a)

e" = —
i bf ——bg"Sl, 2 )

in linear theory. bp" = be"p relates bp" to the metric
perturbations. In (3.4) the perturbed distribution func-

tion is bF = F —F, where F = F(Sp) is the background
distribution function. In thermal equilibrium, the latter
is a Bose-Einstein or a Fermi-Dirac distribution depend-
ing on S(v)p, the energy of the particles in comoving
coordinates, only. Thus

1
sp+1

with PS(w) being the inverse temperature.
The decomposition into scalar, vector, and tensor per-

turbations in the plane wave expansion is given by

dp p'-("(*,p),
0

(3.9b)

{o} 12~ 3 {o)
zr~ = dpp a, (x, p) .

5E
(3.9c)

1 BJ BFJ' ——p + zp J = —zpp (4+ II),x Bp~ c)p
(3.10)

where a takes the values 1,2, 3 and refers to the tetrad
basis. Its solution is

Here the orthogonality of the Legendre polynomials has

been used. e follows &om e~ and e, . g vanishes, since
p"p„= 0 in (3.4) and b(p"p„) = 0, as well. Inserting J
into (3.2) for scalar perturbations leads to the equation

bF(7, x, p) = ) f( ) + f(')P
p

+f(s) p p si x
T t

e
p2

(3 5)

J(* p u) = '"' "'J(*o p I )
aF I—zpp dx'(@+II) (x')e '"(* *)
Bp

(3.11)

With an isotropic background distribution, the f( )

depends on v, the absolute values k and p, and the cosine
p:= k p/Izp. For a given mode with wave vector k,
we write f( ) = f( )(x,p, p). Like the matter variables
introduced in Eq. (2.6) the distribution function is not
invariant under the gauge transformations (2.7).

A. Scalar perturbations

With

and

1 d p
eg

——— p J(x,p, p) —2O
g p

1 „ 48F

For scalar perturbations a gauge-invariant distribution
function is given by

I(o)(x p p) . f(o) +p (B(o) II'( ))
BF tl pp

the Einstein equations (2.12) read

4" + —4'+ 4 = —(4+ II) ——(4+ II)
x 3 x

(3.12a)

or by

+zp( —B( ) —H( ) (3.6)

(3.12b)

(x'+ 3)C +3zc' = 6(@+II)
—12 dx'j 0(x —x') (C + II)' (x')

~EQ

+12) P(') j„(*—*,) .

J(x,p, p):= I( ) —— 4' .
2 Bp

(3.7)

I'"(*p V) = ) ."'( p) "&-(S)

According to the expansion theorem for Legendre func-
tions,

The spherical Bessel functions j„(x—xo) are the Fourier
transforms of the Legendre polynomials in Eq. (3.8). The
last term on the right-hand side (RHS) determines the
initial conditions. The coefEcients P„are defined by

P(":= .J',"dp p'a("(*„p) —11(x,) ——,'e(x.),

for every I( )(p) 6 L [—1, 1]. The utility of (3.8) becomes
apparent by calculating the gauge-invariant matter vari-

P:= ~ J, dpJ a (xo, p),(0) oo 3 (o) n) 1.
(3.13)
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B. Vector perturbations The initial conditions for the Voherra-type integral equa-
tion (3.19) are given by the coefficients

Here we use the gauge-invariant distribution function

1(l)(z p p) f(1) + B(1)pBF
2 Op

(3.14)

and expand it, as above, into Legendre polynomials in p:

Pl'l = =f &Pl'al'l(x„P) .

C. Tensor perturbations

(3.20)

I"(* p V) = ).a."(*p)i"P-(~) (3.i5)

In terms of the coeKcients a„, the matter variables are

For tensor perturbations the distribution function f(~)
is gauge invariant itself. %ith its expansion into Legen-
dre polynomials

U, = = dPPs
l

ap(')(z, P)+ —a, (z, P) l, (3.16a) f")(z,p, l ) = ).a.")(»p)&"P () )
n, =O

(3.21)

happ l
-ai (*,p)+-as (»p) l

.(i) 24m s (1 (i) 1 (i)
5E p (3 7 )

(3.16b)

For vector perturbations Eq. (3.2) reads

the anisotropic pressure reads

dpp ap (x, p) + -a2 (z, p)
(2) 24m , (2) 2 (2)

15E p

1 .c)I('), aPI'( ——p + zpI( = cpp
p

Its solution is

(3.i7) +—a (z, p)
(2)

2i 4 (3.22)

The Vlasov equation for the tensor perturbations reads
I(l) ( )

—ap(x —ao) I(l) (

+imp dz'4(z')e '" *
&p

(3.IS)
1 .c)f('), OPf" ——p + vf'" =p
z Bp~ Bp

(3.23)

With this solution inserted into v„ the Einstein equation
(2.14) becomes

It is solved by

f"'( ) = '"'* *'f'"(*o» )

z'4 = —24 dz' '{ ) 4{z')
x —x'

