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We investigate the global structure of an in6ationary universe both by analytical methods and by
computer simulations of stochastic processes in the early Universe. We show that the global structure
of an in6ationary universe depends crucially on the mechanism of in6ation. In the simplest models of
chaotic inllation with the effective potentials &P or e ~ the Universe looks like a sea of a thermalized
phase, surrounding permanently self-reproducing in6ationary domains. On the other hand, in the
theories where in6ation may occur near a local extremum of the effective potential corresponding to
a metastable state, the Universe looks like de Sitter space surrounding islands of a thermalized phase.
A similar picture appears even if the state P = 0 is unstable but the efFective potential has a discrete
symmetry, e.g. , the symmetry g ~= —P. In this case the Universe becomes divided into domains
containing different phases (rI or —g). These domains will be separated from each other by domain
walls. However, unlike ordinary domain walls often discussed in the literature, these domain walls
will in6ate, and their thickness will exponentially grow. In the theories with continuous symmetries,
in6ation will generate exponentially expanding strings and monopoles surrounded by a thermalized
phase. In6ating topological defects will be stable, and they will unceasingly produce new in6ating
topological defects. This means that topological defects may play a role of indestructible seeds for
eternal in6ation.

PACS number(s): 98.80.Cq

I. INTRODUCTION

Inflationary cosmology is gradually changing our point
of view on the global structure of the Universe [1]. One
of the most radical changes occurred when it was realized
that in many versions of inflationary theory the process of
inflation never ends. Originally this statement was shown
to be correct for the old inHationary scenario [2] and for
the new inflationary scenario [3,4]. The main idea is that
the 6eld near the top of the effective potential does not
move. Therefore if the Universe expands fast enough,
there always will be enough space where the 6eld stays
at the top (or occasionally jumps back to the top), and
inflation continues. However, this conclusion did not at-
tract much attention. Old inflation did not work anyway,
and new inflation was also extremely problematic. It was
plagued by the problem of initial conditions, and all its
semirealistic versions looked very complicated and not
very natural [1].

The chaotic inflation scenario [5] has brought two sur-
prises. First of all, it was realized that in8ation can occur
even if there was no thermal equilibrium in the early Uni-
verse, and even if the effective potential V(P) does not

*On leave from Lebedev Physical Institute, Moscow, Russia.
Electronic address: lindeOphysics. stanford. edu

t Electronic address: dmitricco. caltecb. edu

have any maximum at all, or if its maximum is not suK-
ciently flat. In particular, chaotic inflation scenario can
be realized in the theories with potentials

4(P2 —™&), and e ~. But the most surprising real
ization was that inflation in these theories also goes on
without end. Because of quantum fluctuations the scalar
Field P in some parts of the Universe perpetually climbs
to higher and higher values of its potential energy V(P),
until it approaches the Planck density M&. The exis-
tence of this regime may seem counterintuitive. Indeed,
the probability that the Geld jumps up all the time is
very small. However, those rare domains where it hap-
pens continue growing exponentially, much faster than
the domains with small V(P). This scenario was called
"eternal inflation" [6].

An important feature of this scenario was the existence
of domains where the field P may jump for a long time not
far away &om the Planck density. In these domains the
Hubble constant is extremely large, 0 M~. This in-
duces strong perturbations in all other scalar fields, which
eventually leads to division of the Universe into exponen-
tially large domains Blled with matter with all possible
types of symmetry breaking [1],and maybe even with dif-
ferent types of compactification of space-time [7]. This
provides a physical justification of the weak anthropic
principle. Under certain conditions, an eternally inflating
universe enters a stationary regime, where the probabil-
ity to find domains with given properties does not depend
on time [8]. This is a considerable deviation of inflation-
ary cosmology &om the standard big bang paradigm. A
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detailed discussion of this scenario was given recently in

[9]
In the simplest versions of the chaotic inflation sce-

nario describing only one scalar 6eld, the Universe looks
like a sea of a thermalized phase, surrounding islands of
inflating space [9]. A considerably different picture ap-
pears in the old inflationary theory, as well as in those
versions of new inflation where the field P can stay near
the top of the efFective potential for a long time, being
in a kind of metastable state. For example, if the prob-
ability of formation of bubbles of the new phase in the
old inflationary universe scenario is sufIjLciently small, the
distance between previously generated bubbles grows ex-
ponentially before any new bubbles appear. Thus, the
new bubbles appear far away &om the old ones. In such
a situation the bubbles of a new phase do not percolate;
they always remain surrounded by de Sitter space [10].
A similar conclusion was reached in [11] concerning the
structure of the Universe in the new inflationary universe
scenario. The authors performed a computer simulation
of inflation and of quantum fluctuations in a simple the-
ory with a potential which looked like a step function. It
was equal to some positive constant V(0) for P ( Po, and
it was equal to zero for P ) Pe. This potential mimics
many properties of realistic potentials used in the new
inflation scenario. However, an important feature of this
potential was its absolute fatness near P = 0, which ef-
fectively made the scalar field near P = 0 metastable.
The conclusion of Ref. [11]was that in the new inflation-
ary universe scenario the Universe also consists of islands
of thermalized phase surrounded by de Sitter space.

In the present paper we will report the results of our
investigation of the global structure of the Universe in
the theories with potentials of the type 4 (gP —

&
)z. In-

Bation in such models may occur in two different regimes.
If it begins at P ) MJ, all consequences will be the same
as in the simple model 4/4. This means that the infla-
tionary domains will look like islands surrounded by the
thermalized phase.

