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Microphysical approach to nonequilibrium dynamics of quantum fields
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We examine the nonequilibrium dynamics of a self-interacting AP scalar field theory. Using
a real-time formulation of finite temperature field theory we derive, up to two loops aud O(A ),
the effective equation of motion describing the approach to equilibrium. %e present a detailed
analysis of the approximations used in order to obtain a Langevin-like equation of motion, in which
the noise and dissipation terms associated with quantum Quctuations obey a Quctuation-dissipation
relation. We show that, in general, the noise is colored (time dependent) and multiplicative (couples
nonlinearly to the field), even though it is still Gaussian distributed. The noise becomes white in the
infinite temperature limit. We also address the effect of couplings to other fields, which we assume

play the role of the thermal bath, in the efFective equation of motion for P. In particular, we obtain
the auctuation and noise terms due to a quadratic coupling to another scalar field.

PACS number(s): 98.80.Cq, 05.70.Ln, 11.10.Wx, 11.15.Bt

I. INTRODUCTION

The possibility that the Universe went through a se-
ries of phase transitions as it expanded and cooled from
times close to the Planck scale has been actively investi-
gated for the past 15 years or so [1]. It is hoped that by
studying the nontrivial dynamics typical of the approach
to equilibrium in complex systems, many of the current
questions of cosmology, from the origin of the baryonic
matter excess to the large-scale structure of the Universe,
will be answered in the near future. As is well known,
the origin of density perturbations that seed structure
formation has been linked to either the existence of topo-
logical defects, such as strings or textures formed dur-
ing a (GUT)-scale transition [2], or to infiation in one of
its incarnations. In particular, the old, new, extended,
and natural models of inflation all invoke a symmetry-
breaking transition in which nonequilibrium conditions
play a crucial role [3]. At the electroweak scale, the focus
has been in generating the baryon number excess during
a first-order phase transition [4]. Even though there are
certain questions related to the reliability of the pertur-
bative expansion for weak enough transitions [5] as well
as to the mechanism by which weak fnst-order transitions
complete [6], it is currently believed that nonequilibrium
conditions are a crucial ingredient for baryogenesis.

Despite its relevance, not much has been done to un-
derstand nonequilibrium aspects of phase transitions in
cosmology. (This situation is rapidly changing. We will
soon refer to past and recent work on the subject. ) Most
of what has been done so far is related to the finite tem-
perature effective potential (computed in general to one-
loop order) which, by its very definition, is only adequate
to describe equilibrium situations; the calculation is usu-
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ally done in Euclidean time so that we can obtain the
equilibrium partition function from a transition ampli-
tude. The great advantage of using the efFective poten-
tial is that it gives us information about static properties
of the system such as its possible stable and metastable
equilibrium states, and critical temperatures for phase
transitions. The disadvantage is that we lose all informa-
tion about real-time processes, which are crucial to un-
derstand the mechanism by which the system approaches
equilibrium. In fact, the one-loop efFective potential does
carry, in a somewhat indirect way, information about un-
stable states in the system. These are states which are
in the "spinodal" region, where the efFective potential is
concave. If we start with the system in thermal equilib-
rium above the critical temperature and then quench it
to below the critical temperature so that its order pa-
rameter takes a value within the spinodal, the approach
to equilibrium will be initially dominated by the growth
of small amplitude long wavelength fluctuations, in the
mechanism known as spinodal decomposition. Thus, the
effective potential tells us that some states will be unsta-
ble, and that their final equilibrium state is at its global
minimum, but it does not tell us how the system gets
there. The reader is referred to the recent work of Boy-
anovsky, Lee, and Singh for details [7].

These limitations of the effective potential were
pointed out by Mazenko, Unruh, and Wald, in work
where they argued that for strong enough couplings, the
slow-roll approximation necessary for successful inflation
may not be adequate. Instead, the approach to equi-
librium would proceed by the formation and growth of
domains, typical of spinodal decomposition [8]. It was
subsequently shown within the context of the new in8a-
tionary model, by both analytical [9] and phenomenolog-
ical numerical methods [10] that due to the small cou-
plings needed for the generation of density fluctuations,
the slow-roll picture of infiation was correct.

This discussion of the validity of the slow-roll approxi-
mation in inflation raises some very interesting questions
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related to the way we picture the approach to equilibrium
in field theories, which are quite independent of infIa-
tion. For example, the distinction between the "system, "
which is out of equilibrium, and the "thermal bath, "
which drives the system into equilibrium, is somewhat
blurred in the context of nonlinear field theories, in con-
trast to the system-bath coupling in quantum mechanics
[ll]. In fact, for self-interacting field theories, the short
wavelength modes can serve as the thermal bath driving
the longer wavelength modes, which have slower dynam-
ics, into equilibrium. In this sense, the Geld can be its
own thermal bath. Of course, other Gelds coupled to the
order parameter scalar field (henceforth the "system")
may serve as the thermal (or, at T = 0, quantum) bath.

In one of the original works on this subject which was
motivated by cosmology, Hosoya and Sakagami obtained
an approximate dissipation term in the equation of mo-
tion satisfied by the thermal average of the scalar Geld,

by invoking a small deviation &om equilibrium in the
Boltzmann equation for the number density operator.
This calculation was then supplemented by a computa-
tion of transport coefIicients using Zubarev's method for
nonequilibrium statistical operators [12]. Using an ap-
proach which is closer to the one we will adopt here,
Morikawa obtained the eff'ective Langevin-like equation
(that is, with both fluctuation and dissipation terms but
not quite as simple as the Langevin equation) for a scalar
field interacting with a fermionic bath using real-time
field-theoretical techniques at zero and, very brieBy, fi-

nite temperature [13]. More recently, Hu, Paz, and Zhang
analyzed the case of a quantum bath given by a scalar
field quadratically coupled to the system [14], while Lee
and Boyanovsky considered the case of a thermal bath
given by a scalar field linearly coupled to the system
[15]. Some works dealing with nonequilibrium evolution
within a cosmological framework can be found in Refs.
[16,17]. Here we will only be concerned with dynamics
in Minkowski spacetime.