+») ~(') [~.(*--.)+~."(*-*.)] (3.19)

+p dz'H'(z')e '"(* *) . (3.24)
BF

"ap *.
Inserting this into {2.16) yields

z OO

z'
l

H" + H' + H
l

= —2—4 dz', , H'(x') + 3 ) P( ) j„(z—zp) + 2j„"(z—zp) + j( ) (z —zp) . (3.25)

The coeKcients encoding the initial conditions are

p(*l f g&& ol 1(z (3.26)

XV. THERMAL-FIELD- THEORY APPKDACH

Apart from some notable exceptions [24—26] all results
given in the literature within kinetic theory have been
derived by choosing a speciGc gauge. As was shown in
the preceding section, this dependence on the gauge may
be circumvented by completing the program lined out by Il gG +IM (4.1)

I

Kasai and Tomita [15]. As we have seen, this requires a
skillful redefinition of the basic distribution function.

A manifestly gauge-invariant approach is provided by
thermal Geld theory. For a system containing gravity
as well as matter at a temperature T below the Planck
scale (T (( mpi), the efFective action (i.e., including all
radiative contributions) I'[g] can be split in a part de-

scribing classical gravity, the Einstein-Hilbert action S
itself, and an effective action I'[g]M induced by the ther-
mal matter with classical action S
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IcM
T""(z):=

V
—g 6gpv

(4.2)

and self-consistent perturbations thereof have to satisfy

This is automatically gauge invariant provided any gauge
fields are subject to background-covariant gauge condi-
tions.I'I does not depend on curvature effects in the leading-
order temperature contribution. In the radiation dom-
inated regime, the Ricci tensor is proportional to GT4.
Thus for temperatures below the Planck scale (T « mp~)
curvature effects are lower order in temperature, i.e.,

The energy-momentum tensor is given by

tion possesses, in addition to diKeomorphism invariance,
an invariance under conformal transformations, which is
expressed by the Ward identity [16,19]

IIa» 1Z aP
'7 2

Since the Einstein —de Sitter background is conformally
Bat, the graviton self-energy can be simply calculated by
evaluating II »~ on fIat space-time and transferring it to
the curved space by multiplication with cosmic scale fac-
tors S. This calculation was done by one of the authors
in Refs. [17,19]. We will not repeat it here, but sketch
the most important steps of its derivation.

The graviton self-energy II »~ is related to the Fourier
transformed self-energy in Bat space-time II »~ by

bT"„(z) = ", hgp (z') .brp„(z)
~c gpcr Z

(4.3)
II" P (»z )~g=s~g

This relates the perturbed matter variables to the ther-
mal graviton self-energy which is defined by

d4k= S '(~) e'"~ — &II&"p (k)~„S-'(~') . (4.5)
(2vr) 4

IIP P
( )

. (V g ( ))
2 bg (z')

(4.4)
In the high-temperature limit, its tensorial structure
turns out to be the same for any field theory and is given
by

A perturbative expansion in Feynman diagrams is ap-
propriate for weakly interacting matter. Higher loop
orders due to internal graviton propagators are sup-
pressed by powers of GTz « 1 for T « mp~. A high-
temperature expansion of I'I in the sense of A: (& T is
appropriate for the study of cosmological perturbations,
because the external scale is set by the Hubble horizon
R~ = 7 (GT ) ~z, which is && T i for temperatures
well below the Planck scale.

First attempts to calculate the thermal gravity self-

energy have been undertaken in Ref. [27]. A complete
calculation of the leading high-temperature contribution
was given first by one of the present authors in Ref. [17].
For this only one-loop diagrams without internal gravi-
ton lines need to be computed. Similar issues have been
studied in Ref. [28]. Recently, de Almeida et al. [29]
have computed the next-to-leading order contributions
for radiation and bosonic matter in the massive, but still
collisionless case.

By calculating the graviton self-energy from thermal
Beld theory on the cosmological background, one can ob-
tain the RHS of the Einstein equations (1.1) from (4.3)
using the definition (4.4). In the kinetic theory approach
the Boltzmann-Einstein systexn of equations has to be
solved simultaneously. This can be done analytically for
collisionless, massless matter, but in general only numer-
ical solutions can be obtained. In the thermal-6eld the-
ory approach, the corresponding problem is to calculate
the graviton self-energy on a curved background space-
time. An explicit reference to perturbations of distribu-
tion functions is completely obviated, which might turn
out to be useful when more than the classical limit is
of interest. A coxnplete evaluation of the therxnal gravi-
ton self-energy in curved space is certainly a formidable
task. However, restricting our attention to coHisionless,
massless matter again, one can take advantage of the
fact that the high-temperature limit of the effective ac-

11pvpcr 1 Ipvpcr 1
bye(p cr)v

g—g 2 2 a p

which follows in a straightforward calculation from the
Feynman rules of the imaginary time formulation (see
e.g. [30]) of thermal-Beld theory. The totally symmetric
quantity I ~~~ is given by

I ~"(k) =r ) (2z)s p2(p —k)2
2%'s T

(4.7)

Sum and integral are conveniently performed with the
help of the so-called Dzyaloshinski algorithm [31,30]. Its
values are tabulated in the appendix of Ref. [17]. They
are polynomials in ks/k times

Q(—')= »I
k 2 gkp —k$

the zeroth Legendre function of second kind. These may
be rewritten with help of the formula

Q„{z)= P„(z)QO(z) —) —P,{z)P„{s)1

in terms of higher Legendre functions of second kind plus
polynomials.