On the other hand, for m/~A ) Mp, inflation may oc-
cur near P = 0 as well, as in the new inflationary universe
scenario. We will argue that the global structure of the
Universe in this case will depend on the properties of the
theory. If we consider a theory of a real scalar 6eld with
a discrete symmetry P ~ —P, the Universe will consist of
islands of thermalized phase with P m/i/A. However,
if the scalar 6eld has more than one component, for ex-
ample, if it is a complex field P = 2(gi + i/2), then the
situation will be difFerent. The Universe will be 6lled by
the thermalized phase containing inflating strings. In the
O(3)-symmetric theory where the scalar field is a vector
(Pi, $2, Ps), the thermalized phase will surround inflat-
ing monopoles. This means that topological defects may
play an extremely important role in the formation of the
global structure of the Universe.

An investigation of this issue should help us to ob-
tain a better understanding of a very interesting piece
of physics which was missed in our previous studies of
new infiation. Until very recently all experts in inflation-
ary theory believed that primordial monopoles produced
during inflation in the new inflationary scenario were ef-

fectively pointlike objects, which did not inflate them-
selves. For example, in the first version of this scenario
based on the SU(5) Coleman-Weinberg theory [12] the
Hubble constant during inflation was of the order 10
GeV, which is 6ve orders of magnitude smaller than the
mass of the X boson M~ 10 GeV. The size of a
monopole estimated by M~ is five orders of magnitude
smaller than the curvature of the Universe given by the
size of the horizon H . It seemed obvious that such
monopoles simply could not know that the Universe is
curved.

This conclusion 6nds an independent confirmation in
the calculation of the probability of spontaneous creation
of monopoles during inflation. According to [13], this
probability is suppressed by a factor of exp( —2z'm/H),
where m is the monopole mass. In the model discussed

—10above this factor is given by 10,which is negligibly
small. This result is rather general. In all (or almost all)
realistic models of inflation the Hubble constant H at the
end of inflation is smaller than 10i4 GeV [1]. Meanwhile
most of the superheavy topological defects that may have
interesting cosmological consequences appear in the the-
ories with the scale of spontaneous symmetry breaking

g ~ 10~6 GeV, which is at least two orders of magni-
tude greater than H. The probability of creation of such
topological defects by the mechanism described in [13] is
extremely small. Even if there were no barriers for pro-
duction of such objects, their density would have been

—zo'suppressed by a factor exp —~," 10 14 .
Despite all these considerations, in the present paper

(see also [16,17]) we will show that in those theories
where inflation is possible near a local maximum of the
effective potential, topological defects expand exponen-
tially and can be copiously produced during inflation.
The main reason can be explained as follows. In the
cores of topological defects the scalar field P always cor-
responds to the maximum of effective potential. When
inflation begins, it makes the field P almost homogeneous.
This provides ideal conditions for inflation inside topo-
logical defects. These conditions remain satisfied inside
the topological defects even after inflation 6nishes out-
side of them. Moreover, as we are going to argue, each
such topological defect will create many other inflating
topological defects. We have called such con6gurations
jractal topological defects [16].

The paper is organized in the following way. In Sec. II
we will give a description of inflation of domain walls at
the level of classical theory. In Sec. III we will briefly
describe this process with an account of quantum Buctu-
ations, and present the results of our computer simula-
tions of this process. In Sec. IV we will describe similar
processes in the case of inflating strings and monopoles.
In Sec. V we will consider the problem of initial condi-
tions for inflation near a local maximum of V(P). In the
concluding Sec. VI we will discuss our main results.

Superheavy topological defects can be created, however,
during in8ationary phase transitions [15].
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II. INFLATING DOMAIN WALLS

To explain the basic idea of our work, we will begin
with a discussion of inflating domain walls. The La-
grangian of the simplest model where such walls may
appear is given by

Here P is a real scalar field. Symmetry breaking in this
model leads to formation of domains with p = +il, where

g = ~. These domains are divided by domain walls

which interpolate between the two minima. Neglecting
gravitational effects, one can easily obtain a solution for
a static domain wall in the yz plane:

to zero. Even if originally there were any gradients
of this field, they rapidly become exponentially small.
Each time At = H new perturbations with the ampli-
tude H/~2m and the wavelength H are produced,
but their gradient energy density II is always much
smaller than V(P) for V(P) « M& [9]. Therefore origi-
nally the vacuum energy inside the walls dominated its
gradient energy, and walls could easily expand. The rea-
son why we did not understand this before is the same as
the reason why we thought that the interior of the bub-
bles of the new phase cannot expand: %e thought that
the bubble walls during inflation were thin &om the very
beginning. Then we understood that this was wrong,
and the new inflationary scenario was proposed. Here
we encounter the same situation. Domain walls, just as
the bubble walls, originally were thick, and they were
exponentially expanding.

P = g tanh( (2)

For small g our neglect of gravitational effects is rea-
sonable. However, the situation becomes more compli-
cated if g becomes comparable to the Planck mass Mp.
The potential energy density in the center of the wall (2)
at x = 0 is equal to 4 g; the gradient energy is also equal

to 4 g . This energy density remains almost constant at

~z] « m =, and then it rapidly decreases. Gravi-

tational effects can be neglected if the Schwarzschild ra-
dius rg = ~, corresponding to the distribution of mat-

P
ter with energy density p =

2 g and radius R m

is much smaller than R. Here M =
3 pR . This con-

dition implies that gravitational effects can be neglected
for g &( 2 M~. In the opposite case,

(3)

gravitational effects can be very significant. A simi-
lar conclusion is valid for other topological defects as
well. For example, recently it was shown that magnetic
monopoles in the theory with the scale of spontaneous
symmetry breaking g & M~ form Reissner-Nordstrom
black holes [20].