Recently, and in particular in Refs. [14,15] the prop-
erties of the noise as being in general colored and multi-
plicative (unless the coupling between system and bath
is linear) have been emphasized. This can have very
important consequences to our understanding of phase
transitions, as suggested by Habib, even though results
at this point are preliminary [18]. The reason is that
potentially, a multiplicative noise may sharply decrease
the relaxation time scales in the system and thus ac-
celerate the approach to equilibrium. Numerical simula-
tions of the approach to equilibrium have so far employed
a phenomenological I.angevin equation, with white and
additive noise to mimic the efFects of the thermal bath.
In 1+1 dimensions both the thermal nucleation of kink-
antikink pairs [19] and the decay of inetastable states
[20] were studied, while in 2+1 dimensions the de-

cay of metastable states was recently investigated [21].
The time scales measured in these simulations agree
with the theoretical prediction for the decay rate, I'

exp[—B(T)/T], as long as B(T) is the classical (i.e.,
obtained with the classical potential) nucleation barrier
given by the energy of the appropriate field configuration
that saturates the path integral, the mass of the kink-

antikink pair or the energy of the bounce configuration
in the examples mentioned above.

The question then is if the phenomenological Langevin
equation used in the above simulations is indeed repro-
ducing the essential physics of the approach to equilib-
rium, or if we are dangerously oversimplifying things.
The above discussion suggests that the effective equa-
tion which describes the approach to equilibrium of the
slower moving modes can be quite different from the
phenomenological Langevin equation with its white and
additive noise. Two tasks are at hand then. First we
must obtain the effective equation for a self-interacting
scalar Geld which acts as its own bath and compare it
with the equation obtained by having another field act as
the bath. This should elucidate the nature of the thermal
bath in these two situations, and also give us an answer as
to whether the phenomenological Langevin equation is at
all valid in some limit. The second task follows naturally
the first. Once we have an efFective equation we trust (in
some limit), we should use it to simulate numerically the
nonequilibrium dynamics, measure the relaxation time
scales, and compare the results with the results obtained
with the simpliGed phenomenological Langevin equation.

In this paper we will concentrate on the first task.
Namely, we will obtain, within perturbation theory, the
efFective equation of motion describing the approach to
equilibrium of a self-coupled scalar Geld. We will inte-
grate out the short wavelength modes whose influence
will be felt as a thermal bath through the nonlinear cou-
plings to the longer wavelength modes, which we take
as the system. The separation between bath and system
is implemented by perturbation theory, since the efFec-
tive action is obtained by integmting over small fluctua-
tions about the state we are expanding about. We will
include corrections up to two loops, as nonvanishing vis-
cosity (and transport coefficients, in general) terms in
finite temperature field theory only show up by consid-
ering higher order (loop) corrections to the field propa-
gators and are dependent on the imaginary part (decay
width) of the self-energy corrections [12,22—24]. Fluctu-
ation terms are obtained by associating the imaginary
terms in the effective action as coming &om the interac-
tion of y with fluctuating (noise) fields, as done in [13]
and [15]. We will also obtain the effective equation of mo-
tion in the presence of another scalar Geld quadratically
coupled to the system, thus reproducing (even though
we focus more on dynamical aspects) the analysis of Ref.
[14] for finite temperatures. Our results could, for exam-

ple, be used in the numerical investigation of symmetry
restoration at finite temperature, although close to T
our approximations will break down.

The paper is organized as follows: In Sec. II we de-
rive the efFective action for a nonuniforln time-dependent
background field configuration y(x, t), up to two loops
and order A . In Sec. III we obtain the efFective equa-
tion of motion for p(x, t) and discuss the approximations
involved in order that it obeys a Langevin-Like equation.
In Sec. IV we examine the efFect of other fields inter-
acting with the scalar field, by studying the case of a
quadratically coupled scalar field and by evaluating its
contributions to noise and dissipative terms. Conclusions
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are presented in Sec. V. Three Appendixes are included
in order to obtain some technical results used in the pa-
per.

the integration contour.
As usual, the efFective action r[y] is defined in terms

of the connected generating functional W[J] as

II. THE TWO-LOOP FINITE TEMPERATURE
EFFECTIVE ACTION

Consider the scalar 6eld model with Lagrangian den-

sity

r[&] = W[J] — d'z J(z)&(z),
C

with &p(z) defined by y(z) = &&~l ll, and

(2.4)

m2
&[&] =

2
(4&) —

2
&' —4]&' (2.1)

Z[J] = Dgexp(iS[Q, J]),
C

where the classical action is given by

(2 2)

and with generating functional Z[J], in terms of an ex-

ternal source J, given by

W[J] = i ln —Dgexp(iS[P, J)) .
C

(2.5)

The perturbative loop expansion for 1 [p] is obtained
by writing the scalar field as P ~ $0 + rl, where Po is a
6eld con6guration which extremizes the classical action
S[P, J] and )7 is a small perturbation about this configu-
ration. By using (2.4) and (2.5), we can relate Ps to p
(Po ——y —)7) and write the effective action, for J ~ 0, at
one-loop order, as

S[P, J] = d *(&[P]+J(*)P(*)~
C

(2.3)

where

r[&] = S[p]+ —Trln[Cl+ V"(p)], (2.6)

In (2.3) the time integration is along a contour suit-
able for real-time evaluations, which we choose as being
Schwinger's closed-time path [25,23,26], where the time
path c goes &om —oo to +oo and then back to —oo. The
functional integration in (2.2) is over fields along this
time contour. As with the Euclidean time formulation,
the scalar field is still periodic in time, but now with
)]t)(t, x) = P(t —iP, x). Temperature appears due to the
boundary condition, but now time is explicitly present in

—Trln [Cl+ V"(y)]2

= —iln Dg exp ——q [cl+ v"(y)] ql, (27)
2

Neglecting contributions to (2.6) which are indepen-
dent of p, we can expand the logarithm in (2.6) as

+~
( 1)m+1

—Trln[Cl+ V"((p)] = Tr, )— Gp ~

—p
2 2 m (2 )

j +™
(—1) +' /A']) I

—
l

T d zl'''d zmG (zi z2) 'p (z2) G "'(*2 zs)2

2 m (2) 1A . l1,ng 4
m=1

x p (z ) ( G~
' (z —zi) p2(zi), (2.8)

The matrix representation in (2.8) is a consequence of the
time contour, since now we must identify field variables
with arguments on the positive or negative directional
branches of the time path, that we denote by y+ and
y, respectively. As a consequence of this doubling of
field variables, we also have that G&'(z —z'), the real-
time &ee-6eld propagators on the contour, are given by
(I,, n = +, —) (Refs. [23,27])

where T+ and T indicate chronological and anti-
chronological ordering, respectively. t &+ is the usual

physical (causal) propagator. The other three propa-
gators come as a consequence of the time contour and
are considered as auxiliary (unphysical) propagators [27].
The explicit expressions for G"' (z —z') in terms of its

4
momentum space Fourier transforms are given by [23,26]

G4, +(z —z') = 2(T+&(z)&(z'))

Gp (z —*') = '(T-&(z)4(z'))

Gp (z —z') = '(&(z')&(z))

G +(*—*') = '(&(*)&(*'))

G, (z *') = ' e'"-~"-"~

(2vr) 2

f G&++(k, t —t')
~ G&+(k, t —t')

(2 9) where

G&+ (k, t —t') )
G~ (k, t —t') i '

(2.10)
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G~++(k, t —t') = G~(k, t —t')0(t —t')

+G~~ (k, t —t') e(t' —t),

G~ (k, t —t') = G~~(k, t —t')0(t' —t)

+G~~ (k, t —t') 0(t —t'),

G~+ (k-, t —t') = G~~(k, t —t'),

G~+(k, t —t') = G~(k, t —t'), (2.11)

where n(u) = (e~ —1) is the Bose distribution and
~ = ur(k) is the free particle energy, u(k) = gk + m .