Like all other quantities, the graviton self-energy is ex-
panded into plane waves. Therefore, only the Fourier
transformation of ko into w in (4.5) has to be performed.
The integrals involved are
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oo+t7
d .—-(*-*')q„(~)

pmo+ 2~

where ur = kp/k and retarded boundary conditions are
imposed.

In Eq. (4.3) this leads to convolution integrals of the
form

There has to be a finite non-negative integration bound
zp because 7 & 0. On the other hand, the functional
derivative in Eq. (4.3) is usually defined without restric-
tion. For that reason we have to put in the initial condi-
tions for xo by hand. We do this by the replacement of
the metric potentials by

kinetic approach, Eq. (3.12), are obtained, except that
the initial conditions are parametrized differently. The
coefficients p„can be related to the P„appearing in(o) {o)

Eq. (3.12) through the formula

1

2n+ 1
[nj„,—(n+ 1)j„+i], (4.9)

(o) a(o) 1 ~(o)
&o — &o &22"

(o) p(o)

by a linear transformation which is non-singular and of
upper-triangular form (albeit infinite dimensional). If
P( ) = 0 for all n ) 3, which is a frequently adopted sim-
plifying assumption in the kinetic approach (the so-called
14-moment approximation, see, e.g. , Ref. [32]), then this
relationship is given by

(C, II, e, e)'(*) ~ (e, II, e, II)'(z)O(* —*.) (o) ~ (o)= —-P2 .
2

(4.10)

+ ) p( )$( )(z z )
n=o

The infinite sum provides the initial conditions for a
formally infinite-order difFerential equation, which is ob-
tained differentiating the convolution integral above (see
[19]). The infinite sum yields derivatives of spherical
Bessel functions, which can be rewritten into spherical
Bessel functions.

A. Scalar perturbations

To arrive at the expressions for the matter perturba-
tions in the thermal-field theory, we have to relate them
to the graviton self-energy through Eq. (4.3). The matter
variables on the RHS of Eqs. (2.12) read

B. Vector perturbations

In a similar manner we obtain, for vector perturba-
tions,

v. = —3 dz', 4(z')
x —x'

+) ~(') [jp(z —zp)+ j2(z —*p)]'"'
n=o

(4.11)

which together with (2.14) reproduces (3.19), if the co-

efficients p„are reexpressed in terms of the P„which(i) (I)

parametrize the initial conditions in Eq. (3.19). Because
of jp + jp' = s (jp + j2), the relationship between the p(i)

and the P(i) is, apart from an overall sign, the same as
in the scalar case. Hence, we have

and

(I) (i) ~ (~)
~o -po +-p2

2

., = 2++411-4 dz'j, (z- z') (C+11)'(z')
~CQ

n=o
(4.8)

(i) p(i)

(I) 3 (&)=-P2 .
2

C. Tensor perturbations

(4.i2)

Inserting this into (2.12), the same equations as in the In this case

~T = —24 "z' H'(z') + ) 7„' '
~

jo+ —j2+ —j4 ~
(*——*o)(2) j2(z z) 2 fl . 2 . 1

(z —z')2 " ql5 21 35 )
(4.i3)
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(2) a(2) a(2)
'Yo — &o 2"

(2) p(2)

(2) 3 (2)
2

(4.14)

if all higher coefficients are zero, exactly as in the scalar
case.

Summarizing, the kinetic theory approach in the
gauge-invariant formulation of Ref. [15] and the thermal-
field-theory approach in the high-temperature limit lead
to the same equations for cosmological perturbations
of an Einstein —de Sitter universe filled with collision-
less, massless particles. There is a difFerence, however,
in the way the initial conditions are introduced, which
may seem somewhat arbitrary in the field theoretical ap-
proach. In fact, the initial condition terms in Eqs. (3.12),
(3.19), and (3.25) are completely arbitrary functions due
to the von Neumann expansion theorem. We could,
therefore, just have added the inhomogeneous terms by
hand at the end of the calculation, but as we have seen
the way in which we have implemented them there is
still a close relation to the initial moments of the initial
distribution function of the kinetic approach.