Now let us look at it &om the point of view of inflation-
ary theory. Inflation occurs at P « rt in the model (1)
if the curvature of the efFective potential V(P) at P « g

is much smaller than 3H, where H = 3" ~ is the

Hubble constant supported by the effective potential [1].
This gives m « 27rAg /M&~, which leads to the condi-

tion almost exactly coinciding with (3): i1 » M~/~2vr.
This coincidence by itself does not mean that domain

walls and monopoles in the theories with rj » M~/~2m
will inflate. Indeed, inflation occurs only if the energy
density is dominated by the vacuum energy. As we have
seen, for the wall (2) this was not the case: gradient
energy density for the solution (2) near z = 0 is equal
to the potential energy density. However, this is correct
only after inHation and only if gravitational efI'ects are
not taken into account.

At the initial stages of inflation the field P is equal

III. SELF-REPRODUCTION OF
THE UNIVERSE AND FRACTAL STRUCTURE

OF DOMAIN WALLS

hP=—H (4)

and with a wavelength H . Since phases of each wave

are random, the sum of all waves at a given point Quc-

tuates and experiences Brownian jumps in all directions.
As a result, the values of the scalar field in different points
become difFerent &om each other, and the corresponding
variance grows as (gP) = 4, t [18,19].

In general, the Hubble constant H strongly depends
on the value of the scalar field P. However, we con-
sider the case when inflation occurs near a local max-
imum of the efFective potential at P = 0. This gi's
H 3 ~ . Consequent ly, the average amplit ude of

MP
fluctuations generated during the time H is given by

2

6P = —"~ —— . These perturbations appear
&6~& mP

in the background of classically moving field P, which
t' II by+~= ~~ —

2 . C mp r

Previous description was purely classical. Meanwhile
quantum fluctuations play extremely important role in
this scenario.

The wavelengths of quantum fluctuations of the scalar
field P grow exponentially in the expanding Universe.
When the wavelength of any particular fluctuation be-
comes greater than H, this Quctuation stops oscil-
lating, and its amplitude keezes at some nonzero value

hP(z) because of the large friction term 3HQ in the equa-
tion of motion of the field P. The amplitude of this fluc-
tuation then remains almost unchanged for a very long
time, whereas its wavelength grows exponentially. There-
fore, the appearance of such a &ozen Quctuation is equiv-
alent to the appearance of a classical field hP(z) that does
not vanish after averaging over macroscopic intervals of
space and time.

One can visualize fluctuations generated during the
typical time H as sinusoidal waves with average am-

plitude,
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ison of these two quantities shows that bP ) BP (i.e. ,

quantum jumps are more important than the classical
rolling) for

m4 ~2

If &om the very beginning the scalar field was suKciently
small, P « P', then the quantum jumps of the field P
could always return the field back to even smaller values
of P. The field P jumps back only in a half of domains
with P « P'. However, this is quite enough since each
typical time interval H the total volume of such do-
mains grows approximately es/2 10 times [4].

Let us consider Huctuations near P = 0 in a more
detailed way. Suppose that after the typical time H
quantum Huctuations of the scalar field P pushed it away
from P = 0, and it acquired a positive value +H/2m in-
side a domain of a size H . During the next period
of time H the original domain grows in size e times,
its volume grows e 20 times. Therefore it becomes
divided into 20 domains of a size of the horizon H
Evolution of the field inside each of them occurs inde-
pendently of the processes in the other domains (no-hair
theorem for de Sitter space). In each of these domains
the scalar field with a probability 2 may jurnp back, or it
may jump in the same direction. However, these jumps
will occur on the scale which is e times smaller than the
length scale of the previous Huctuation. In average those
points which originally jumped to positive P will remain
positive, and the value of the field P at these points will
grow.

Suppose now that we paint white domains with pos-
itive P, paint grey domains with negative P, and black,
the boundary between these domains. Then after the
first step the domain will consist of two parts, one is ho-
mogeneously white, and another is homogeneously grey.
After the second interval H i the size of each domain
will grow e times. The white domain after expansion will
contain some grey islands inside it, and the grey domain
will contain some white islands. These domains will be
separated by black domain walls corresponding to P = 0.
Only at the domain walls does the Universe return to
its state P = 0. Outside the walls the field P always
moves down to the minima of its effective potential. Af-
ter a while, the Universe becomes divided into white and
grey islands separated &own each other by black domain
walls. These domain walls still continue to expand expo-
nentially. Therefore, qualitatively the picture we obtain
is very similar to the one which emerges in the old in-
Bationary scenario: The islands of the thermalized phase
are surrounded de Sitter space. However, the physical
reason for this picture is somewhat different.

If the field P is in a metastable state, or if it is in a
state of equilibrium for a certain sufficiently large range
of its values, then the bubbles of the new phase always
appear to be surrounded by the old phase. If the decay
rate of the old phase is small enough, the thermalized
phase will be always surrounded by de Sitter space, even
if the field can roll only in one direction &om its original
position. On the other hand, the main reason for the

existence of the domain structure of the Universe in the
model under consideration is the possibility of the field

P falling down in two different directions f'rom the max-
imum of the effective potential V(P). In our model this
was achieved due to the discrete symmetry P -+ —P of
the efFective potential. We should emphasize, however,
that in fact we do not need exact or even approximate
symmetry. The same conclusions will remain valid for
any one-component scalar field P which has a potential
V(P) with a sufficiently Hat local maximum. This max-
imum can be at any point Pp. The fatness condition
reads V"(Pp) « H (Pp) =