Let us now add to (2.6) contributions up to two loops
and order A . Graphically we have

and, for 6Iee propagators at 6nite temperature,

G~~(k, t —t') =
2(u(k)

x [1+2n((u)] cos[(u(t —t')]

i sin [u (t——t') ]

G~(k, t —t') = G~~(k, t' —t), , (2.12)

+ 0(A'), (2.13)

where, in the graphic representation, p is in the exter-
nal legs and the internal propagators are given by G"' .
In terms of the field variables &p+ and p, the terms in
Eq. (2.13) are given by (note that now time runs only
forward)

&Ill = f&'*«fv+I —&Iv-t&, (2.14)

dsq ( G&+(q, p) G& (q, p) l ( p+(x)
4

*
(2 )s (G&+(q 0) G (q, p) ) q

0

d3
d'z &p+(z) —y' (*), [1+2"(~)]

0
-~'-(z) )

(2.15)

where G"' (q, p) is given by (2.11) (for t —t' = 0). Equation (2.15) gives just the finite temperature mass contribution

to t}e effective action (renormalized by a proper mass counterterm b'm which we are not including here). The second

graph in (2.13) is given by

(2.16)

Equivalently, we get for the third graph in (2.13) the expression

16 (27r) (27r)s ( G ~(q, t —t') G (q, t —t') J

(q'(z') 0 'i &G~"(q-k t —t') G~ (q-»'-') & & V'(z)
p —y (x') y q G&+(q —k, t —t') G4, (q —k, t —t') ) ( 0 V' (z) )—-

4, d3k;k. „„dq 2 ++ Id'zd'x' e'" ~"-"'~
@2+(z)G++ (q, t —t') G++ (q —k, t —t') p (z')

(z)G+ (q t —t )G+ (q —k t —t )p (x') —p (z)G&+(q, t —t')G&+(q —k, t —t')y+(z')

+ y2 (x)G~ (q, t —t')G~ (q —k, t —t')p (z')

A2 dsk 1+ 2n ~ d3 -2
(g Q Qg (P+ x Gp

- 2 - 2
—(p+ (x) G~+ (q, t —t') —p (x) G~+ (q, t —t') + p (x) G~ (q, t —t') (2.17)

whereas the fourth graph in (2.13) is given by
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A2
„4 4, dk;i, („„.) dqi dqp dqs

12 (2m') (2vr) (2'�) (27r) s

x @+ x a&++ q„S—S' a&++ q„t —t' a&++ q„t —t' p+ x'

—(p~(x)G& (qi, t —t')G& (qzt t —t')G& (qs, t —t')(p (z')
—(p (z)G&+(qi, t —t') G&+(qq, t —t') G&+( qs, t —t') tp~ (z')

+te (z)Gt (q„t —t')Gt (qt, t —t')Gt (qt, t —t )te '(z')) . (2.18)

Before continuing, it is advantageous to rewrite the
field variables (p~ and (p in (2.13) in terms of new field
variables p, and y~, defined by

1
V+= 29~+@.,

1V-= V. —-V ~.
2

(2.19)

The physical meaning of these variables is suggested in
I

I

Ref. [28], with (pa being basically associated with a re-
sponse field while (p, is the physical field, which "feels"
the Quctuations of the system. The change of variables
(2.19) will allow us to identify, in the effective action, the
terms responsible for the fluctuations in the system (the
imaginary terms). The association of (p, as the physical
field imposes that we take tpa = 0 ((p+ ——tp ) at the end
of the calculation [23,13]. In terms of the new variables

p, and (p~, using (2.11) and (2.12), we get the following
expression for the efFective action (2.13), using the phys-
ical propagator G&++(q, t —t') in the Feynman diagrams

(2.14)—(2.18):

dsk 1+2n(~)
I'[&pa, (p, )

= d z '

p~(z) —0 —m~ ——

2

-4, 4~~(z)~.'(z) + V ~(z)q. (z)

d3k, ~ „„A~k (~—~') 2

(2~)s
I

8

3

+4(prt, (z) tp, (z) tp, (z') Im G&+(q, t —t') G&++ (q —k, t —t') 8(t —t')

A2——(pa (x) (p, (z') Im
3

, 3. 3 .' G++ (@,t —t') 9(t —t') 6(k —qi —qz —q3)~" (2~)sj=i
2 3

+i tpa (z)(p, (z)(pz(z')(p—,(z')Re G&+(q, t —t')G&++(q —k, t —t')

A2 g ~

+i—(pa (x)(p& (x')Re G+ (q, t —t') h (k —qi —qz —qs)12 j=i
(2.20)

The last two terms in I'[(p~(p, ], Eq. (2.20), give the imaginary contributions to the effective action at the order
of perturbation theory considered. It is straightforward to associate the imaginary terms in (2.20) as coming from
functional integrations over Gaussian fluctuation fields (i and (q [13,15]:

Gti&(t'il/Ltt'et'M I eztt le f~'z (tez(*)t"(z)t'|(z) + t z(z)t'e(z)I)

A2 - 2
$4&$4&1 & y ~ y ~ Re Q++ p ~ p4 X ) X

A2 - 3
+i—tee(z)Re Gt++ tez(z') ), (2.21)
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where P[Q] and P[(2], the probability distributions for (i and Q, respectively, are given by

A2
P[(,]=X, 'expI —— d'zd'z f, '(z)

l

—Re G+
l 6(z')I,4' . *,*) {2.22)

4 4
2 - -3

P[(2] = N2 exp —— d zd z (2(z) ~

Re Gy
~

(2(z ) (2.23)

where Ni and N2 are normalization factors, and in (2.21)—(2.23) we introduced the compact notation

G~++ = exp [ik (x —x')] G~+ (q, t —t') G~+ ( —k, t —t') (2.24)

G& —— exp [ik (x —x )] G (q, t —t') b(k —qi —q2 —q3) .
k

{2)r)3 ..". (2)()3
j=1

Therefore, using (2.21), Eq. (2.20) can be rewritten as

1
(']rye, y, l

= —.)»6P]6]f ~(ep]h] ex' (e+z]vev (i(el,),., ,

where

~ z]&z'p 'e&'eel = Re~]~e ~ l + J "'*] e(z)~.(z)&~(z) + ~e(z)(e(z)l

(2.25)

(2.26)

(2.27)

and Rel'[&pa, p, ] is the real part of Eq. (2.20). In (2.27),
the fields (i and (2, with probability distributions given
by (2.22) and (2.23), respectively, act as fiuctuation
sources for the scalar field configuration p. (i couples
with both the response field ya and with the physical
field y„ leading to a coupled (multiplicative) noise term

(p,(i) in the equation of motion for y„while (2 gives
origin to an additive noise term. In the next section we
examine the relevance of each of these noise terms in the
equation of motion for the physical Geld y, and evaluate
the dissipation coefficients associated with them.