V. COLLISIONLESS MATTER AND A PERFECT
FLUID

which with (2.16) leads again to Eq. (3.25). Because of

jo + 2j&'+ jo ——8(zz jo+ zz j2+ ss j4), the first three

coefficients p„and P are related by(2) (2)

v = Tell v+TPF v ~ (5.1)

To describe the radiation-dominated epoch of the Uni-

verse, we ass»me that the components of the background
perfect-Quid energy-moment»m tensor TpFI'„obey the
same equation of state as the collisionless gas compo-
nents, i.e., EpF = 3PpF. For both perturbed energy-
momentum tensors hT,u"„and bTpp"„, gauge-invariant
matter variables are de6ned as in Sec. II. We de6ne the
ratio of the collisionless background energy density to the
total background energy density to be

Ecll

E,ll + EPF
(5.2)

In order to gain a closed set of gauge-invariant equations
we allow only for adiabatic (isentropic) perturbations,
i.e., g = aq, ~(+ (1 —a)happ = 0. Entropy perturbations
would arise, e.g. , from phase transitions [6], which lie
beyond the scope of this work.

The extension of Bardeens [4] gauge-invariant formal-
ism to a multifiuid universe was given in Refs. [5,33]. In
connection with a collisionless gas this was done in Ref.
[15]. Since we deal only with two components, fulfilling
the same background equation of state, the more general
formalism of these references is not necessary here. The
equations we are looking for have been obtained by one
of the present authors in Ref. [19],but without including
the most general initial conditions. The following gauge-
invariant equations are derived from (1.1) with (5.1).

The Universe contains, in addition to collisionless par-
ticles, various difFerent forms of matter as radiation and
baryons. An example for a collisionless, massless gas is
provided by neutrinos after their decoupling below the
electroweak scale. Another example is background gravi-
tons, left over from the epoch of quantum gravity. In
both examples all other matter may be described by a
perfect Huid during a certain epoch, while collisions keep
it close to thermal equilibrium.

To model such systems we derive the equations for cos-
mological perturbations evolving in a mixture of a colli-
sionless, massless gas and a perfect Huid. We assuage that
the gas and the Huid interact only through gravitational
forces; thus

A. Scalar perturbations

To arrive at a closed set of equations for scalar pertur-
bations we define @pp + 4', )~

'.——4 with help of (2.11a),
1.e.)

S'
3

@cll = &m cll ~ (5.3)

Equation (2.12a) does not change since we deal with
adiabatic perturbations only. With (2.12a), (5.3), and
(2.lib), I,O,u, and II can be calculated from e,((, and

m2, &&. The anisotropic pressure of the perfect fluid is zero
from its definition. Within the field-theoretic approach
from Eqs. (5.3) and (2.lib),

—@,u = —2a —4 —2II+2 dx
l jo(*—*)+ ji(z —x)

~

(4+—II) (*), (. , 3. I I

3

(5.4a)

and

(5.4b)

follow. In terms of p„'s (cf. Sec. III), the inhomogeneous terms, respectively, read
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4n) P(')
1

j„—q—„' 1(x —x, ) (5.5a)

a,nd

6-) p."(j-+3j.")(*--.)
n=p

(5.5b)

B. Vector perturbations

For vector perturbations (2.14) reads

2 ~ / OO—@ = n —3 dx ilr(x ) + ) p„(jo+jz) (*—*o) + (1 —a)& pF .»(x —x) - (i ()
8 x —x'

Xp n=p
(5.6)

The covariant conservation of the energy-momentum tensor (2.15) is valid for the gas and the fiuid separately, i.e.,

8 pF = const. In terms of P„ the infinite sum reads(~)

2
~ ).p" (j +j.") (* —*o)

n=p

C. Tensor perturbations

Since the anisotropic pressure for the perfect fiuid component vanishes, (2.16) yields

z ( „2, l ',jz(x —*')» z (1 . 2 . 1x'1&"+ -I'+H 1= -24~ dx', II'(z')+ ) ~."'1 jo+ —j—z+ —j41z ) (x —z')z - "
( 15 21 35 )

x xp (5.7)

In terms of p( ), the inhomogeneity reads and H, the general solution with xp ——0 turns out to be
of the form

aa) PI" (j + &j"+ j ' ') (*—*OI
n=p

(5.8)

with

F(x) = C,F„g(x) + C,x F;, g(x), (6.1a)

The relation between the coefficients P( ) and p( ) is

the same as in the purely collisionless case.

VI. SOLUTIONS

OO n

Freg, sing(x) = )
n=p

(6.1b)

The above integro-diH'erential equations cannot, in
general, be solved by, say, a power series ansatz about
xp. Instead various methods have been employed to
solve them approximately: direct numerical integration
[11,14,26,39], approximation by a finite sum of spherical
Bessel functions [10], or by a finite system of ordinary
differential equations [25].