As we have mentioned already, the jumps of the field P
in our model can occasionally change its sign and create
grey domains inside white surroundings. Simultaneously
this forms new inQating domain walls. These new walls
will be formed only in those places where the scalar field
is sufBciently small for the jumps with the change of the
sign of the field P to be possible. Therefore, the new walls
will be created predominantly near the old ones (where

P = 0), thus forming a fractal domain wall structure.
As a part of our investigation, we made a series of com-

puter simulations of this process in a two-dimensional
slice of the Universe. All calculations were performed in
comoving coordinates, which did not change during the
expansion of the Universe. In such coordinates, expan-
sion of the Universe results in an exponential shrinking
of wavelengths of perturbations. We represent perturba-
tions as sinusoidal waves in a two-dimensional universe:

H~u .
bP(x, y) = sin H e (x cos 8„+y sin 8„+n„)

27r

(6)

Here u & 1 is some small parameter which controls the
time At = uH between two consequent steps of our
simulations, O„and o.„arerandom numbers. Equation
(6) follows from the corresponding equations of our pa-
per [9] in the case H = const. This is a very good ap-
proximation for describing inBation near the top of the
effective potential. It fails in the thermalized regions,
but the thermalized regions do aot inQuence geometry
of expoaeatially expanding part of the Universe at a dis-
tance greater than 0 &om the bouadary between these
regions [10]. This condition was satisfied during our sim-
ulations. Therefore, we expect that our simulations cor-
rectly represent the behavior of the Geld not too far away
&om the top of the effective potential. This is all we need.
One should not take too seriously the distribution of the
field P in the regions with V(P) « V(0) in our figures.
Fortunately, this distribution for V(P) « V(0) is of no
interest to us.

We performed our calculations using the grids contain-
ing 300 x 300 and 1000 x 1000 points. At each step of our
calculations we added to the previous distribution of the
field the wave (6) and also took into account the classical
drift of the field by

b,P(x, y) =- uV'(P)

A more detailed description of our method can be
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found in [9]. Here we will just briefly describe our re-
sults, which are shown in Fig. 1.

As we mentioned above, we paint black the regions
corresponding to the domain walls. However, in our 6g-
ures we included into the de6nition of a domain wall all
points where ~P] & P*. Thus, the points in white and
grey area (P ) P', and P & P*) practically never change
their color, since at ~P] ) P* the amplitude of quan-
tum jumps 8P typically is much smaller than the classi-
cal drift AP. Therefore, one can consider these regions
as the regions containing therrnalized matter. We begin
our simulations in a domain of a typical size H with

a field P « P'. As we see, after a few steps white and
grey islands appear inside the black area, Fig. 1(a). Then
new islands become formed, Figs. 1(b)—1(d). The fractal
structure of the domain walls is obvious from these simu-
lations. These simulations are similar to those performed
in an important paper by Aryal and Vilenkin [11].How-
ever, the new method used in the present work allows
us to reveal the physical nature of the exponentially ex-
panding phase. This phase corresponds to the expanding
domain walls dividing regions filled by diferent phases.
Note that there are no black walls which separate white
regions from white regions. (Such walls would exist in

(b)
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FIG. 1. The domain structure of the Universe in theory (1) with spontaneously broken discrete symmetry ItI -+ —ItI.
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the old inflationary scenario. ) This demonstrates an ixn-

portant role topological defects can play in inHationary
cosmology: they can determine the global structure of
the Universe. This suggests also that in the models with
different types of topological defects, the global structure
of the Universe may look different.

IV. INFLATING STRINGS AND MONOPOLES

We will consider now more complicated models where
instead of a discrete symmetry P -+ —P we have a con-
tinuous symmetry. For example, instead of the model (1)
describing a real scalar 6eld one can consider a xnodel

L = 8„$'8„$—A
~

P'P ——
~

(, q'&'
2)

where P is a complex scalar field, P = ~ (Px+iPz). Spon-

taneous breaking of the U(l) symmetry in this theory
may produce global cosxnic strings. Each string contains
a line with P = 0. Outside this line the absolute value of
the field P increases and asymptotically approaches the
limiting value ggP~ + P2z= g. This string will be topolog-
ically stable if the isotopic vector (Px(z), $2(z)) rotates
by 2nvr when the point x takes a closed path around the
string.

The (global) monopole solutions for the first time ap-
pear in the theory with O(3) symmetry:

L = -(~ 4)' —-(4' n')'-
4

where @ is a vector (Px, Pz, Ps). The simplest monopole
configuration contains a point x = 0 with P(0) = 0 sur-
rounded by the scalar field P(z) oc x. Asymptotically
this field approaches regime with Pz(x) = g2.

The basic feature of all topological defects including
strings and xnonopoles is the existence of the points where

P = 0. Effective potential has an extremum at P = 0,
and if the curvature of the effective potential is smaller
than H2 = M, , space around the points with P = 0
will expand exponentially, just as in the domain wall case
considered above.

Now we can add gauge fields. We begin with the Higgs
model, which is a direct generalization of the model (8):

L = D„qPD„Q— F„„F""—A
~

Q'—Q ——
~

. (10)

Here D„is a covariant derivative of the scalar 6eld, which
in this case is given by 0„—ieA„.In this model strings of
the scalar field contain magnetic fiux 4 = 2z je. This fiux
is localized near the center of the string with P(x) = 0, for
the reason that the vector field becomes heavy at large
P, see e.g. [21]. However, if inflation takes place inside
the string, then the field P becomes vanishingly small
not only at the central line with P(x) = 0, but even
exponentially far away &om it. In such a situation the
Hux of xnagnetic Geld will not be con6ned near the center
of the string. The thickness of the Hux will grow together

with the growth of the Universe. Since the total Hux of
magnetic field inside the string is conserved, its strength
will decrease exponentially, and very soon its effect on the
string expansion will become negligibly small. Therefore
vector 6elds will not prevent inHation of strings.