The equation of motion for p is de6ned by

er ['Pn ~ Pc ~ (i ~ (2] ( 0Iv ~=o
Pa

(3.1)

Using (2.27) and (2.20), we obtain

III. THE EFFECTIVE EQUATION OF MOTION

2+m2+ —,
~

1+1 dt', Im G&++(q, t —t')
~ q, (z)+ —q3(z)

A~
+—y.(z) d'z' dt'()), (x', t')Im G~++

2 —OG Z)Z
d z' dt'p, (x', t')Im G~++

= v"(*)6(z)+ (2(z) (3.2)

- 2 - 3
where G&+ and G&+ are given by (2.24) and

-gz 'Z)X

(2.25), respectively. In order to obtain a Langevin-like
equation, a series of approximations must be performed
in the above equation of motion. These approximations
will certainly limit the scope of applicability of the final
equation to be obtained (very much as in linear response
theory), but on the other hand, will elucidate important
aspects of the nonequilibrium physics. Strictly speaking,
a Langevin-like equation can only be used to describe
the nonequilibrium dynamics of slowly varying modes in

near-equilibrium situations. To see this, we now focus on
the last two terms on the left hand side of Eq. (3.2).

A. Dissipation caefBcients

Let us Grst consider the term in the equation of motion
- 2

dependent on G++ . Inspecting (2.24), it is clear
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that the spatial nonlocality can be handled by consider-
ing only contributions with zero external momentum, as
in the computation of linear response functions [24]. This
is what is usually done in the computation of the one-loop

eHective potential as an expansion of vertex functions
with zero external momentum, which is physically equiv-
alent to considering only nearly spatially homogeneous
6elds. We thus obtain

2—p, (x) d x' dt'(p'(x', t')Im G~++
2 —OO Z)g

2 - 2
= —(p, (x, t) dt' y, (x, t') —y, (x, t) Im G~++(q, t —t')

A2 d3 -2
+—(p, (x, t) dt' Im G~++(q, t —t') (3.3)

where we have summed and subtracted in (3.3) the last term on the RHS. In order to handle the temporal nonlocality
let us further assume that Ip, varies sufficiently slowly in time, so that we can expand the first term on the right-hand
side (RHS) of (3.3) to first order around t This . is a valid assumption for systems near equilibrium, when y, is not
expected to change considerably with time. (This has been called the quasiadiabatic approximation in Refs. [13,29].
We then obtain

2 ds—(p, (2) d z' dt'(p, (x', t')Im G~++ A (pz(x, t)(p, (x, t) dt'(t' —t) Im G~++(q, t —t')
2

-2

A2 t a3 -2
+—p, (x, t) dt' „ Im G&++ (q, t —t') (3.4)

The emergence of a time direction within this approximation is surely related to neglecting the faster moving modes
in the description of the dynamics. This is an interesting question which deserves further study, but that we will not
address in the present work. The last term on the left-hand side of Eq. (3.2) can also be worked out as in (3.3) and
(3.4) and we obtain

2 t
d x' dt'y, (x', t')Im G~++ —j (x, t) dt'(t' —t)Im

3 C ) Q 3 C
f

'

G++(@,t —t') b(qi + qz + qs)
i=1

A2 t
+—(p, (x, t) dt'Im

3
g '

)' G@+(q,, t —t') h(q, + q& + qs) .
j=1

(3.5)

first contribution to ImZ comes Rom the "setting sun"
diagram, being therefore of the order A . Higher loop
contributions to the self-energy are of higher order in A

and can be consistently neglected for weak couplings and
within the order of perturbation on which we are working
on. Writing the corrected propagator G&+(q, t —t') in
terms of the spectral function p(q, qo) (Appendix A), it
is possible to show that due to the nonvanishing ImZ,
p(q, qo) acquires a finite width, I'(q), which is O(A ) for
weak couplings. I'(q) will generate finite contributions to
the terms proportional to &p in Eqs. (3.4) and (3.5), as we
show next. This is essentially the same nonperturbative
procedure adopted in Refs. [12,22,24] in the computa-
tion of dissipation coefBcients. Although the introduc-
tion of the full propagator gives us a nonvanishing dissi-
pation coeKcient, its implementation must be done with
some care. There have been suggestions recently that an
improved finite temperature e8'ective potential which in-
cludes leading in&ared divergent terms could be obtained

The first terms on the RHS of (3.4) and (3.5) are the
corresponding dissipative terms associated with the Quc-
tuation fields (i and $z, respectively. The last term on
the RHS of (3.4) is the one-loop finite temperature cor-
rection to the vertex [second graph in (2.13)], while the
last term on the RHS of (3.5) is the contribution to the fi-
nite temperature two-loop correction to the mass coming
from the "setting sun" diagram [the last graph in (2.13)].
The time integrations in (3.4) and (3.5) can be easily per-
formed by using the expression for G&+(q, t t') given in—
(2.11), and by changing the time integration variable to
t —t' = t". However, if when computing the above dissi-
pation terms we use the &ee propagator expressions given
in (2.12), we would find that they both vanish, as can be
explicitly checked. The results would be quite diferent if,
instead of &ee propagators, we use dressed propagators.
Self-energy corrections in the propagator introduce non-
trivial effects (damping) due to the iinaginary contribu-
tions to the self-energy: Z(q) = ReZ(q) + i ImE(q). The
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by a dressing of the Geld propagator, in such a way that
daisy and superdaisy diagrams would be accounted for
(see, e.g. , the papers in [5]). It was then shown that if
this resummation procedure was not implemented care-
fully, one would overcount diagrams, giving rise to wrong
results, such as an eHective potential with a linear term
in the scalar field. Although our focus here is on dynam-
ical issues, an improper introduction of full propagators
may also generate an overcounting of terms in the final
effective equation of motion that we derive. In order to
deal with this problem in a self-consistent way, we apply
the procedure of Parwani, Ref. [30], and of Arnold and
Espinosa in Ref. [5], for the problem of resummation at
high temperatures. %e rewrite the Lagrangian density
l:[P] in (2.1) as