However, for xp -+ 0, which usually is the most inter-
esting point to de6ne initial conditions anyway, a general-
ized power series ansatz can be solved recursively. Exact
regular solutions were found in this way in Refs. [16,19],
where it turned out that the power series involved have
in6nite radius of convergence, and converge faster than
trigonometric functions do. In the following, this will be
generalized to include singular solutions as well as the
most general initial data at xp ——0. Some of the more
unwieldy details are relegated to the Appendix.

If F(x) represents one of the metric potentials 4, II, 4,

and Cq, C2 arbitrary constants. This form follows koln
the demand that the coefficients P( ) remain finite as
xp -+ 0.

When inserted into the integro-difFerential equations
(5.4,5.6,5.7) this leads to solvable recursion relations for
the coefficients c„such that c„=c„(co,. . . , c„ i, o. , (P}),
because the power series representation of the spherical
Bessel functions,

ji, (x —x')

xI)2m+k
(6.2)

(2m)!(2m+ 1)(2m+ 3) . (2m+ 2k+ 1)
'

leads to integrals

d
x m!

dx jx —xj xI r Ixm Iv x&+rn+ a

(1 + v) ~ ~ (1 + m + v)

(6.3)
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5 —32a
0.~ ————+ a+

2 20
(6 4)

with a = 0, 1, 2 for (a) = S, V, T. If the fraction a of
energy density contained in collisionless matter exceeds
a„;t ——s2, 0' becomes complex, leading to an essential
singularity at z = 0 with F oscillating like cos([lma] ln z).
This asymptotic behavior has been found previously by
Zakharov [12] and examined further by Vishniac [13].i
As explained by the latter, the essentially singular, oscil-
latory behavior for z ~ 0 arises because the momentum
fiux carried by the collisionless particles depends prefer-
entially on the expansion of the Universe in their direc-
tion of travel, instead of the net expansion of the volume,
which leads to an excessive feedback for a ) a„;q. Thus
in this case, the initial singularity is of a mixmaster type
[34]. It has been shown by Lulmsh et ul. [35] that col-
lisionless matter provides an efficient means to disperse
the initially strong anisotropy of such models; the sin-
gular parts of our solutions (6.la) could, therefore, cor-
respond to the later stage of such a scenario where the
linear regime has finally been reached.

where m is a natural number and v arbitrary.
In solving these recursion relations it turns out

that the coefficients P( ) (or, equivalently, p„)) in
Eqs. (5.4,5.6,5.7) either have to be all zero, which also
puts to zero F„s except for II„s, or have to satisfy cer-
tain constraints dictated by the values E„s(0). In each
case, a singular part in Eq. (6.1a) exists that can be su-

perimposed on the regular solutions by choosing C2 g 0.
With xo ——0, only the regular part depends on the initial
data. The presence of singular perturbations means that
the initial singularity is no longer approximately one of
FLRW type, but is essentially anisotropic. Linear per-
turbation theory then applies only for those values of z
where Il has become sufficiently small.

It turns out that the singular behavior for x -+ 0 is
given by

and

2e'(0) = —II'(0) . (6.6b)

100.

The restrictions on Po, Pi, and P2 can be understood(o) (o) (o)

immediately &om the Einstein equations written in the
form of Eqs. (2.11b) and (2.12b) together with covariant
conservation of the energy-momentum tensor, Eq. (2.13),
by inserting the definitions in Eqs. (3.9) and (3.13); the

vanishing of Ps( is a consequence of demanding regular-
ity of II in Eq. (5.4b).

The explicit recursion relations defining 4,)i, 4pF, and
II follow from the Eqs. (3.12a) and (5.4). They are listed
in the first part of the Appendix. The recursion relations
determine the regular parts of all potentials uniquely for

a given set of P( )'s, respecting Eq. (6.5) (or equivalently

a set of p( )'s, satisfying more involved conditions). The
singular solutions do not depend on the inhomogeneous
terms. Thus they can be added to any regular solution.
Singular solutions for the metric potentials with poles of
first or second order are forbidden for zo ——0 since the
integral (6.3) is then divergent for all negative integers v.
For finite zo, however, such solutions exist. (An example
can be found in Ref. [13],Eq. (40b).)

In Fig. 1, regular solutions for e, which coincide with
the energy-density contrast b on comoving hypersurfaces,
are given in the purely collisionless case for three differ-

ent initial data: one where only Po( ) is nonvanishing, a
second where the first four coeflicients have been put to
zero, and a more generic one. All of them grow according
to a power-law on superhorizon scales, where the second
(dashed-line) solution exemplifies that an arbitrarily high

A. Scalar perturbations 10. -

Regular solutions for scalar perturbations, where 4 (z)
and II(z) stay finite for z ~ 0, are possible only when

the coefficients P( in Eqs. (5.4) and (5.5) satisfy cer-
tain constraints. Evaluation of Eqs. (5.4) and their first
derivatives at z = zo ——0 yields restrictions on the initial
matter distribution, i.e.,

P(o) P(o) P(o) 0 (6.5)
0.1-

and relations between the initial values of the metric po-
tentials

C(0) + 2II(0) = —4P,' ' (6.6a) 0.01
x/ n.