The final step is to consider magnetic monopoles. With
this purpose one can add non-Abelian gauge fields A„to
the O(3)-symmetric theory (9):

L = ID~-&l' — F; -F " —-(&' —~')' (»)
Global monopoles of the theory (8) become magnetic
monopoles in the theory (10). They also have P = 0 in
the center. Vector fields in the center of the monopole are
massless (gP = 0). During infiation these fields exponen-
tially decrease, and therefore they do not affect inBation
of the monopoles.

We should emphasize that even though the field P
around the monopole during inHation is very small, its
topological charge is well defined, it cannot change, and
it cannot annihilate with the charge of other monopoles
as soon as the radius of the monopole becomes greater
than H . However, an opposite process is possible.
Just as domain walls can be easily produced by quantum
Huctuations near other inBating domain walls, pairs of
monopoles can be produced in the vicinity of an inBation-
ary monopole. The distance between these monopoles
grows exponentially, but the new xnonopoles will appear
in the vicinity of each of them. We will show how it
happens using computer simulations of this process.

Note that in the simple models discussed above infia-
tion of monopoles occurs only if spontaneous symmetry
breaking is extremely strong, rl & Mx . However, this is
not a necessary condition. Our arguments remain valid
for all models where the curvature of the effective po-
tential near P = 0 is smaller than the Hubble constant
supported by V(0) . This condition is satisfied by all mod-
els which were originally proposed for the realization of
the new inBationary universe scenario. In particular, the
monopoles in the SU(5) Coleman-Weinberg theory also
should expand exponentially. The reason why we thought
that this is impossible was explained in the Introduction:
The Hubble constant II during infiation in the SU(5)
Coleman-Weinberg theory is xnuch sxnaller than the mass
of the vector field Mx, which is usually related to the size
of the monopole. However, this arg»ment is misleading.
The effective mass of the vector 6eld M~ gg 10
GeV can determine the effective size of the monopole
only after inflation. Eff'ective mass of the vector field
Mx(P) ~ gP is always equal to zero in the center of the
monopole. Once inHation begins in a domain of a size
O(II i) around the center of the xnonopole, it expels
vectors fields away &om the center and does not allow
them to penetrate back as far as in6ation continues.

Of course, one may argue that there is no much reason
to consider inHation generated by magnetic xnonopoles.
If the inHaton field is not a gauge singlet, the density
perturbations produced after inHation typically are too
large [1]. However, there xnay be many difFerent stages
of inHation and the last one can be driven by a difFerent
mechanisxn. The main problem is how to obtain good.
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initial conditions for the first stage of inflation and (if
possible) how to make it eternal. Here topological defects
may be of some help.

An interesting feature of this scenario is that inHation
of monopoles is eternal for purely classical (topological)
reasons [16,17]. There is only one way for a monopole
to stop in8ating. Even though we have estimated the
amplitude of quantum fluctuations around the monopole
to be very small, eventually at some moment this ampli-
tude may appear to be much larger than its typical value
H/2vr. The probability of large jumps of the scalar field

P is exponentially small [9], but small probabilities can
accumulate when we are speaking about eternity. If the
gradients of the classical field P become sufficiently large
because of the large Huctuation bP, the monopole may
stop inHating. However, the probability of this event
is much smaller than the probability of the monopole
pair creation in the vicinity of an expanding monopole.

Therefore, quantum Huctuations which may destroy the
inQation of the monopole simultaneously create many
new inHationary monopoles. Moreover, even if quantum
Buctuation can terminate inHation of a monopole, they
certainly cannot do the same for in8ating strings and do-
main walls.

%e have performed computer simulations iHustrating
some of these issues. Our simulations were two dimen-
sional, and analogues of the monopoles were the cen-
ters of the strings in the model (8). The centers of
the monopoles should correspond to the points where

Pi ——P2 ——0. There are three series of figures in our
simulations. Pigure 2 shows the distribution of potential
energy density in the two-dimensional Universe. In the

beginning potential energy density is equal to V(0) = —
&

in the whole domain of initial size H . After a few steps
of expansion, the surface V(P(z, y)) shown in Fig. 2(a)
bends a little, but still the value of the eH'ective potential

(e)

4 /&c

*

F'IG. 2. Energy density distribution during in8stion in theory (8).
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does not djffer much from V(0). [The box (z, y, V) is
not shown in this figure. ] Later it decreases everywhere
except for some points where it rexnains equal to V(0).
These points are the peaks of the mountains surrounded
by the thermalized phase in Fig. 2. In the beginning
we see just a few such mountains, Fig. 2(b), but thea
they split and form new mountains separated from oth-
ers by the thermalized phase, Figs. 2(c), 2(d). Note that
all these mountains have equal height. It is instructive
to compare this picture with a typical distribution ob-
tained in the chaotic inBation scenario with the potential

V(P) =
2 P2, Fig. 3. In this case, mountains are also

separated by the thermalized phase, but their height can
be as large as M&.

Our calculations have been performed with several dif-
ferent sets of parameters. The results shown in Fig. 2
correspond to m = 0.3M~, A = 009) g M& InBa-
tionary condition m (& 3H is satisfied for these values
of parameters. Of course, these parameters are far from
their values in realistic models. Still they should give us
a qualitatively correct picture of the process.