1 1

q —m +ie q —m —Z(q) +ie ' (3.7)

where Z(q) is the self-energy contribution,

the interaction term. By doing this we can systematically
and self-consistently rewrite our equations in terms of the
dressed propagator and at the same time remove any ex-
tra overcounting generated by the dressing, through the
modified interaction, as illustrated in Appendix B. We
thus write the dressed propagator as

~[4] &[&]=-(&&)' —
—, ( '+~)&'

4 1——4 +-~4,
4t

(3.6)
+O(A') . (3.8)

where we have added and subtracted the self-energy-
dependent term from C[P]. We can now treat 2(m2 +
Z)P as part of the field propagator and 4, P4 —2ZP2 as

In what follows, we will consider explicitly only contri-
butions to Z(q) from diagrams up to O(A2).

In Appendix A we show that the physical propagator
G&+(q, t —t') is then changed to

—I'(g) )t —t'
~ 12 ')'

G++(q, t —t') (1+2n) cos[ur)t —t']] —i sin[~[t —t'[] + 2PI'(q)n(1+ n) sin[u[t —t'[] + 0
4' '

2(u(q) T2

where I'(q) is the particle decay width [27]

ImZ(q)
2&v(q)

(3.9)

(3.10)

and in (3.9) we used the approximation PI' « 1 (see Appendix A), which is consistent with slow relaxation time
scales. In (3.9), ur—:&u(q) and n(ur) are now given in terms of the finite temperature effective mass mT.

z»~ A (T2 mT) A ys A T (m
ml, ——m +ReZ(mT) m'+ —

~

—
~

— +, ~ ~
+

2 ( 12 4)r 384)rm 192)r2 q
T2 (3.11)

where we have only written explicitly the main thermal contributions from each of the terms in (3.8) and we have
neglected subdominant contributions. The second and third terms on the RHS of (3.11) are easily obtained. The last
term on the RHS of (3.11), associated with the "setting sun" diagram, is explicitly evaluated in [30].

Using the dressed propagator (3.9) in the expression for the dissipation term (3.4) and performing the integration
in t', we obtain, to order A2,

A~—q). (z) dsx' dt'(p,'(x, t')Im G~++
2 X ) X

A2
2 . d q n(l+n)= 8"'""'"" (2-) - (q)~(q)

A2 s dsq 1 1+ 2n——(ps(x, t) + pn(1+ n) + 0
i

A —
~

.
~) (3.12)

The first term on the RHS of (3.12) gives the dissipation
term, gqy, y, with dissipation coeKcient gq given by

A dq ( )[1+ ( )] ( I')i
8 (2)r) s (u2(q) I'(q) ( ~ )

The second term on the RHS in (3.12) clearly gives just
the one-loop finite temperature vertex correction. In or-
der to obtain (3.12) we have performed an expansion to
first order in powers of I'/~, consistent with slowly vary-
ing modes. Also, since I' oc O(A2), we have omitted the



50 MICROPHYSICAL APPROACH TO NONEQUILIBRIUM. . . 2449

O(A4) contributions. The expression for the dissipation
coeKcient can be further simplified if we consider the
high temperature limit T )) mT. As shown in Refs.
[12,30] the high temperature limit of I'(q) is

A Tr=
1536vr~(q)

(3.14)

Using (3.14) in (3.13), we obtain, for rh, in the high
temperature limit,

B. The effective Langevin-like equation of motion

Up to two loops and O(A2), at zero external momen-
tum and within the adiabatic approximation, we obtain,
from (3.2), the following equation of motion for p, :

96 fT)
AT (mT i

which shows that the dissipation coefficient associated
with the multiplicative noise field (i is, in this limit, only
weakly (logarithmically) dependent on the coupling con-
stant A.

We can proceed in an analogous way and evaluate Eq.
(3.5) in order to obtain the expression for the dissipation
coefficient associated with the second fluctuation (noise)
field (2, from the first term on the RHS of (3.5). From the
second term we can obtain the two-loop mass correction
coming from the fourth graph in (2.13). Substituting
Eq. (3.9) for G&+(q, t —t') in (3.5) and performing the
integration in t', it is possible to show (see Appendix
C) that the dissipation coefficient associated with (2 is
at least of the order Azl'(q ) = O(A4). Therefore, in a
weakly interacting model, the dominant contribution to
dissipation in the equation of motion for p, comes &om
the dissipation term associated with the multiplicative
noise field, (i.

where ili is given by (3.15), mT and AT are the renor-
Inalized finite temperature mass and coupling constant,
respectively, obtained &om the renormalized e8'ective ac-
tion, Eq. (2.27). The renormalization of S,ir can be de-
fined by the usual introduction of counterterms in the ini-
tial Lagrangian, Eq. (2.1), by writing 8 ~ 8+hZ, , where
bZ = 2Z(B„Q) —2bm P —4", P, with Z, bm, and bA

being the wave function, mass, and vertex renormaliza-
tion counterterms, respectively. bA cancels the logarith-
mic divergence of the one-loop vertex correction, while
Z and bm2 renormalize the self-energy contribution, Eq.
(3.8). In the high temperature limit, mT is given by Eq.
(3.11) and AT is given by

+, 1 + 0

+O(A ) . (3.17)

Equation (3.16) can also be written in terms of a finite
temperature effective potential V,a(y„T):

t:jV. +V.'s(V. T)+ A, T»l I

V (V ) V'.
96 fT ) (s)

A'7rT gm& i

(3.18)

where V ((p,) =(3) d V[gj

Note that this equation, apart &om the important mul-
tiplicative noise source on the RHS, is analogous to the
one obtained by Hosoya and Sakagami, using quite dif-
ferent methods, for the evolution of the thermal average
of the scalar field p, (Ref. [12)).