The result of Eq. (6.4) agrees with the asymptotic behavior
found in Ref. [12] for scalar, vector, and tensor perturbations,
but not with Ref. [13],where the vector case was reported to
have a different critical value a „.~.

FIG. 1. Regular density perturbations on comoving hyper-
surfaces in the purely collisionless case (n = 0). The full line
shows a regular solution for [h~ = ~c

~

with Po = —5/28 and
all other P 's vanishing. The dashed line represents a solu-
tion with P~ = —1309/20 nonvanishing only. For the dotted
line Po(

) takes the above value and P5( = —10, P~o = 60.
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100.
1/2

10. -

0.01

t
I
I
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I
I
I
I
I
I
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I
I

I

t

I

I

I
I
I

0.001 0.01 0. 1

x/ vr

10.

FIG. 2. Regular scalar perturbations in a two-component
universe (cr = 1/2). The various lines show regular solutions
for ~b, u~ (fu11 line), ~bpF~ (dotted line), aud ~7rT

~
(dashed

line). The initial conditions are specified by P~~ = —1/4,

PI = —1309/20, and P4 = 7/8.

power can be achieved by accordingly contrived initial
data; on subhorizon scales all solutions undergo damped
oscillations whose amplitude falls off like 1/x eventually.
The exact matching of the allowed asymptotic behav-
iors is, however, seen to depend strongly on the form of
the initial data. The asymptotic regimes themselves are
determined by rather different physical situations. On
superhorizon scales, x (& 1, everything can be viewed as
being determined by the global geometry set up in ac-
cordance with the initial matter distribution. For x )& 1,
microphysics becomes important, and the damped oscil-
lations there can be understood as the dispersion of den-
sity contrast carried by the collisionless particles through
directional dispersion [14]. The intermediate growth of
the amplitude of the dotted solution in Fig. 1 after its 5th
maximum is due to a nonzero Pzo . This demonstrates
that higher momenta in the initial distribution function
may have considerable effects even at subhorizon scales.

In Fig. 2, a particular regular solution is shown in
the two-component case with equal energy density in
the perfect-Quid and in the co1lisionless component. In
order that the collisionless component can be matched
smoothly to a perfect-fluid behavior for x ~ 0 (in re-
ality there will be a Gnite time and therefore a finite

value of x g 0, where the collisionless component decou-
ples), the initial data have been chosen so that II(0) = 0,
which makes 4pF(0) = 4,u(0). After horizon crossing,
the energy-density contrast that remains in the perfect-
Huid component is seen to be undamped and to have a
smaller phase velocity, namely c/~3, in contrast to c in
the strongly damped collisionless component. The ratio
of b,u to hpF at horizon crossing depends strongly on the
initial data chosen. In Fig. 2 the collisionless component
dominates over the perfect-fluid component up to fairly
large values of x; the solutions presented in Ref. [19] show
the opposite behavior. This is due to having chosen

Ps
) P 0 in the case of Fig. 2.

In Figs. 3—5, singular solutions are displayed. These do
not depend on the initial matter distribution at xo = 0,
which underlines their geometrical nature. In Fig. 3, the
energy-density contrast b and the anisotropic pressure vrz

are plotted for the purely collisionless case n = 1. There
are now oscillations also on superhorizon scales as dis-
cussed above, which go over to damped oscillations with
phase velocity equal to c on subhorizon scales, showing
the same asymptotic behavior there as did the regular
solutions. In Fig. 4, the singular solutions are plotted
for cx = 5/32, where the perfect-fluid component is just
strong enough to eliminate the superhorizon oscillations.
For smaller values of o;, there are two essentially differ-
ent solutions with different degrees of singularity. For

1/10, they are rendered in Fig. 5. In the two-
component cases of Figs. 4 and 5, the perfect-fluid com-
ponent turns out to have a regular limit for z -+ 0, grow-
ing until horizon crossing, after which they again turn
into undamped acoustic waves with phase velocity c/~3.

10

! ]]
]

] II Ili

]

l

]

I

0 001 0.01 0.1

The sometimes used 14-moment approximation [25] there-
fore potentially misses important details in the evolution of
cosmological perturbations.

The author of Ref. [26] claims that 7r& ( r. in general,
which is seen to hold true for certain initial conditions only.

FIG. 3. Singular solutions for ~h~ (full 1iue) and ~7rT

(dashed line) for n = 1 (purely collisionless case). Superhori-
zon oscillations show up for x/x ( 1. Notice the logarithmic
scale in x —the solutions are essentially singular as x —+ 0.
The second solution corresponding to rr in Eq. (6.4), which
is not plotted, differs essentially by a phase.
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10.
a = 5/32

0.1

0.01 ~

0.001 0.01 0.1
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B. Vector perturbations

The requirement of regularity yields the conditions

& (i) 1 (i)l
1 I Po + 5P2a-1 (6.7a)

p(~) 3p(~)
1 7 3 (6.7b)

FIG. 4. Singular scalar perturbations for the critical value
of a = 5/32. )b,u) (full line), )bpp) (dotted line), and )zT())

(dashed line) are plotted.

for the vector perturbations. These conditions follow
from Eq. (5.6) and its first derivative at x = zo ——0. The
singular solutions may be added as in the scalar case.