It is very tempting to identify the peaks of the moun-
tains shown at Fig. 2 with monopoles. However, most
of the mountains correspond to topologically trivial field
configurations. Moreover, most of them do not even have

P = 0 in the center. Indeed, the only condition which
is necessary for the self-reproduction of inBationary do-
mains with large V(P) is that the absolute value of the
field P should be smaller than P' (5). This means that
V(P) at the peaks of the mountains is soxnewhere in the
interval V(P') & V(P) & V(0). Typically this means
that V(P) on the peaks of the mountains is very close to
V(0), but it may be slightly difFerent from V(0). Thus
one should not overemphasize the role of topological de-
fects in the eternal process of self-reproduction of the
Universe. This process can occur without topological
defects as well. Still the possibility of exponential ex-
pansion and self-reproduction of topological defects adds

FIG. 3. Energy density distribution during inBation in the
simplest chaotic infiation model with the effective potential
m2 2

some new dimension to this theory.
The field P should make many juxnps back from P' to

P = 0. Consequently, the number of the monopoles pro-
duced due to these jumps will be suppressed by a factor

exp( —4vrzg2jH2). Monopoles will be copiously pro-
duced in this scenario, but only near the points where
the field P is sufficient small, [Px ~, [P2[ & H/2xr, in par-
ticular, near other monopoles.

In order to identify those mountains which correspond
to monopoles we performed another series of computer
simulations. We used color to show the direction of the
vector (Px(z), $2(z)) in the isotopic space. Namely, we
used white color if this vector was looking in the direc-
tion (1,0) (i.e., positive Po and vanishing P2), and then
we gradually increased the level of darkness as the vector
(Px(z), Pq(z)) rotated by the angle approaching 27r. The
point 2m for obvious reasons corresponds to a disconti-
nuity; the color is either white or black depending on the
way we approach it. This discontinuity does not imply
existence of any physical singularity. However, this color
map allows us to identify the monopoles as the points
where the boundary lines between black and white end
in a grey area.

Figure 4 shows the distribution of the direction of the
vector (Px(z), $2(z)) using this color map. As we can
see, monopoles are created in this process, and their dis-
tribution indeed looks like a fractal, which becomes more
and more complicated in the course of time. [For the at-
tentive reader: there are eight monopoles in Fig. 4(a) and
sixteen monopoles in Fig. 4(b)]. However, if we impose
these pictures on the distribution of the eaergy density
V(P), we will see that some mountains correspond to
monopoles, and some do not, see Fig. 5. The stage of
the process shown in Fig. 5(c) corresponds to the field
distribution in Fig. 4(a). The first monopole can be seen
in the upper right part of Fig. 5(a).

As we already mentioned, the centers of inBationary
domains in Fig. 2 do not form walls surrounding the
thermalized phase. On the contrary, inBating domains
are surrounded by the thermalized phase. The reason
for this behavior in the simplest versions of chaotic inBa-
tion scenario can be easily understood. Nothing prevents
the field P at each particular point to roll down to the
minimum of the effective potential. Only very rarely the
field P jumps against the classical fiow down. Those rare
points where this happens form the peaks of mountains in
Fig. 3. After a suKciently long time these peaks become
surrounded by the thermalized phase.

As we already mentioned, in the situation where the
state P = 0 is metastable with a sufficiently large lifetime,
we would encounter an opposite regime. Independently
of all topological considerations, we would obtain islands
of thermalized phase surrounded by de Sitter space. Is
there any strict boundary between these two regimes? Is
it possible that topological defects will prevent rolling of
the field P down to the minimum of V(P) in a consider-
able part of space even in the situations where the state
P = 0 is unstable?

One can get some insight by a more detailed investi-
gation of the shape of doxnain walls (generalization to
moaopoles is straightforward) by using a slight extension
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of the method of Ref. [17]. Let us assume that the field
!)i initially is very small, Kt! (( q, and its configuration
$(z, 0) is suKciently smooth. Here z is a comoving coor-
dinate of the point we consider. We will assume also that
near the center of a domain wall one can write Kt!(z, 0) in
the first approximation as cx, where e is some small con-
stant. In this case the amplitude of the scalar field at
each particular point will grow exponentially [1]:

(m'tl
P(z, t} = cz exp!

!, 3H )

I et us write this equation in terms of the physical dis-
tance I = xe

( m')
K!! = cXexp —

!
0—

This equation means that at a physical distance X
exp 0 —

&~ t from the center of the topological de-

fect the value of the field P does not change in time. In
other words, inQation stretches the domain wall without
changing its shape at small P. However, the Universe
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FIG. 4. Distribution of the field P = ~(Pi + i!t!2) during inflation in theory (8).
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t' m't)
x exp!—

3H) (14)

This makes it easier to understand the difference between
the topological structure of the Universe in the old in8a-
tion scenario and in the new one. In the old inBation
scenario de Sitter phase decays due to spontaneous ap-
pearance of holes inside it, which leads to the forma-

stretches domain walls in the x direction more slowly
than it stretches itself. In the comoving coordinates the
thickness of the wall exponentially decreases. Indeed,
one can easily see that the value of the field (12) does
not change for

tion of islands of thermalized phase surrounded by de
Sitter space. In our scenario the state P = 0 is unsta-
ble and all space has a tendency to go to the thermal-
ized phase. InQation still continues near the regions with
P = 0, but the comoving size of these regions exponen-
tially decreases in some directions. In the case of domain
walls this is not very important; they surround domains
of the thermalized phase for topological reasons. On
the other hand, shrinking (in the comoving coordinates)
strings and monopoles gradually become surrounded by
the thermalized phase. This picture is consistent with
the results of our calculations.