From the equation for the probability distribution for
the fiuctuation field (i, P[(i], Eq. (2.22), the two-point
correlation function for (i(x) is given by

(3.19)

Cl + mT (p~(x, t) + p~(x, t) + 7/i(p~(x, t)ip~(x, t)

= (p, (x, t)( (xi, t), (3.16)

Using (2.24) and (3.9), we obtain for the two-point cor-
relation function (3.19) the expression (at zero external
momentum)

A2 d3
((i(x)(i(x')) = —b (x —x') (2n(~) [1+n(~)]+ [1+2n((u) +2n ((u)]cos [2ur ft —t'f]

2 (2z)s 4~'(q)

+ 2PI'(q)n(cu)[1+ n(cu)][1+ 2n(id)] sin[2~ft —t'f]) e f~l~' '
~ + 0

l
A T'i (3.20)

which shows that the noise is colored (time dependent),
although it is Gaussian distributed. Up to order A2

and for I'/m « 1, I'/T « 1, we obtain the fiuctuation-
dissipation relation

I

Note that as T —+ oo, F ~ oo, and thus the integrand
becomes sharply peaked at lt —t'f 0. In this limit, we
can approximate (3.20) by

gg
——— dx' gx gx' 8t —t' (3.21)

We can also obtain the Markovian limit of (3.20), that
is, the limit in which the noise is uncorrelated (white).

((i (x)(i(x')); —b(x —«') b(t —t )2
dsq n((u)[1+ n((u))

(2z.)s 2(u2(q )I'(q )
= 2Tgib (x —x') b(t —t'), (3.22)
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where qi is given by (3.13). Equation (3.22) is the stan-
dard expression of the fIuctuation-dissipation theorem for
a Gaussian white noise.

IV. COUPLING THE SCALAR FIELD TO
OTHER FIELDS

Z[P, y] = —(0„$)' + —(B„y)' —V[/, y], (4 1)

with potential V[/, y] given by

V[4, x] = 0'+ —4'+ —x'+ —x'+ —4'x',
4! 2 41

(4.2)

where m and p, are positive. This model is a good
toy model for several physical cases of interest. For ex-

ample, for some relations among the values of the cou-

pling constants A, f, and gz (e.g. , A = O(g ), f = O(gz)
(Ref. [31])),Eq. (4.1) exhibits the properties of Coleman-
Weinberg models, for which the quantum corrections
coming from integrating out the y field break the sym-
metry in the potential for the scalar field P (corrected
by the y-loop quantum corrections), modifying the orig-

The previous computation of the effective equation of
motion for the field configuration y, can be generalized to
include the effects of interactions with other fields. As an
example, consider the Lagrangian density for the scalar
field P interacting quadratically with another scalar field

x:

1.
&[&] w &[p]+ —iTr, ln Cl+ p'+ g (p

2
(4.3)

Expanding the logarithm in (4.3) as in (2.8), up to order

g, we will get expressions analogous to the ones in (2.15)
and (2.16), with p+, p in the external legs and internal
propagators for the y field, G"'(z —z') (n, t = +, —),
with expressions just as in (2.10) and (2.11). By chang-
ing the field variables y+, y to y~, y, as before, the
contribution from the y field to the effective action for P,
I"[y~, y„], Eq. (2.20), will be

inal vacuum structure of the model. Also, as pointed
out by Hu, Paz, and Zhang [14], Eq. (4.1) can mimic,
at lowest order (one loop) in the g-loop quantum correc-
tions, a coarse-grained effective model for the scalar field

P, after integrating out the y field. In this case, the P
field would represent the field with components contain-
ing the long wavelength modes, while y would contain
the short wavelength modes, with a cutofF determined by
some scale A. In inflationary models, P would behave
as a classical field, while y would represent the subhori-
zon high frequency modes [32,33,14]. The authors in [14]
thus consider the field y as the quantum bath (at T = 0),
allowing them to obtain an effective action for the scalar
field P (the classical action corrected by the g field one
loop quantum corrections), where the scalar field is cou-
pled to a noise field, very much like the multiplicative
noise field (i in Eq. (2.27). Following the results of the
last section, the generalization of their results to T g 0
is relatively simple. Up to one-loop in the y field, the
efFective action I [Ip] in (2.13) (also called the influence
functional by some authors), will be given by

d3k 1+ 2n~
1[%'& &p.] ~ I [&p& p.]

—g "z&p&(z)p (z)

4
d'zd z', y~ (x)(p.(z)y~ (z') + 4(p~(z) (p, (z) (p.'(z') Im G++, 0(t —t')

+ig d zd z'p~(z)(p, (z)(pr, (z') p, (z')Re G++ (4 4)

where
' G++, is given by an expression analogous to (2.24).

The imaginary term in (4.4), coming from integrating out the y field (at one-loop order) can be rewritten by
redefining the fluctuation field (i in (2.27), such that its probability distribution in (2.22) is changed to

—1 4 4 I & ++
2 - -2

P[(i] = X, exp —— d zd x (i(z) —Re G
2

+ 2g'Re [G++]', i~(*')
I

(4 5)

and the two-point correlation function for (i is now given by

(
A2 4 ++((i(z)(i(z')) = —Re G+~+ + 2g Re tG++] (4.6)

, Im IG++(q, t —t')]'

In the equation of motion for p„ from (4.4), we will have an additional contribution to the dissipation coefficient gi,
obtained from a term analogous to (3.4):

t

2g d x' x' Im G++, 0 t —t' 4g &p x, t y w, t dt' t' —t

+2g'y,'(x, t)
d3

~, I [G++(q, t —t')] (4.7)
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The first term on the RHS in (4.7) gives the contribution
to the dissipation coefficient g1, due to the interaction of
the scalar field P with the y field. The second term in

(4.7), together with the second term on the RHS in (4.4),
gives the corrections of the order g and g to the scalar
field P vertex and mass, respectively, due to the y-loop
quantum corrections.

As in (3.4), in order to obtain a nonvanishing contri-
bution to the dissipation coefficient coming &om (4.7),
we must consider the dressed propagator G++ for the y
Geld, instead of the free propagator. As in the last sec-
tion, the introduction of the dressed propagator has to be

ImZ„(q, (ux)

2~x(q)
(4.8)

with the imaginary part of the y-field self-energy, Rom
(A7), given by the imaginary part of the two two-loop
contributions below:

done self-consistently in order to avoid any overcounting
problem. G++(q, t —t') has an expression similar to the
one given for the scalar field P, Eq. (A8) [or (3.9), for
PI'z « 1], where, at O(g, f2), the decay width 1 z can
be written as

Im + Im

x
l g p~(ki)p, (k2)pe(ks)+ —px(ki)px(k2)px(ks) l12 x

r
x (2') 8 (q —ki —k2 —ks), (4 9)

where py(k) is given by (A2), with m2 and A corrected
by the y-loop (T g 0) quantum corrections. pz(k) is the
spectral function for the scalar field y, with expression
analogous to the one for the scalar field P, given by Eq.
(A2), but now with I'z given by (4.8) and ~z given by
the solution of ai (q) = q + p, + ReZz(q, urz).