For the perfect-Quid case o. = 0, there are no regular
solutions as mentioned at the end of Sec. II. However,
with collisionless matter, vorticity can be generated on
superhorizon scales, which, after horizon crossing, dies
out through directional dispersion. This is shown for
various initial data in Fig. 6 for n = 1/2. The growth
in v z at superhorizon scales is brought about by
4(z) approaching a constant for 2: -+ 0. A more rapid
growth arises when 4' itself goes like a positive power of

z, which is the case for Po(
) ——0 and the nonvanishing

higher coeKcients. One such example is shown by the
dashed line in Fig. 6. In all these cases there is a genuine
production of vorticity, which, in the perfect-fiuid case,
is forbidden by the Helmholtz-Kelvin circulation theorem
[36].

With different initial matter distributions it is also pos-
sible to arrange for a nonvanishing initial vorticity in the
perfect-Quid component, which is compensated on super-
horizon scales by an equal amount with opposite sign in
the collisionless component. A net vorticity then sur-
vives on subhorizon scales after the dispersion of the col-
lisionless part. In Fig. 7 such solutions are plotted for
several initial conditions. This interesting possibility has
been studied extensively in Refs. [19,20], to which we re-
fer the reader for more details. Here we just mention
that the vorticity in the perfect-fiuid component, which,
by the presence of collisionless matter, can be reconciled
with an initial FLRW-type singularity, gives rise to mag-
netic fields during the transition to the matter-dominated.
area, and the limits set by the anisotropy of the cos-
mic microwave background are such that astrophysically
interesting amounts of primordial magnetic fields seem

10.
a= 1/10

10.
a = 1/2

0.1 ~ 0.1 ~

0.01 0.01-

0.001 0.01 0.1

x/n

10.
0.001 0.01 0.1

x/x

FIG. 5. Singular scalar perturbations in the subcritical case
(n ( 5/32). The two different modes (n+ )) are shown by the
full lines for ~b~u )

and by the dotted ones for ~bpF ~. They have
difFerent power-law behaviors on superhorizon scales.

FIG. 6. Regular vector perturbations with e pp ——0.
The solutions for ~v

~

are given with only Po = —21/16
uonzero (full line), P~ = —1197/80 alone (dashed line), aud

Po = —21/16, P~ = —10, and P~o = 20 for the dotted line.
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10. ,

a = 1/2 for smaller o., two different power-law asympt t'p 0 les occur.
i e v ~ 0 for x —+ 0, the metric potential 4 in fact

diverges. Hence tg . , ~ese solutions do not correspond to
a Friedmann-type initial singularity, but are essentially
anisotropic.

On subhorizon scales, where the mechanism o direc
tional dispersion becomes operative, both the regular and
the singular solutions decay like 1/z for large x

I

0.1 . C. Tensor perturbations

0.01 "

A necessary condition for the regular solutions is ob-
tained f'rom Eq. (5.7) at x = zo ——0, i.e.,

Pe + —P2 + —P(2) 2 (2) 1 (2)

0.001 '

0.01 0.1

possible [20].
In Fi .'g. 8, we display the singular vector solutions for

n = 1, 5/32, and 1/10. For n ) 5/32, there are again
superhorizon oscillations, which cease at n = 5/32 and

FIG. 7. R 1Regular vector perturbations with nonvanishing
vor icity in the perfect-Suid component. The contribution of
sg pF = —21/16 to ~u,

~
is plotted dashed-dotted. The other

lines show various solutions for ~~~
' th~~v

~
using e same initial con-

, w ic is determined byitious as in Fig. 6 except for PI h h
'

d
q. 6.7a).

In contrast to vector and scalar perturbations, the initial
va ue H(0) is not fixed by the initial matter distribution.

gravi a iona waves.is corresponds to the existence of 't t'
ot po arizations evolve with the same H, tarne x, since t ere

is no preferred direction. Again, the singular solutions
can be added to the regular ones.

In~n Fig. 9 various regular solutions for the metric poten-
tia are given. The ones that start out as constants at
superhorizon scales are similar to the ones found already
in the perfect-fluid case (see above), the only di6'erence

eing that the amplitude drops more strongly at horizon
crossing. On subhorizon scales, these solutions become
gravitational waves and their decay 1

'
d

onl b ton y y the expansion, exactly as in the perfect-Buid case.
novel type of solution is obtained however b tt) er, y pu ing

10.
a = 1 a 5/32 & 1/10

Ivc: 0.1

IHI 0.1

I

I l

j

I, if
I

0.01

0.01-

0.001 0.01 0.1

x/ s.
10.