Note, however, that our last argument was based on
the assumption that the effective potential is quadratic

(b)
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FIG. 5. These figures simultaneously show the energy density of the Beld P in theory (8), and its direction in the isotopic
space.

The possibility of percolation of thermalized domains in a three-dimensional space remains an open question [10,22].
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near P = 0. Meanwhile, in the Coleman-Weinberg
model the effective potential near the maximum looks
like V(0) —4P . The behavior of domain walls in this
theory is more complicated. At small P the field de-
creases more slowly. This changes the shape of the do-
main wall, making it more flat near P = 0, which more
closely resembles the situation in the old inflation sce-
nario. On the other hand, one can argue that due to
quantum fluctuations, the field P spends most of the time
at P greater than H/27r, and therefore in average it rolls
down at least as fast as the field in the theory (1) with
m AH . Therefore, we expect that our conclusions
concerning the global structure of the Universe will re-
main qualitatively correct for the theories with the ef-
fective potentials V(0) —4P . However, this subject
clearly requires further investigation.

V. THE PROBLEM OF INITIAL CONDITIONS

The possibility of inflation of topological defects can
lead to some improvement with the problem of initial
conditions in the models where inflation occurs near a lo-
cal maximum of V(P). Initially the models of that type
were introduced in the context of the new inflationary
universe scenario [12]. The basic assumption of old and
new inflation was that inflation begins in a state of ther-
mal equilibrium at P = 0. This idea was not particularly
successful and no realistic versions of new inflation have
been suggested so far. Still it is possible for inflation to
begin at P = 0 in the context of chaotic inflation scenario,
if for some reason the scalar field appears near the top of
the effective potential inside a domain of a size greater
than H . But is it possible to achieve it in a natural
way?

In order to analyze this question let us imagine that
we are witnessing the moment of the Universe creation
("Planck time" ), when the first domain of classical space-
time with the Planck energy density M& emerged &om
the space-time foam. It seems extremely unlikely that
this first domain is infinite &om the very beginning. In
this case we would face the horizon problem: How was
it possible for the same event (the appearance of matter
with the Planck density) to be correlated in infinitely
many causally disconnected domains?

The only natural length scale in general relativity the-
ory is the Planck length M& . Therefore, the most natu-
ral assumption is that the initial domain has the Planck
length. If inflation of this domain does not begin im-

mediately after that, there is a good chance that such a
domain will momentarily collapse within the time M&
This is definitely the case if this domain locally looks like
a part of a closed universe, but even if the domain looks

Of course, this size might be much larger if there was a
preceding stage of evolution of the Universe, for example,
something like stringy pre-inflation [23]. This possibility is
extremely interesting, but its discussion is outside the scope
of the present paper.

like a part of an open universe of a size M& immersed
into space-time foam, the only obvious way for it to avoid
collapse and to evolve into a large homogeneous universe
would be to begin inflation instantaneously.

This is not a problem at all for the simplest versions
of chaotic inflation, where inflation can easily begin at
V(P) M& [1]. However, in all models where inflation
occurs near the top of the effective potential, the value
of V(0) appears to be at least ten orders of magnitude
smaller than the Planck density and typically it is even
much smaller than that. Inflation in such models can be-
gin only at a much later stage of the evolution of the Uni-
verse, at a time t Mp/QV( 0) & 105M& . The size of
initial domain of inflationary universe at that time should
be greater than Az H MJ /QV(0). Suppose for
simplicity that the Universe &om the very beginning was
dominated by ultrarelativistic matter. Then its scale fac-
tor expanded as p 4, where p is the energy density at the
pre-inflationary stage. Therefore at the Planck time the
size of the part of the Universe which later evolved into
inflationary domain was not Mp/QV(0), but somewhat
smaller: Az V ~ (0). This whole scenario can work
only if at the Planck time the domain of this size was suf-
ficiently homogeneous, ~ (& 1. However, at the Planck

time this domain consisted of Mp V s~4(0) domains of
a Planck size, and energy density in each of them was
absolutely uncorrelated with the energy density in other
domains. Therefore, a priori one could expect changes
of density bp p when going &om one causally discon-
nected parts of the Universe of a size M& to another.
A simple combinatorial analysis suggests that the prob-
ability of formation of a reasonably homogeneous part of
the Universe of a size b, z V ~4(0) at the Planck time
is suppressed by the exponential factor

C M~3

V3/4

where C 1. To get a numerical estimate, one can
take V(0) 10 ioM&~. This gives P & 10 io . For the
original SU(5) Coleinan-Weinberg model, this number is
even much smaller. Note that this estimate is very similar
to the estimate of the probability of a direct quantum
creation of inflationary universe with the vacuum energy
density V(P) [24],

3M4
p

which gives an even smaller value of the probability of
inflation at P = 0 than Eq. (15). Meanwhile, this equa-
tion tells us that there is no suppression of probability of
chaotic inflation with V(P) M&.