The high temperature limit of (4.8) is analogous to the
one for the case with one scalar field P, Eq. (3.14):

f2)
~

g'+ —»
128vrurz q ( 12r

A d q n4, (1+ n4, )
8 (2vr)s u)~2(q)I'y(q)

g4 d'q n„(l + nx)
2 (2x) s (u2 (q) I' (q)

~~r 5 ~xr
4g4 r Tl'

mTr 12g + f kpTr
(4.11)

Up to two loops in y the situation would be identical as
discussed for the scalar field P, with results similar to the last
section and that of Appendix C.

with pT
——p +ReZx(p). Using these in (4.7), we obtain

an equation of motion for p, still written as in (3.16),
up to two loops and order A2 in the scalar field P and
up to one loop and order g in the scalar field y. The
dissipation coefficient g1 is given by

with the second correction for rli coming &om the y-P
interaction in (4.1). Associated with this modified dis-
sipation term there is a modified multiplicative Quctua-
tion (noise) field (i, with probability distribution given
by (4.5). For a Coleman-Weinberg potential, we have
that A = O(g ) and f = O(g ), so that the dissipation
coefficient is, as in (3.15), weakly dependent on the cou-
pling constants within our approximations. Using the
expression for the two-point correlation function for (i,
Eq. (4.6), both the fiuctuation-dissipation relation, Eq.
(3.21), and the Markovian limit expression, Eq. (3.22),
still hold.

V. CONCLUSIONS

In this work we have studied the nonequilibrium dy-
namics of a self-coupled scalar Geld. Even though our
formalism is in principle applicable in situations far &om
equilibrium, the effective Langevin-like equation we ob-
tained is only adequate to study the approach to equi-
librium if the initial conditions are not too far from
equilibrium. This limitation is essentially due to the
use of perturbation theory and should come as no sur-
prise. However, this approach clarifies many important
issues concerning nonequilibrium fields and the nature
of the system-bath covpling. By integrating over fIuc-
tuations in order to obtain the effective action, it be-
comes clear in what sense the short wavelength modes
can function as the thermal bath that drives the longer
wavelength modes into equilibrium. In this sense, the ap-
proximations employed in order to obtain a Langevin-like
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equation are consistent with this system-bath separat;ion;
longer wavelength modes have slower dynamics and are
responsible for the large-distance coherent behavior ob-
served during the approach to equilibrium both in the
laboratory and in numerical simulations. By going to
higher order in perturbation theory, we were able to ob-
tain the contributions to the noise and dissipation terms
coming kom different diagrams and their relevance to the
nonequilibrium dynamics.

We found that the Langevin-like equation describ-
ing the approach to equilibrium both for a self-coupled
scalar 6eld and for quadratic coupling with other fields
is quite different fmm the usual phenomenological form
with Gaussian white noise used so far in numerical sim-
ulations of the approach to equilibrium in 6eld theory.
There are basically three differences. The first is that
the dominant contribution to the noise is multiplicative;
it couples quadratically to the field, acting as a "noisy"
source to the mass term in the equation of motion. The
second difference is that even though this noise is still
Gaussian distributed, it is now non-Markovian; the cor-
relation times depend on the decay width of the Huctua-
tions generating the noise. As we show in the text, only
in the limit of very high temperatures the noise becomes
white, as one would naively expect. The final difference
has to do with the way the dissipation term appears in
the equation of motion. Instead of the simple rtP term,
we find instead that the dissipation "coefFicient" depends
quadratically on the amplitude of the field, rt(T)$2$. In
the high temperature limit for a single scalar field we ob-
tained that g(T) (1/T)ln(T/mT), being thus weakly
dependent on the coupling constant. This result is in
agreement with the work of Ref. [12], which assumed a
small departure Rom equilibrium within a kinetic ap-
proach. Both results are consistent with linear response
theory commonly used to obtain transport coefIicients in
field theories [24].

By studying the effects of another scalar field quadrat-
ically coupled to P, we were able to obtain their difFer-

ent contributions to the noise and dissipation terms in
the effective equation of motion. Now, the coefBcient of
the dissipation term depends on ratios of couplings, as
one would expect in more realistic situations, while the
noise is still Gaussian and multiplicative. In both cases,
we showed that one can recover a fIuctuation-dissipation
relation. It will be interesting to investigate the impli-
cations of this Langevin-like equation to the equilibra-
tion time scales during phase transitions, by employing
it in numerical simulations. Apart &om studying the ap-
proach to equilibrium from Dear-equilibirum initial con-
ditions, it is possible to use this equation in the study
of finite temperature symmetry restoration, if one takes
into account the effects of expanding about the broken-
symmetric vacuum. In this connection, it is interesting
to note that the coeKcient of the dissipation term, in
the high-temperature limit, displays the typical critical
slowing down (poor infrared behavior) observed in many
second-order phase transitions; since g ln(T/mT), as
the critical temperature is approached from below, the
temperature corrected mass vanishes and the viscosity di-
verges logarithmically. We leave as an open question the

potential impact that a better understanding of nonequi-
librium dynamics of 6eld theories will have on our current
modeling of primordial phase transitions and their possi-
ble observational consequences. However, we believe that
interesting physics is lurking behind our present level of
understanding of nonequilibrium physical processes that
took place in the early Universe.
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APPENDIX A

+OO
qp e

—eo(i —i')
p(q q )2'

x ( [1 + n(q )] 8(t —t') + n(qp) 0(t' —t) ),
(A1)

where n(qp) = z„and the spectral function, for the
dressed propagator (3.7), is

p(q q. ) =i , + r)2 — 2(q) (q. —r)' — '(q)

(A2)

where ur(q) is the solution ofay (q) = q +m +ReZ(q, w)
and Z(q) is the scalar field self-energy, given by (3.8), up
to two loops. The spectral function (A2) has a peak at
qp = cu(q), with a width given by I'—:I'(q):

ImZ(q, cu)

2~(q)

For the free propagator,

p(q qp) = i
(qp + i~) ~ —q2 —m2

{qp —ie) 2 —q2 —m2 {A4)

and p(q, qp): 2vrr(qp)h(q —m ), where e(qp) = 8{qp)—
0(—qp). Substituting (A4) in (A1), we obtain the free
propagator expressions in (2.11) and (2.12).

Equation (A2) has four poles in the complex qp plane:
iI' and —w+iI'. Using (A2) in (Al) and performing

the qo integration, we obtain

In this appendix we obtain the expression for the
dressed scalar field propagator, Eq. (3.9). The finite

temperature, real-time propagator G&++(q, t —t'), can be
written in terms of the spectral function p(q, qp) [27,24],

G&++ (q, t —t')
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where

G~++(q, t —t.') = G~ (q, t —t')8(t —t') + G~~(q, t —t')8(t' —t),

t ] ttt —t )='—[I+a(te —tt')]e 't ' tt' ' +ee(le+ tt')e't +' tt' 't),
G~~ (q, t —t') = G~ (q, t' —t) . (A6)

The expressions for G&, G&+ and G&+ are the same as in (2.11), but with G&
' given now by (A6).