0.001 '

0.01 0.1 10,
FIG. 8. Sin ulg ar vector perturbations in terms of Iv, I. The

different lineses correspond to different values of a and to differ-
ent modes. The solutions with, e.g. , n = 1 (thin full hne) show
superhorizon oscillations, whereas solution f - 't' ' '

ted) do not. The latter two lines correspond to the two dif-
ferent modes from Eq. (6.4). In the supercritical case both
modes differ by their phase only.

x/ n.

FIG. 9. Regular tensor perturbations. The solutions, rep-

, are normalized toresenting gravitational waves for x )) 1

(0) = 1, exept for the dashed line [H(0) = 0 P = 63/2].)

The full line shows the solution w th llwi a s vanishing.
A ain the dotted line reepresents a more general case with

P, —,P4
—5, P, = —10, and P~ = 20 nonzero.1 R 2) (2) (2)
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10.
a = 1 6 5/32 6 1/10

IHI 0.1 .
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FIG. 10. Singular tensor perturbations. ~H~ is plotted for
the same values of a as for the vector perturbations of Fig. 8.

PoI
l = 0 and H(0) = 0. As shown by the dashed curve,

this gives a growing solution on superhorizon scales.
Finally, in Fig. 10, we exhibit also the singular solu-

tions for H for the same set of parameters as in Fig. 8.
Again, the spectacular behavior is restricted to super-
horizon scales; upon horizon crossing, these solutions
again describe ordinary, albeit primordial, gravitational
waves.

the asymptotic behavior of which has been obtained pre-
viously in Ref. [12]. In a strictly FLRW setting, only
the regular solutions are admitted, but general solutions
might be of interest when to be matched to earlier, inBa-
tionary epochs, where the initial perturbations may have
been generated quantum-mechanically [37].

With special emphasis on the role of the initial data, we
have also presented a selection of explicit results for reg-
ular and singular solutions for scalar, vector, and tensor
cosmological perturbations. Typically, the regular solu-
tions exhibit growth on superhorizon scales x", with n
a characteristic integer, which can be increased by special
choices of the initial data. The singular solutions have
a small-z behavior dictated only by the ratio o. which
gives the ratio of the energy-density in collisionless mat-
ter over the total one. For a ) 5/32, there is an essential
singularity for x m 0, giving rise to superhorizon oscil-
lations, whereas for a ( 5j32, all perturbations have a
(singular) power-law behavior for small z. After horizon
crossing, all types of perturbations that are carried by
collisionless matter decay. In the scalar and vector cases,
this is due to directional dispersion, whereas tensor per-
turbations only decrease according to the expansion of
the FLRW universe. We have found that the transition
between superhorizon and subhorizon regimes depends
rather strongly on the initial data. Whereas previous
investigations have always considered only the simplest
cases, our results indicate that the effective matching of
the asymptotic regimes can vary appreciably by allowing
for more complicated initial matter distributions.
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APPENDIX

To solve Eqs. (3.12a), (5.4), (5.6), and (5.7), the metric
potentials I,4,II, II, 4, and H are expanded into (gener-
alized) power series. As mentioned in Sec. VI, regular and
singular solutions can be derived in such a way. Since the
latter equations conserve the parity of the metric poten-
tials, the regular solutions are calculated for the even and
the odd part separately.

The recursion relations have been implemented in a
MATHEMATICA [38] code to calculate the first 60 coeffi-
cients and to plot the solutions in Figs. 1—10.

1. Scalar perturbations

The metric potentials are expanded into power series
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For simplicity, e„:=2(P„+vr„) (for regular even and odd solutions and for the singular solution) is defined. From
Eq. (3.12a), the relations
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determine 4, with n & 1. For the odd regular solutions, 2$&dd ———codd and the singular solutions obey (n(el+1) $0'"g ——
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from Eq. (5.4b), @ aiid Q can be calculated. The condition (6.5) has to be satisfied to gain regular solutions. The
colhsjoniess part of @, @,ii is determined by Eq. (5.4a). From the constant term of the latter equation,

eleven + 2~even 4p( )
0 7l 0 — 0

follows for the initial. values. The higher terms give the relations (n & 0)
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The perfect-fiuid component is provided by @pF = O —@,ii.

2. Vector perturbations

Accordingly, the metric potential @ is split up:
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" (2n+1) (A5)

The regular even solutions are de6ned by

n even
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for n & 0. The solution for the regular odd part is provided for n & 0 by
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3. Tensor perturbations

For the metric potential H, the ansatz
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is made. Regular even solutions are defined by

So. eleven
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for n & 1. The initial value ho"'" specifies the regular solution together with the inhomogeneous terms. The latter
have to respect the condition (6.8). The solution for the regular odd part is provided for n & 0 by

8n hodd
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Singular solutions are fixed by hz'"I and
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—120!
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