One of the differences between these two estimates is
that Eq. (15) still does not guarantee that the homoge-
neous part of the Universe will infIate. Inflation begins
near the local maximum of the effective potential only if
the field P in this domain appears in a state with P « q,
and is suKciently homogeneous. Meanwhile, in theory
(1) the field P initially can take any value in the interval
from —A / M~ to +A ~ M~. In realistic models with
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10 i2 this means that the typical initial value of P
would be of the order of 10 M~. Then it will partici-
pate in inflation and roll down to P = g, just as in the
simplest versions of chaotic inflation scenario. The prob-
ability to obtain a domain containing homogeneous field

P « g (assuming that ri « 10 M~) will be even smaller

than exp] —,&,
~ . At this stage topology may helpCM~

V ~4(0)

[17]. Once we have a sufficiently large and homogeneous
domain, it is most probable that the field P in the model

(1) will take both positive and negative values in its dif-
ferent parts. Consequently, there will be domain walls.
Since in this model domain walls can be stretched by
inflation, they will be even more easily stretched at the
pre-inflationary stage, because at that time the Hubble
constant was even greater. This naturally creates good
conditions for inflation inside the domain wall. However,
Eqs. (15) and (16) clearly indicate that the probability
to obtain infiation beginning at large P is much better.

Does this mean that we should abandon the idea of
chaotic inflation near the local maximum of effective po-
tential. In our opinion, this would be incorrect. First of
all, it might happen that in a future theory of elementary
particles inflation cannot occur anywhere else except for
a local maximum of V(P). Still it will be much better
than no inflation at all. On the other hand, there exist
several difFerent ways to create good conditions for infla-
tion at P = 0. The simplest way is to add to the theory
some heavy field 4 with a simple effective potential for
which infiation may begin at V(4) MJ, . This stage of
infiation initiated by the field 4 will force the field P to
jump to the top of the effective potential V(P), at least
in some part of the Universe. Initially the part of the vol-
ume of the Universe where the field P stays at the top of
the efFective potential will be relatively small, but later
these regions will become increasingly important since
they will eternally infiate [9].

Another way is to consider potentials of the new in-
Bationary type in the context of the Brans-Dicke theory.
In this case the Planck mass depends on the value of the
Brans-Dicke field 4, and the condition V(P) MJ, (4)
can be satisfied at the local maximum of V(P) [25,26].

There is also another interesting possibility [27,9]. The
wave function of the Universe should describe all possible
initial conditions and all possible outcomes. However, we
are interested only in the conditional probability to ob-
tain particular observational data under an obvious but
very nontrivial condition of our own existence. There
may be many branches of the wave function of the Uni-
verse which may seem natural from the point of view of
initial conditions, but most of them describe the Universe
where intelligent observers cannot live. In our calculation
of the probability (15) we simply counted all trajecto-
ries, even those which correspond to "virtual" universes
collapsing within the Planck time. But why should we
count them? Perhaps we should see where most of the
observers can live, and we should call the corresponding
trajectories "typical. " There will be many problems with
such an approach, in particular the problem of introduc-
ing a proper measure on the set of all such trajectories
[26]. However, it seems plausible that with any reason-

able choice of measure the trajectories corresponding to
eternal inflation will always win being compared to the
trajectories which do not possess this property.

The only real problem appears if we should compare
many difFerent possibilities corresponding to different re-
alizations of the eternal inflation scenario. In this case
one should take into account that it is much more diKcult
for infiation to begin at V(P) « M&4 than at V(P) M&.

VI. DISCUSSION

When we began this investigation, our main purpose
was to study the difference between the global structure
of the Universe in the models of two different classes:
those models where infiation occurs near a local maxi-
mum of the efFective potential and those models where
infiation begins at large P, outside the equilibrium. How-
ever, during our work we recognized that some other im-
portant features of inflation in the models of the first class
theories have not been properly analyzed. For more than
ten. years we knew that inflation solves the primordial
monopole problem, but we did not know that monopoles
and other topological defects can inflate.

Now it appears that under certain conditions topo-
logical defects do inflate and their inflation never ends
[16,17]. According to this scenario, our part of the Uni-
verse could be formed from what initially was an interior
of an inflating topological defect. The first attempt to in-
vestigate this question was made in our paper [9], where
we have shown that in accordance to the most natural re-
alization of the "natural infiation" scenario [28] we should
live in the remnants of an inflating domain wall. Now we
understand that this situation is much more general.

The structure of space-time near inflating topological
defects is very complicated; it should be studied by the
methods developed in [29] for description of a bubble of
de Sitter space immersed into vacuum with vanishing en-
ergy density. Depending on initial conditions, many pos-
sible configurations may appear. For example, under cer-
tain initial conditions an inflating monopole may evolve
into a magnetically charged Reissner-Nordstrom black
hole [20]. However, it will contain a part of exponen-
tially expanding space inside it. This will be a wormhole
configuration similar to those studied in [29—32]. On the
other hand, an observer which originally participated in
infiation near a monopole (or near some other topological
defect), eventually will find himself in a post-infiationary
part of the Universe, exponentially far away &om the in-
flating monopole. Such an observer may argue that he
does not see any monopoles since the exponentially ex-
panding space around them expels them from our part
of the Universe.

At the quantum level the whole scenario becomes even
more interesting. Fluctuations of the field P near the
center of a monopole are strong enough to create new
regions of space with P = 0, some of which will become
monopoles. After a while, the distance between these
monopoles becomes exponentially large, so that they can-
not annihilate. This process of monopole-antimonopole
pair creation produces a fractal structure consisting of
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monopoles created in the vicinity of other monopoles.
One of the original motivations for the development

of inflationary cosmology was a desire to get rid of pri-
mordial magnetic monopoles and dangerous domain walls
produced in the theories with spontaneous breaking of
discrete symmetries. For a long time topological defects
and inflation were opposed to each other as two almost
incompatible sources of density perturbations in the early
Universe. Now we see that the interplay between infla-
tionary theory and the theory of topological defects can

be very constructive. According to our scenario, infla-
tion can produce inflating topological defects which in
turn can serve as seeds for eternal inflation.
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