I'(q) is given in terms of the imaginary part of the self-energy [with first nontrivial contribution, O(A ), coming
from the third graph in (3.8)] by (A3), where ImZ(q) is [22,24]

ImZ(q) = Im

A2
3 4

(I —e ~ ') p(k ) 1 + n(k ) (2x) b (q —ki —k3 —ks) .
12 .". (2~)4

j=1
M

(A7)

The high-temperature limit of (A3) is given in Refs. [12,30] and we have just quoted the final result in the text.
The expression for G&++(q, t —t') in (A5) can also be explicitly written as

—1/t —t'i

G++(q, t —t') = (sinh(P(u) cos((u]t —t'~)
2u cosh u —cos I'

+»n(PI') sin(~~t —t'~) + i [cos(PI') —cosh(P~)]»n(~~t —t'~) j .

Expanding (A8) for PI' (( 1, we obtain Eq. (3.9).

(A8)

APPENDIX B

Let us show that the use of (3.6) correctly accounts for the problem of overcounting of terms when the full propagator
(3.7) is used in our expressions. The thermal mass in the efFective equation of motion in (3.16) is given by

m2 = m2+T (B1)

where the last term in (Bl) comes from the "interaction"
term

&
Ztt)2 in (3.6), with "interaction vertex" denoted by 2= 2 '''-2

mT ——m + — — —m +ReE'
2 124vr .

1 Zy2—
2 (B2)

, +Z
384m [m3+ ReZ]'

m2+ ReZ)
+0/ ln

16ir [m3 + ReZ] '

(B3)

and the propagators in (Bl) are expressed in terms of the
full propagator (3.7). The imaginary part of the setting
sun diagram is handled in Sec. II and it is associated with
the fiuctuation field Q in (2.21). Equation (Bl) can be
derived from the expressions given in Secs. II and III, in
terms of the real time field propagator, Eq. (A8) or (3.9),
or directly in terms of the usual imaginary time method.
The results are the same and (Bl), at high temperatures,
can be expressed by

+0
~

ln
~

+ O(A ),( m')
& T') (B4)

Using (3.11) for m2 + ReZ in (B3) and expanding in A,
we get

Z (T' Tm&, T'
m =m +—

4~ ) 384~m
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which is the correct result for the thermal mass. Terms of
the order A and higher in (B4) must be handled by the
introduction of higher loop terms (three loops and be-
yond), in which the last term in (Bl) and the consistent
introduction of higher order graphs with the interaction
vertex (B2) would cancel any extra contributions. With-
out the last term in (Bl), we can easily check that we
would overcount higher order diagrams, beginning with
the "Ggure 8" two-loop diagram, which would be counted
twice. A similar overcounting, in particular the one asso-
ciated with the "figure 8" diagram, leads to the problem
of linear terms (in the field-dependent mass) in the finite
temperature effective potential improved improperly by
dressed propagators. As shown by Arnold and Espinosa
(in Ref. [5]), the introduction of the interaction term (B2)
cancels the linear terms and the procedure used here gives
the correct Gnite-temperature efFective potential in terms
of the thermal mass.

In the effective equation of motion, additional over-

counting terms can also arise from the dressed one-loop
vertex correction and these are accounted for by a term
such as {at lowest order)

however, these terms are higher order in A, O(A ), and
we will not deal explicitly with them here.

APPENDIX C

We estimate here the dissipation coeKcient g2 asso-
ciated with the fluctuation field (2, obtained kom Eq.
(3.5), with G&+(q, t —t') given by (A9) and show that
it is subdominant. From the Grst term on the RHS in
(3.5), we get that g2 is given by

2 3 3
dt'(t' —t) Im G4,

+ (qi, t —t') G4
+

(q2, t —t')
G&+ (—qi —q2, t —t')

3 2x ' 2~ ' (Cl)

From (A8), we can write G&++(q, , t —t') as

G~++(
q, , t —t') = a, +ib~, . (C2)

where a~—:a(q, t t') and b~
—= b(q. , t —t') are given by the real and imaginary terms of Eq. (A8), respectively

[I', = I'(q, ) and u),
—= (u(q;)]:

—I'~ )t —t'(

a~ = [sinh(pu~) cos(uz [t —t')) + sin(pr~) sin(u~ (t —t'()],
2u), [cosh(Pa), ) —cos(PI', ))

e r~ I

—'
I sin(cui It —t I)b~=—

2(d&
(C3)

Using (C2) in (Cl), we get (with qs ———qi —q2)

Qy
q2

—— dt'(t' —t) s s (aia2bs + aiasb2 + a2asbi —bib2bs) .
3 (2')' (2')s

(C4)

Using Eq. (C3) for a~ and b~, we can perform the time integration in (C4), by changing the time integration variable
t' to t —t' = t", and obtain for (C4) the expression

A2 d q d q 1 I' +I' +I' 2(l+2n )(n —n )+(1+2n )(1+2n ) —1

3 {2x) (2') (ui(u2(us 2 ((di —(d2 + (ds)

2(1 + 2n2) (ns —ni) + (1 + 2ni) (1 + 2ns) —1
+

(cdi + (d2 —(ds )
3

2(1+ 2n&) (n& —n2) + (1 + 2ni) (1+2n2) —1
+

(—ldi + a)2 + &ds) 3

(1 + 2n, )(1+2n, ) y (1 + 2n, ) (1+2n, ) + (1+2n, )(1+2n, ) —1'

(Mi + hfg + (ds)

1
+ Pr, n, (1+n, ) (n2 —ns)

l&)~i —~2+~3)* )~i+ ~
—~s)')

(+(.+ .)lE(~, +~, +~3)' )— i+~, +,)')
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1 1

~1+~2+~3) (~1 ~2+~3) )

+0 A' —',
(~g —ur2+(us)') ( (u. )

1
+ (ng+n2)!

~(~, +~, +~.)2

(
+ PI'2n2(1+ n2) (nq —ns) !( (—u), + (u, + ur, )2

(+ (.+ .)I( ((dy + (d2 + ldS) (ldy —4/2 + (dS) )
+ Pl' n (1+ns) (n] n2)!

r
&(-

(C5)

The above expression is at least of the order %21'; and, since I'; = O(A ), we have that rl2 ——O(A ). We are thus
justified in neglecting its contribution to the effective equation of motion to O(Az).
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